
HIGH ACCURACY SIMULATION OF ORBIT
DYNAMICS: AN OBJECT-ORIENTED APPROACH

Francesco Casella, Marco Lovera

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy

casella@elet.polimi.it(Francesco Casella)

Abstract

The development process for spacecraft control systems relies heavily on modelling and simu-
lation tools for spacecraft dynamics. For this reason, there is an increasing need for adequate
design tools in order to cope efficiently with tightening requirements for simulation accuracy
and efficiency. In the last few years a Modelica library for spacecraft modelling and simula-
tion has been developed, on the basis of the Modelica Multibody Library; the aim of this paper
is to demonstrate improvements in terms of simulation accuracy and efficiency which can be
obtained by using Keplerian parameters instead of Cartesian coordinates as state variables in
the spacecraft model. Thanks to the features of the Modelica modelling language, and of the
tools supporting it, it is straightforward to extend the rigid body model of the standard Multi-
Body library, by adding the equations defining a transformation of the body center-of-mass
coodinates from Keplerian parameters to Cartesian coordinates, and by setting the former as
preferred states, instead of the latter; the tool then handles the state transformation automati-
cally. The remaining parts of the model, including the model of the gravitational field, are left
untouched, thus ensuring maximum re-usability of third-party code. The results shown in the
paper demonstrate the superior accuracy and speed of computation in the reference case of a
point-mass gravity field.

Keywords: Spacecraft dynamics, Object-oriented modelling, Modelica, Numerical inte-
gration.

Presenting Author’s Biography
Francesco Casella. Francesco Casella got his Electronics Engineering de-
gree in 1994 and a PhD in Computer and Control Science in 1999 from
Politecnico di Milano, where he is Assistant Professor since 2001. His cur-
rent research interests include modelling and control of energy conversion
systems, and object-oriented modelling for control applications in general.
He’s an active member of the Modelica Association. He has published over
40 papers in referenced journals and international conference proceedings.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

The safe and satisfactory operation of a satellite, in
terms of its mission objectives, is strongly related to
the performance level of its on-board attitude and orbit
control systems, which provide the ability to maintain
a desired orientation in space (or, e.g., carry out prede-
fined attitude maneuvers) and track a desired, nominal
orbit in spite of the presence of external disturbances.
In addition, the recent trend towards missions based on
constellations or formations of small satellites has led
to the formulation of even more complex control prob-
lems, related to the relative motion (both in terms of at-
titude and position) of more vehicles at a time. This has
resulted in an increasing need for efficient design tools
in every domain involved in spacecraft design, and par-
ticularly in the area of control-oriented modelling and
simulation. Specific tools have to be developed for the
design of both the system architecture and the Attitude
and Orbit Control System (AOCS), bearing in mind the
principles of reusability, flexibility and modularity. The
main issue in the development of such tools should be
to try and work out a unified environment to be used
throughout the life cycle of the AOCS software, namely,
the mission analysis stage, the preliminary and detailed
design and simulation phases, the generation and test-
ing of the on-board code, the development of the AOCS
Electrical Ground Support Equipment (EGSE) and the
post-launch data analysis activities. A number of com-
mercial tools are available to support one or more of the
above mentioned phases in the development of AOCS
subsystems, however none of them seems capable of
providing complete coverage of the whole development
cycle in a sufficiently flexible way.

