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Abstract  

This article focuses on implementation of the Radial Basis Function (RBF) neural network by 

using linearly approximated functions. The presented approach is suitable for hardware 

implementations on FPGA that may accelerate the simulation of neural networks of this type. 

The approach of linearly approximated functions goes beyond the complexity of multipliers 

and large look-up tables for implementing activation functions and replaces them with simpler 

logic circuits based on adders and shifters. We show that some combination of building 

blocks consisting of many multiplexers (if implemented separately) can be replaced by a 

small set of invertors (if combined). This considerably reduces the amount of hardware 

necessary to implement the RBF neurons. Further, we present the results of our pilot 

implementation of the RBF neural network on FPGA consisting of arithmetic blocks for 

neural calculations, memory blocks for prototype storage, and controllers. Bus 

interconnections among neurons and command based control of neurons provide very good 

scalability of the proposed architecture. It allows increasing the number of RBF neurons as 

well as increasing the dimension of the input vector. The pipelining technique used for RBF 

neurons allows full utilization of the hardware. All functional blocks of the RBF neural 

network are implemented in synthesizable VHDL, simulated by the ModelSim 6.2d VHDL 

simulator and synthesized for the Xilinx Virtex-4 device by the Xilinx ISE 8.2i. As a result of 

synthesis, we provide a number of parameters such as the maximum clock frequency and the 

number of function blocks that characterize the resulting synthesized FPGA design.  

Keywords: neural network, Radial Basis Function (RBF), linear approximation, neural 

hardware, FPGA. 
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1. Introduction 

Recent years have seen rapid growth in the importance 

of neural networks and other computational 

intelligence paradigms in many applications [3][4][5]. 

Radial Basis Function (RBF) [1] can learn much faster 

than other comparable neural paradigms, therefore, 

they are suitable for real-time data processing and real 

time control. Neural networks used for this kind of 

application require fast simulation platforms to 

achieve short input-to-output latencies and fast 

responses to outer events. One solution is hardware 

acceleration of the simulation process by 

implementing the neural networks completely or 

partially in hardware [6] [7] using FPGA as a rapid 

prototyping platform.  

This article is based on our previous research 

presented in [2], where we introduced a set of linearly 

approximated functions suitable for the 

implementation of neural networks. The approach of 

linearly approximated functions goes beyond the 

complexity of multipliers and large look-up tables and 

replaces them with simpler logic circuits based on 

adders and shifters. Although our previous research 

introduces the key building blocks for the RBF neural 

networks, it is solely focused on perceptrons.  

In this article we go farther by showing that some 

combination of building blocks consisting of many 

multiplexers (if implemented separately) can be 

replaced by a small set of invertors (if combined). 

This considerably reduces the amount of hardware 

necessary to implement the RBF neurons. On the base 

of these results we proposed new functional units 

suitable for efficient implementation of the RBF 

neural networks in hardware. The proposed units were 

verified and evaluated on our FPGA implementation. 

 In Section 2, we give a short introduction to RBF 

neural networks and their implementation by linearly 

approximated functions. Section 3 is an overview of 

linearly approximated functions relevant to the 

proposed functional units. Section 3.6 describes a 

model of the proposed RBF neuron including its 

detailed evaluation. Section 4 describes hardware 

implementation of RBF neural network and presents 

results obtained from a FPGA synthesis tool.  

2. RBF Neural Network 

A single output, Radial Basis Function (RBF) neural 

network [1] can be generally described by the 

equations Eq. (1) and Eq. (2) as follows 

 

 ∑
=

−=
N

1i

2
i

2 )(x kik cϕ , (1) 

 ∑
=

=
M

k

kkGwy

1

)(ϕ , (2) 

where ix is the i-th input and kic is the i-th centroid 

component of the k-th RBF neuron, N is the 

dimension of the input vector, and M is the number of 

RBF neurons. )( kG ϕ  is typically the Gaussian function 

defined as follows 
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function. We can rewrite equations Eq. (1) and Eq. (2) 

so that we replace multiplication by addition in the 

)( kkGw ϕ  expression. Then the output of the RBF 

network is equal to 
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By replacing the xe and ln(x) with corresponding 

functions with the base of two, we obtain 
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where kλ is considered as a power of two constant.  