It is expected that a systematic approach to mod-
elling and simulation, based on modern a-causal object-
oriented languages such as Modelica (see [1, 2]), will
eventually lead to the development of spacecraft sim-
ulation tools, the use of which would be made much
more efficient by the very nature of the selected mod-
elling approach. Note, in passing, that there is an
increasing interest for multidomain problems in the
spacecraft control design community (see, e.g., [3]), an
area which would benefit from the availability of simu-
lation tools based on the object-oriented approach. The
development of simulation tools for satellite attitude
and orbit dynamics within the object-oriented paradigm
has been the subject of previous work (see [4], where
an overview of the existing tools for AOCS modelling
is presented). Surprisingly enough, however, while the
use of Modelica for aerospace applications has recently
led to the development of a library for flight dynam-
ics (see [5]), very little activity in the spacecraft do-
main has been reported. Some preliminary results in
the development of a Modelica spacecraft modelling li-
brary have been presented in [6, 7, 8]). More recently,
the model components presented in the cited references
have been revised in order to take advantage of the
Modelica Multibody library (see [9]), which turns out
to be extremely suitable to serve as a basis for the de-
velopment of the basic model components for the me-
chanical parts of spacecraft models. In particular, a

recent extension of the above mentioned library (see
[10, 11]) is proving specially beneficial for the simu-
lation of spacecraft with flexible appendages (see also
[12]).

Therefore, the aims of this paper are the following:

• to demonstrate improvements in terms of simula-
tion accuracy and efficiency which can be obtained
by using Keplerian parameters instead of Carte-
sian coordinates as state variables in the spacecraft
model;

• to illustrate how Keplerian parameters can be sim-
ply included in the existing multibody spacecraft
model by exploiting the object-oriented features of
the Modelica language and the symbolic manipu-
lation capability of Modelica tools.

The paper is organised as follows: first an overview
of the available choices for the state representation of
satellite orbits is given in Section 2; subsequently, the
use of Keplerian orbital elements for the simulation of
orbit dynamics will be described in Section 3, while the
corresponding Modelica implementation will be out-
lined in Section 4 and the results obtained in the im-
plementation and application of the proposed approach
to the simulation of a Low Earth orbit will be presented
and discussed in Section 5.

2 Satellite State Representations
The state of the center of mass of a satellite in space
needs six quantities to be defined. These quantities may
take on many equivalent forms. Whatever the form, we
call the collection of these quantities either a state vec-
tor (usually associated with position and velocity vec-
tors) or a set of elements called orbital elements (typi-
cally used with scalar magnitude and angular represen-
tations of the orbit). Either set of quantities is refer-
enced to a particular reference frame and completely
specifies the two-body orbit from a complete set of ini-
tial conditions for solving an initial value problem class
of differential equations.

In the following subsections, we will refer to a space-
craft subject only to the gravitational attraction of the
Earth considered as a point mass (unperturbed Keple-
rian conditions).

2.1 Position and Velocity Coordinates

In the Earth-Centered Inertial (ECI) reference frame,
the position and velocity vectors of a spacecraft influ-
enced only by the gravitational attraction of the Earth
considered with punctiform mass will be denotated as
follows

r = [x y z]T , (1)

v = [vx vy vz]
T =

dr

dt
. (2)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

The acceleration of such a spacecraft satisfies the equa-
tion of two-body motion

d2r

dt2
= −GM⊕

r

‖r‖3
(3)

where µ = GM⊕ is the gravitational coefficient of the
Earth. A particular solution of this second order vector
differential equation is called an orbit that can be ellip-
tic or parabolic or hyperbolic, depending on the initial
values of the spacecraft position and velocity vectors
r(t0) and v(t0). Only circular and elliptic trajectories
are considered in this study.

The state representation by position and velocity of a
spacecraft in unperturbed Keplerian conditions is

x = [x y z vx vy vz]
T (4)

at a given time t. Time t is always associated with a
state vector and it is often considered as a seventh com-
ponent. A time used as reference for the state vector or
orbital elements is called the epoch.

2.2 Classical Orbital Elements

The most common element set used to describe ellip-
tical orbits (including circular orbits) are the classical
orbital elements (COEs), also called the Keplerian pa-
rameters, which are described in the sequel of this Sec-
tion. The COEs are defined as follows:

• a : semi-major axis, [m];

• n : mean motion, [sec−1]

• e : eccentricity, [dimensionless];

• i : inclination, [rad];

• Ω : right ascension of the ascending node,
[rad];

• ω : argument of perigee, [rad];

• ν : true anomaly, [rad];

• E : eccentric anomaly, [rad];

• M : mean anomaly, [rad];

(see Figures 1 and 2). The definitions of the COEs are
referenced to the ECI frame.

• The semi-major axis a specifies the size of the or-
bit. Alternatively, the mean motion

n =

√
GM⊕

a3
(5)

can be used to specify the size.

• The eccentricity e specifies the shape of the el-
lipse. It is the magnitude of the eccentricity vector,
which points toward the perigee along the line of
apsis.

• The inclination i specifies the tilt of the orbit plane.
It is defined as the angle between the angular mo-
mentum vector h = r × v and unit vector Z

cos i =
Z · h
‖h‖

. (6)

• The right ascension of the ascending node Ω is the
angle from the positive X axis to the node vec-
tor n pointing toward the ascending node, that is
the point on the equatorial plane where the orbit
crosses from south to north. The node vector n is
defined as

n = Z × h. (7)

The cosine of the right ascension of the ascending
node is then

cos Ω =
X · n
‖n‖

. (8)

A quadrant check must be done because Ω can
vary from 0 to 2π. If the component of n along
the Y axis is negative, then

Ω = 2π − arccos
(

X · n
‖n‖

)
. (9)

• The argument of perigee ω is measured from the
ascending node to the perigee, i.e. to the eccen-
tricity vector e pointing toward the perigee

cosω =
n · e
‖n‖e

. (10)

A quadrant check must be done because ω can
vary from 0 to 2π. If the component of e along
the Z axis is negative, then

ω = 2π − arccos
(
n · e
‖n‖e

)
. (11)

ORBITAL
PLANE

LINE
OF NODES

intersection between
equatorial plane
and orbital plane

ASCENDING
NODE

LINE
OF APSIS

EQUATORIAL
PLANE

X

Y

ZNORTH

Ω

i

i

PERIGEESATELLITE

n

e

ω

ν

h

Fig. 1 Classical Orbital Elements (COEs)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

• The eccentric anomaly E is defined on the auxil-
iary circle of radius a, that can be drawn around
the elliptical orbit, as shown in Fig. 2. The sine
and cosine of the eccentric anomaly are related to
eccentricity and to the true anomaly ν according
to the following relations

sinE =
sin ν
√

1− e2
1 + e cos ν

(12)

cosE =
e+ cos ν

1 + e cos ν
. (13)

In this work, satellite state representation in terms of
classical orbital elements (Keplerian parameters) will
be denoted as

x
COE

= [a e i Ω ω E]T (14)

with the implicit choice of adopting E as a parameter
to represent the spacecraft anomaly.

AUXILIARY
CIRCLE

ELLIPTIC
ORBIT

r

νE

a

a

ae
a cos(E)

SATELLITE

Fig. 2 True and eccentric anomalies for elliptic motion

2.3 Conversion Formulas

In this Section, the transformation from Keplerian to
Cartesian coordinates will be briefly summarised (see
[13] for details). With reference to Figure 2 and with
obvious definitions for the x and y axes, z being normal
to the orbit plane, we have[

x
y
z

]
=

 a cos(E)− ae
a sin(E)

√
1− e2

0

 . (15)

As depicted in Fig. 3, the orthogonal basis RTN of
the Gaussian coordinate system can be obtained from
the orthogonal basis XY Z of the ECI frame be means
of three successive rotations[

x
y
0

]
= RZXZ (x

COE
)

[
X
Y
Z

]
. (16)

with

RZXZ (x
COE

) = RZ(ω)RX(i)RZ(Ω) (17)

where matrix

RZ(Ω) =

[cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1

]
(18)

describes the first rotation around the Z axis of an angle
Ω, matrix

RX(Ω) =

[1 0 0
0 cos i sin i
0 − sin i cos i

]
(19)

describes the second rotation around the X of an angle
i, matrix

RZ(ω) =

[cos(ω) sin(ω) 0
− sin(ω) cos(ω) 0

0 0 1

]
(20)

describes the third rotation around the Z axis of an an-
gle ω + ν.