By applying the linearly approximated functions 

according to [2], we obtain  

 ∑
=

−=
N

1i

i
2 )(x kik c2SQRϕ , (6) 

 ))(( 2
22 kkk ϕλξ AFRLOG= , (7) 

 ∑
=

+=
M

k

kk wy

1

2 ))(LOG(EXP2 ξ , (8) 

where SQR2 is a linearly approximated x
2
 function, 

LOG2 is a linearly approximated log2(x) function, 

EXP2 is a linearly approximated 2
x
 function and AFR2 

is a linearly approximated Gaussian-like function 

corresponding to the  2
-x

 function. 

 

Figure 1: Multiplication of the RBF neuron output by 

weight wk composed from the AFR2 , LOG2, and EXP2 

blocks. 
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It can be shown that LOG2(AFR2(x)) can be reduced 

to a simple logic inversion operation that replaces the  

chain of AFR2 and LOG2 blocks. 

This allows rewriting Eq. (7) as follows 

 

 )( 2
2 kkϕλξ LOGAFR= , (9) 

which corresponds to 2
kkϕλξ -= formula. 

Since )(log
2 k

w is a constant that can be entirely stored 

in a register, Eq. (8) can be implemented as shown in 

Figure 2. Compare the lower complexity with the 

corresponding circuit in Figure 1. 

 

Figure 2: Multiplication of the RBF neuron output by 

weight wk composed from the AFRLOG2 and EXP2 

blocks. 

 

3. Linearly Approximated Functions 

In this section, we give an overview of the set of 

linearly approximated functions that were published in 

[2] and are used in our RBF neural network 

implementation. 

3.1. SQR 

The SQR2 function can be described by the equation 
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where x is in the range of )1,0 , na 2= , n is the 

position of the left-most one in a binary representation 

of x, 1
12 −

−= n
nxb , and 1−nx is the value of the bit which 

is the right side neighbor of the left-most one. We can 

write that b.-a-x=c  Note that n is always negative 

for x in the range of )1,0 . The 
0

>> operator represents 

the shift-right operation inserting zeros from the left. 

3.2. LOG 

The linearly approximated LOG2 function is defined 

as follows: 
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where x is in the range of )1,0 . 

This function is realized by a shifter (set of 

multiplexers) that shifts the binary representation of x 

to the left until the left-most one of x appears at the 2
0 

position. The integral part of the result is equal to  

15-n, where n is the number of shifts. The fractional 

part is composed from x shifted by n to the left but 

with the left-most one excluded. For our 16-bit binary 

representation of x, the shifter has four stages shifting 

by 8, 4, 2, 1 to the left. The result is in sign-and-

magnitude binary representation consisting of the sign 

bit, 5 bits of the integral part and 14 bits of the 

fractional part.  

3.3. EXP 

The linearly approximated EXP2 function is defined as 

follows 

 ))frac(1(2)( )int( xx x +=2EXP , (12)  

where frac(x) is the fractional part of x. This function 

is implemented by a four-stage shifter to the right. The 

number of shifts is given by the integral part of x. The 

shifter shifts the fractional part of x, which must be 

extended by one from the left. 

3.4. AFR 

The AFR2 function is a linearly approximated 
x−2 function. This is described by the following 

equation 
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This function is implemented by a four-stage shifter 

that shifts the inverted value of one half of the 

fractional part of the absolute value of x.   

3.5. AFRLOG 

The proposed AFRLOG2 function covers the 

functionality of both LOG2 and AFR2 blocks. From 

Eq. (11) and Eq. (13) it can be derived that  

 

Figure 3: Model of the Proposed RBF Neural Network 
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The AFRLOG function is implemented as a set of 

invertors that corresponds to multiplication of x by -1 

for one's complement binary representation of x. 