ORBITAL
PLANE

LINE
OF NODES

ASCENDING
NODE

LINE
OF APSIS

EQUATORIAL
PLANE

intersection between
equatorial plane
and orbital plane

90

X

Y

ZNORTH

Ω

i

PERIGEE

+ω ν

1st ROTATION

2nd ROTATION3rd ROTATION

R

T

N

Fig. 3 Rotations to convert from ECI to RTN reference
frame

3 COEs for simulation of orbit dynamics
When orbital control problems are studied, it is usu-
ally necessary to integrate the equations of motion of
the satellite under the action of the earth (or any other
celestial body) and of the actuators’ thrust. The usual
approach, known as Cowell’s method (see [14]), is to
integrate the equations of motion in cartesian coordi-
nates

ṙ = v (21)
v̇ = ag(r) + f (22)

where r is the cartesian coordinate vector of the satellite
center of mass, ag is the acceleration of gravity and f is
the sum of the forces applied by the actuators. First-cut
models assume a point-mass model

ag = −GMr/‖r‖3, (23)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

while accurate simulations require more detailed mod-
els of the gravitational field, usually in the form of a se-
ries expansion (see, e.g., [15]). In both cases, the differ-
ential equations are strongly non-linear; therefore, de-
spite the use of high-order integration algorithm, tight
tolerances end up in a fairly high number of simulation
steps per orbit.

If the satellite motion is described in terms of COE’s,
it is easy to observe that the variability of the six orbit
elements is much smaller than that of the cartesian co-
ordinates. In particular, it is well-known that in case of
a point-mass gravity field with no other applied forces,
the first five parameters are constant, while the anomaly
increases in time with slowly varying speed. All exist-
ing high-order integration methods have error bounds
which depend on Taylor expansions of the state trajec-
tory. One can then conjecture that if the COE’s are used
as state variables, instead of the Cartesian vectors r and
v, the state trajectories will be smoother, and therefore
the integration algorithm will be able to estimate them
with the same relative precision using much larger time
steps, or with increased precision using the same time
steps as in the Cartesian coordinates case.

Defining the vectors

x =
[
rT vT

]T
(24)

z = [a e i Ω ω E]T (25)
equations (15)-(16) and (21)-(22) can be written in
compact form as

ẋ = f(x) (26)
x = g(z). (27)

If a state variable change from x to z is performed, the
following equations are obtained

∂g(z)
∂z

ż = f(g(z)) (28)

which can be solved for ż provided that the COE’s are
uniquely defined

ż =
(
∂g(z)
∂z

)−1

f(g(z)) (29)

x = g(z). (30)

If the orbit is circular and/or equatorial, the Jacobian
becomes singular; in this case, a different parameteriza-
tion of the orbital elements is needed (e.g., the equinoc-
tial parameters), but this analysis is beyond the scope of
this paper.

The model (29)-(30), which is now in standard state-
space form, has two very important features:

• the right-hand side of (29) is much less variable
than the right-hand side of (26), so it will be easier
to integrate the equations with a given accuracy;

• in case an accurate model of the gravity field is
used, it is not necessary to reformulate it in terms
of the COE, because the right-hand side of (29)
uses the compound function f(g(z)).

4 Modelica implementation
The concepts outlined in Section 3 are easily imple-
mented using the object-oriented modelling language
Modelica (see [16]). The goal is to enhance an already
existing library for the simulation of satellite system dy-
namics [8, 17] with the increased accuracy in the deter-
mination of the position of the center of mass given by
model (29)-(27).

The starting point is the BodyFrame model of the
standard Modelica.Multibody library [9]: this is a 6
degrees-of-freedom model of a rigid body, which can
be connected to other components to form a multibody
system model. The original model has six potential
state variables: the three cartesian coordinates of the
center of mass, and three other suitable variables de-
scribing the body orientation. Assuming that the grav-
itational field is applied exactly at the center of mass
(thus ignoring gravity gradient effects), the translational
and rotational equations are completely decoupled, so it
is possible to focus on the former ones, leaving the lat-
ter ones untouched.

The new model BodyKepler is obtained by inheritance
from the BodyFrame model, with the following addi-
tions:

1. the equations to compute gravity acceleration as a
function of the cartesian coordinates using more
general models are added by inheritance to the
standard World model of the MultiBody library
(see [8, 17]);

2. the COE’s a, e, i, ω, Ω, E are added as new model
variables;

3. the equation relating them to the cartesian coordi-
nates (15)-(16) are added;

4. the stateSelect attribute is switched to StateSe-
lect.avoid for the r and v vectors, and to State-
Select.prefer for the COE’s from the x variables,
and switched on. The Modelica tool will then per-
form the transformation from (26)-(27) to (29)-
(30) automatically, using symbolic manipulation
algorithms.

The Modelica code defining the new model (listed in
the Appendix and corresponding to steps 2-4), is very
compact and easy to check, which is an important fea-
ture to ensure the correctness of the resulting model.
As already noted, the accurate models of the gravity
field, previously implemented in [8, 17], can still use
the Cartesian coordinates as inputs, and are thus left un-
changed.

5 Simulation results
In this Section, the results obtained in comparing the
accuracy obtained by simulating the orbit dynamics for
two Low Earth orbiting (LEO) spacecraft will be pre-
sented. As previously mentioned, for the purpose of the

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

present study we focus on the simulation of the unper-
turbed dynamics, i.e., only the gravitational accelera-
tion computed from a point-mass model for the Earth is
considered. In this case, the orbit is an ellipse (closed
curve), having well-defined features. Therefore, this as-
sumption allows us to introduce two simple criteria in
order to evaluate the accuracy of the performed simula-
tions, namely:

• The period of an unperturbed elliptical orbit can be

computed a priori and is given by T = 2π
√

a3

µ ,
so a first measure of simulation accuracy can be
given by the precision with which the orbit actu-
ally closes during the simulation. To this purpose,
the following stopping criterion has been defined
for the simulation: the integration is stopped when
the position vector crosses a plane orthogonal to
the initial velocity and passing through the initial
position. Then, the final time is compared with
the orbit period and the final position is compared
with the initial one.

• Furthermore, for an unperturbed orbit the angular
momentum h = r × v should remain constant, so
a second measure of accuracy for the simulation is
given by the relative error in the value of h, i.e.,
the quantity

eh =
‖h− h(0)‖
‖h(0)‖

. (31)

The considered orbits have been simulated using the
Dymola tool, both using Cartesian and Keplerian coor-
dinates, in order to evaluate the above-defined precision
indicators. In both cases the DASSL integration algo-
rithm has been used, with the smallest feasible relative
tolerance 10−12.

5.1 A near-circular, LEO orbit

The first considered orbit is a LEO, near circular one
(see Figure 4), characterised by the following initial
state, in Cartesian coordinates:

r(0) =

6828.140× 103

0
0

 ,
v(0) =

 0
5.40258602956241× 103

5.40258602956241× 103


In Table 1 the precision achieved in the actual closure of
the orbit is shown: as can be seen, the simulated period
is very close to the actual one and both the period er-
ror and the position error are significantly smaller when
simulating the orbital motion using Keplerian rather
than Cartesian states.

Similarly, in Figure 5 the time histories of the relative
error on the value of the orbital angular momentum are
illustrated, for a simulation of about one day: the re-
sults are clearly very satisfactory in both cases, how-
ever while in the case of Cartesian states the relative

Tab. 1 Orbit closure errors, using Cartesian and Keple-
rian coordinates - near circular orbit.