 

3.6. Model of the Proposed RBF Neural 

Network 

A model of the proposed RBF neural network is 

shown in Figure 3. This model is composed of linearly 

approximated functions described in the previous 

section. The subtracter followed by SQR block and 

accumulator calculates the Euclidean distance of the 

input vector and centroid. The Euclidean distance is 

passed through the SCL block which shifts the value 

to the left or right according to required kλ   which is 

limited to powers of two.  The chain of the AFRLOG 

block followed by an adder and the EXP block 

calculates the activation function of the RBF neuron 

which is multiplied by the weight of the output 

neuron.   

The proposed model was written in Java and evaluated 

from functionality and precision points of view. 

Figure 4 depicts the response of a two-dimensional 

RBF neuron with linearly approximated functions. 

The very low impact of linearly approximated 

functions on the RBF neuron behavior can be seen. 

The maximum absolute error produced by two input 

RBF neuron is equal to ±0,0736 (i.e. 7,36% of the 

output range).  

 

 

Figure 4: Response of the two-input RBF neuron 

implemented by linearly approximated functions.  

The y axis represents the output of the neuron. 

4. Hardware implementation 

The RBF neural network was implemented in 

synthesizable VHDL on the Xilinx Virtex 4 FPGA.   

The main goal of the design was to exploit maximum 

parallelism for the given neural network topology 

allowing all neurons to work in parallel and produce 

the output just after processing all vector elements. 

The only part which cannot be truly parallelized is the 

final linear weighted sum of RBF neuron outputs. In 

the worst case scenario, it would take as many clocks 

as the number of RBF neurons in the design. Two 

approaches solving this problem were considered: a 

tree of adders and pipelining. 

The tree of adders would require log2(n) clocks to 

accomplish the operation, but also require n-1 

functional units.  

Without a tree of adders, the output neuron needs as 

many clocks as the number of RBF neurons, but we 

used pipelining to overlap the computation and 

summation. This allows the RBF neurons to compute 

a new vector while summing the previous output 

value. This means that full utilization of the hardware 

may be achieved if the number of RBF neurons is 

equal to the dimension of the input vector. In further 

text we denote such units as base units.  

Larger networks may be built from multiple base 

units. In this case, the sum operation is implemented 

as a tree of adders. 

4.1. Base unit 

We created a base unit containing a single output RBF 

network with sixteen RBF neurons, one linear 

weighted output neuron and accepting sixteen 

dimensional input vectors. The RBF neurons in this 

unit take exactly the same number of clocks as the 

input dimension. The structure of the base unit is 

shown in Figure 5.  

The dimension of the input vectors in our design was 

arbitrarily chosen. The design can be easily extended 

to support more dimensional input to fit specific 

needs.  

The design goal of the proposed base unit was to ease 

its scalability in terms of neuron used per unit, as well 

as to ensure that even many of such units will be able 

to easily perform the computations together. 

Therefore, all neurons are interconnected with four 

different buses:  

� command bus 

� address bus 

� input data bus 

� inner data bus/output enable bus 

All neurons are connected to the command and 

address buses. Each neuron has a unique address 

assigned and may respond to commands issued on the 

command bus only if its address matches the address 

issued on the address bus. There are also broadcast 

addresses that allow feeding of all neurons with the 

same command or data. This is suitable for fetching a 

vector component for all RBF neurons at once. The 

outputs of RBF neurons are connected to the inner 

data bus, which is connected to the output neuron (S). 
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Figure 5: Structure of the Base Unit 

 

Each RBF neuron accepts the following set of 

commands: 

� compute the output based on input vector 

elements 

� load the weights into the neuron 

� load the scale factor into the neuron 

� compute the weighted sum of RBF neurons 

output (for the output neuron) 

Loading of the internal weight/scale register is 

achieved though the input data bus.  

4.2. RBF Neuron Implementation 

The RBF neuron implements equations Eq.(6), Eq.(7) 

and Eq. (8) according to Figure 3. The structure of the 

RBF neuron is shown in Figure 6.  
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Figure 6: Structure of the RBF Neuron 

 

All blocks inside the neuron are controlled by the 

finite state machine, which controls the computations 

based on commands fed from the command bus. 