States ∆T [s] ‖∆r‖ [m]
Cartesian −1.00332× 10−6 1.69711× 10−3

Keplerian 2.38369× 10−8 2.17863× 10−5

Fig. 4 The considered LEO, near circular orbit.

error is significantly larger than machine precision and
is slowly increasing, in the case of Keplerian states the
relative error is much smaller and appears to be more
stable as a function of time (see also Table 2). Finally,

Fig. 5 Relative errors on the orbit angular momentum -
near circular orbit: Cartesian (top) and Keplerian (bot-
tom) coordinates.

note that the use of Keplerian parameters also leads to
significant benefits in terms of simulation efficiency, as
can be seen from Table 3.

5.2 A highly elliptical, LEO orbit

The second considered orbit is again a LEO one, but
it is characterised by a high value of the eccentricity

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

Tab. 2 Mean angular momentum error, using Cartesian
and Keplerian coordinates - near circular orbit.

State variables Mean eh
Cartesian 1.5373× 10−9

Keplerian 4.7528× 10−13

Tab. 3 Number of steps for a one-orbit simulation - near
circular orbit.

State variables Number of steps
Cartesian 959
Keplerian 376

(see Figure 6, where it is also compared with the cir-
cular orbit considered in the previous case) and by the
following initial state, in Cartesian coordinates:

r(0) =

6828.140× 103

0
0

 ,
v(0) =

 0
5.40258602956241× 103

7.29349113990925× 103


As in the previous case, Table 4 shows the precision
achieved in the actual closure of the orbit: as can be
seen, the errors on the simulated period are of the same
order of magnitude for both choices of state variables.
The position errors, on the other hand are significantly
smaller when simulating the orbital motion using Kep-
lerian rather than Cartesian states.

Tab. 4 Orbit closure errors, using Cartesian and Keple-
rian coordinates - highly elliptical orbit.

States ∆T [s] ‖∆r‖ [m]
Cartesian −1.17226× 10−5 4.39241× 10−3

Keplerian 1.48665× 10−5 2.67799× 10−7

Similarly, in Figure 7 the time histories of the relative
error on the value of the orbital angular momentum are
illustrated, for a simulation of about one day. In this
case, the results show that using Cartesian states the
relative error is again significantly larger than machine
precision and is slowly increasing, while using Keple-
rian states the relative error is of the order of machine
precision (see also Table 5).

Finally, the gain in terms of simulation efficiency can
be verified from Table 6.

6 Concluding remarks
A method for the accurate simulation of satellite orbit
dynamics on the basis of the Modelica MultiBody li-
brary has been presented. The proposed approach is

Fig. 6 The considered LEO, highly elliptical orbit, com-
pared with the circular one considered in Section 5.1.

Fig. 7 Relative errors on the orbit angular momentum
- highly elliptical orbit: Cartesian (top) and Keplerian
(bottom) coordinates.

based on the use of Keplerian parameters instead of
Cartesian coordinates as state variables in the space-
craft model. This is achieved by adding to the standard
Body model the equations for the transformation from
Keplerian parameters to Cartesian coordinates and ex-
ploiting automatic differentiation. The resulting model
ensures a significant improvement in numerical accu-
racy, does not require the solution of implicit equations
and keeps the same interface and multibody structure
of the standard component. Simulation results with a
point-mass gravity field show the good performance of
the proposed approach. The validation with higher or-
der gravity field models is currently being performed.

7 References
[1] Modelica - a unified object-oriented language for

physical systems modelling. Language specifica-
tion. Technical report, Modelica Association,
2002.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

Tab. 5 Mean angular momentum error, using Cartesian
and Keplerian coordinates - highly elliptical orbit.

State variables Mean eh
Cartesian 1.2927× 10−10

Keplerian 2.5223× 10−16

Tab. 6 Number of steps for a one-orbit simulation -
highly elliptical orbit.

State variables Number of steps
Cartesian 3650
Keplerian 1120

[2] P. Fritzson and Bunus. Modelica - a gen-
eral object-oriented language for continuous and
discrete-event system modelling and simulation.
In Proceedings of the 35th IEEE Annual Simula-
tion Symposium, 2002.