The SUB-SQR block and AFRLOG block are 

implemented as combinatorial logic circuits providing 

output within a single clock cycle. The Euclidean 

distance is accumulated in the ACC block, which is a 

sequential circuit with the need for clocking. For a 16-

component vector, the accumulator requires 16 clock 

cycles to complete the computation. In each clock 

cycle, a new vector component is fed from the data 

bus. Simultaneously, in each clock cycle, individual 

centroid components are pulled from a circular shift 

register to the subtracter. Each neuron has its own 

shift register for storing components of the centroid. 

After processing of all vector components, the 

Euclidean distance is fed into the AFRLOG block.  

The output of the AFRLOG block is stored in a 

register, from which it is sent to the output neuron. 

4.3. Output neuron implementation 

Figure 7 depicts the structure of the output neuron, 

which calculates the linear weighted sum. 

The output neuron is designed similarly to the RBF 

neuron. The weights are stored in logarithmic form in 

the shift register. In each clock cycle, one of all RBF 

neuron outputs is enabled and added with 

corresponding weight together. The sum is passed into 

the EXP block (combinatorial circuit) and then stored 

in the accumulator. After all neurons have been 

processed, the accumulator contains the output of the 

RBF network. 

4.4. Design testing and verification 

The FPGA design was tested and verified successfully 

against the software model written in Java. VHDL test 

benches were generated using additional bash shell 

scripts and loaded into the VHDL simulator. 

Simulation of the VHDL code was performed in the 

ModelSim 6.2d simulator software.  

4.5. Synthesis results 

VHDL code synthesis was performed with Xilinx ISE 

8.2i.  

The base unit with 16 RBF neurons and one output 

neuron runs on a frequency up to 96MHz.  The table 

below shows achieved speeds for a selected number of 

neurons connected to the unit. 

Number of RBF 

Neurons 

Frequency [MHz] 

8 100.8 

16 96.3 

Table 1: Maximum Clock Frequency of the Base Unit 

As shown in Table 1, the design scales well with a 

growing number of neurons connected to the base 

unit.  

The design was optimized for speed and synthesized 

for the Xilinx Virtex-4 device (4vlx25sf363-12). 

Figure 7: Structure of the Output Neuron 
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Table 2 summarizes the FPGA resources used for the 

base unit implementation with 16 RBF neurons. 

Macroblocks that were synthesized for the base unit 

are shown in Table 3. 

 

Resource name Absolute 

number of 

FPGA resource 

Total 

percentage of 

FPGA resource 

Slices 3775 35% 

Slices Flip/Flop 1104 5% 

4 input LUT 

used as logic 

7294 35% 

4 input LUT 

used as shift 

register 

274 0.1% 

Table 2: Resources of FPGA Occupied by the Base 

Unit 

 

Macro name Count 

4-bit up counter 17 

16-bit register 320 

18-bit register 32 

4-bit register 16 

5-bit register 16 

8-bit comparator equal 16 

1-of-16 decoder 1 

18-bit tristate buffer 16 

Table 3: Macroblocks Synthesized for the Base Unit 

 

5. Conclusion 

In this paper we present fully parallel FPGA 

synthesizable VHDL implementation of the RBF 

network using linearly approximated functions. We 

showed that the combination of activation function 

and logarithm function results in a very simple 

operation (negation), which significantly simplifies 

the hardware implementation of the whole RBF neural 

network. The proposed RBF neural network consists 

of adders and multiplexers, no multiplier or large 

look-up tables are necessary. 

Bus interconnections among neurons and command 

based control of neurons provide very good scalability 

of the proposed architecture. It allows increasing the 

number of RBF neurons as well as increasing the 

dimension of the input vector. The pipelining 

technique used for RBF neurons allows full utilization 

of the hardware.  

We presented the synthesis results as well as the usage 

of RTL blocks obtained from the Xilinx ISE 8.2. The 

results show that more than 32 RBF neurons at a 

minimum can be implemented in 4vlx25sf363-12 

FPGA. For a base unit containing 16 RBF neurons, we 

can achieve a processing rate equal to 1,5GCPS at 

96MHz clock frequency. The architecture was 

simulated by the ModelSim VHDL simulator and 

validated against the model written in Java.  
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