[3] C. Roithmayr, C. Karlgaard, R. Kumar, and
D. Bose. Integrated power and attitude control
with spacecraft flywheels and control moment gy-
roscopes. Journal of Guidance, Control, and Dy-
namics, 27(5):859–873, 2004.

[4] A. Turner. An open-source, extensible spacecraft
simulation and modeling environment framework.
Master’s thesis, Virginia Polytechnic Institute and
State University, 2003.

[5] D. Moorman and G. Looye. The Modelica flight
dynamics library. In Proceedings of the 2nd Inter-
national Modelica Conference, Oberpfaffenhofen,
Germany, 2002.

[6] M. Lovera. Object-oriented modelling of space-
craft attitude and orbit dynamics. In 54th Interna-
tional Astronautical Congress, Bremen, Germany,
2003.

[7] T. Pulecchi and M. Lovera. Object-oriented mod-
elling of the dynamics of a satellite equipped with
single gimbal control moment gyros. In Proceed-
ings of the 4th International Modelica Confer-
ence, Hamburg, Germany, volume 1, pages 35–
44, 2005.

[8] M. Lovera. Control-oriented modelling and sim-
ulation of spacecraft attitude and orbit dynam-
ics. Journal of Mathematical and Computer Mod-
elling of Dynamical Systems, Special issue on
Modular Physical Modelling, 12(1):73–88, 2006.

[9] M. Otter, H. Elmqvist, and S. E. Mattsson. The
new Modelica multibody library. In Proceed-
ings of the 3nd International Modelica Confer-
ence, Linköping, Sweden, 2003.

[10] G. Ferretti, F. Schiavo, and L. Viganò. Object-
Oriented Modelling and Simulation of Flexible
Multibody Thin Beams in Modelica with the Fi-
nite Element Method. In 4th Modelica Confer-
ence, Hamburg-Harburg, Germany, March 7-8,
2005.

[11] F. Schiavo, L. Viganò, and G. Ferretti. Modular
modelling of flexible beams for multibody sys-
tems. Multibody Systems Dynamics, 12(1):73–88,
2006.

[12] F. Schiavo and M. Lovera. Modelling, simula-
tion and control of spacecraft with flexible ap-
pendages. In Proc. of the 5th International Sym-
posium on Mathematical Modelling, Vienna, Aus-
tria, 2006.

[13] M. Sidi. Spacecraft dynamics and control. Cam-
bridge University Press, 1997.

[14] V. Chobotov. Orbital Mechanics. AIAA Educa-
tion Series, Second edition, 1996.

[15] J. Wertz. Spacecraft attitude determination and
control. D. Reidel Publishing Company, 1978.

[16] S. E. Mattsson, H. Elmqvist, and M. Otter. Phys-
ical system modeling with Modelica. Control En-
gineering Practice, 6(4):501–510, 1998.

[17] T. Pulecchi, F. Casella, and M. Lovera. A Mod-
elica library for Space Flight Dynamics. In Pro-
ceedings of the 5th International Modelica Con-
ference, Vienna, Austria, 2006.

Appendix:
Modelica code for the BodyKepler model
model BodyKepler
"Body model with computation of Kepler parameters"
extends Modelica.Mechanics.MultiBody.Parts.Body(
frame_a(r_0(stateSelect = StateSelect.never)),
v_0(stateSelect = StateSelect.never));

import Modelica.Math.*;
constant Real pi = Modelica.Constants.pi;

parameter Integer initCoordinates = 1 "0: none, 1: cartesian, 2: keplerian";
parameter Integer stateChoice = 1 "0: cartesian, 1; Keplerian";
parameter OrbitalPosition r_start[3] = {6800, 0, 0}
"Start value of position in cartesian coordinates";

parameter OrbitalVelocity v_start[3] = {0, 7200, 0}
"Start value of initial velocity in cartesian coordinates";

parameter OrbitalPosition a_start=
sqrt(r_start*r_start)/(2-sqrt(r_start*r_start)*v_start*v_start/GM)
"Start value of initial semi-major axis";

parameter Real e_start = 0.1 "Start value of initial eccentricity";
parameter Real i_start = pi/4 "Start value of initial inclination";
parameter Real Omega_start = 0
"Start value of initial longitude of ascending node";

parameter Real omega_start = 0 "Start value of initial argument of perigee";
parameter Real E_start = 0 "Start value of initial anomaly";
parameter Real GM = world.mue "Gravitational constant times mass";

// Cartesian position and velocity
OrbitalPosition r[3](start = r_start) "Position in cartesian coordinates";
OrbitalVelocity v[3](start = v_start) "Velocity in cartesian coordinates";
OrbitalPosition r_orb[3] "Position in the orbit plane";
OrbitalVelocity v_orb[3] "Velocity in the orbit plane";
OrbitalPosition2 rmod2;
OrbitalPosition rmod;
OrbitalVelocity2 vmod2;

// Rotation matrices to convert from ECI to RTN frame
Real A_omega[3,3];
Real A_Omega[3,3];
Real A_i[3,3];

// Keplerian parameters
OrbitalPosition a(
stateSelect = if stateChoice == 1 then StateSelect.always else StateSelect.default,
start = a_start, min = 0) "Semi-major axis";

Real e(
stateSelect = if stateChoice == 1 then StateSelect.always else StateSelect.default,
start = e_start, min = 0) "Eccentricity";

Real i(
stateSelect = if stateChoice == 1 then StateSelect.always else StateSelect.default,
start = i_start) "Inclination";

Real Omega(
stateSelect = if stateChoice == 1 then StateSelect.always else StateSelect.default,
start = Omega_start) "Longitude of ascending node";

Real omega(
stateSelect = if stateChoice == 1 then StateSelect.always else StateSelect.default,
start = omega_start);

Real E(
stateSelect = if stateChoice == 1 then StateSelect.always else StateSelect.default,
start = E_start);

// Orbit period and mean angular frequency
SI.Time T_orbit(start=10000);
Real n "Mean orbital angular frequency";

equation

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

// Connection to Body model
r = frame_a.r_0;
v = v_0;

// Transformation from Keplerian parameters to cartesian coordinates
T_orbit = 2*pi*sqrt(aˆ3/GM);
n = 2*pi/T_orbit;

rmod = sqrt(rmod2);
rmod2 = r*r;
vmod2 = v*v;

r_orb[1] = a*(cos(E)-e);
r_orb[2] = a*sqrt(1-eˆ2)*sin(E);
r_orb[3] = 0;

A_omega = [cos(omega), sin(omega), 0;
-sin(omega), cos(omega), 0;

0, 0, 1];
A_Omega = [cos(Omega), sin(Omega), 0;

-sin(Omega), cos(Omega), 0;
0, 0, 1];

A_i = [1, 0, 0;
0, cos(i), sin(i);
0, -sin(i), cos(i)];

r = transpose(A_Omega)*transpose(A_i)*transpose(A_omega)*r_orb;

v_orb[1] = -aˆ2*n/rmod*sin(E);
v_orb[2] = aˆ2*n/rmod*sqrt(1-eˆ2)*cos(E);
v_orb[3] = 0;
v = transpose(A_Omega)*transpose(A_i)*transpose(A_omega)*v_orb;

initial equation
// Sets the initial conditions
if initCoordinates == 1 then
// initial conditions specified by start values of cartesian coordinates
r = r_start;
v = v_start;

elseif initCoordinates == 2 then
// initial conditions specified by start values of Keplerian parameters
a = a_start;
e = e_start;
i = i_start;
Omega = Omega_start;
omega = omega_start;
E = E_start;

end if;

end BodyKepler;

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

