
RBF NEURAL NETWORK WITH LINEARLY

APPROXIMATED FUNCTIONS ON FPGA

Rudolf Marek, Miroslav Skrbek

Czech Technical University in Prague, Faculty of Electrical Engineering, Department of

Computer Science & Engineering

121 35 Prague, Karlovo namesti 13, Czech Republic

marekr2@fel.cvut.cz (Rudolf Marek)

Abstract

This article focuses on implementation of the Radial Basis Function (RBF) neural network by

using linearly approximated functions. The presented approach is suitable for hardware

implementations on FPGA that may accelerate the simulation of neural networks of this type.

The approach of linearly approximated functions goes beyond the complexity of multipliers

and large look-up tables for implementing activation functions and replaces them with simpler

logic circuits based on adders and shifters. We show that some combination of building

blocks consisting of many multiplexers (if implemented separately) can be replaced by a

small set of invertors (if combined). This considerably reduces the amount of hardware

necessary to implement the RBF neurons. Further, we present the results of our pilot

implementation of the RBF neural network on FPGA consisting of arithmetic blocks for

neural calculations, memory blocks for prototype storage, and controllers. Bus

interconnections among neurons and command based control of neurons provide very good

scalability of the proposed architecture. It allows increasing the number of RBF neurons as

well as increasing the dimension of the input vector. The pipelining technique used for RBF

neurons allows full utilization of the hardware. All functional blocks of the RBF neural

network are implemented in synthesizable VHDL, simulated by the ModelSim 6.2d VHDL

simulator and synthesized for the Xilinx Virtex-4 device by the Xilinx ISE 8.2i. As a result of

synthesis, we provide a number of parameters such as the maximum clock frequency and the

number of function blocks that characterize the resulting synthesized FPGA design.

Keywords: neural network, Radial Basis Function (RBF), linear approximation, neural

hardware, FPGA.

Presenting Author’s biography

Rudolf Marek is a postgraduate student and researcher at the Department

of Computer Science and Engineering. He received his Master's degree in

Electronics and Computer Science & Engineering from the Faculty of

Electrical Engineering, Czech Technical University in Prague in 2006.

His research is focused on hardware acceleration of computational

intelligence algorithms.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1. Introduction

Recent years have seen rapid growth in the importance

of neural networks and other computational

intelligence paradigms in many applications [3][4][5].

Radial Basis Function (RBF) [1] can learn much faster

than other comparable neural paradigms, therefore,

they are suitable for real-time data processing and real

time control. Neural networks used for this kind of

application require fast simulation platforms to

achieve short input-to-output latencies and fast

responses to outer events. One solution is hardware

acceleration of the simulation process by

implementing the neural networks completely or

partially in hardware [6] [7] using FPGA as a rapid

prototyping platform.

This article is based on our previous research

presented in [2], where we introduced a set of linearly

approximated functions suitable for the

implementation of neural networks. The approach of

linearly approximated functions goes beyond the

complexity of multipliers and large look-up tables and

replaces them with simpler logic circuits based on

adders and shifters. Although our previous research

introduces the key building blocks for the RBF neural

networks, it is solely focused on perceptrons.

In this article we go farther by showing that some

combination of building blocks consisting of many

multiplexers (if implemented separately) can be

replaced by a small set of invertors (if combined).

This considerably reduces the amount of hardware

necessary to implement the RBF neurons. On the base

of these results we proposed new functional units

suitable for efficient implementation of the RBF

neural networks in hardware. The proposed units were

verified and evaluated on our FPGA implementation.

 In Section 2, we give a short introduction to RBF

neural networks and their implementation by linearly

approximated functions. Section 3 is an overview of

linearly approximated functions relevant to the

proposed functional units. Section 3.6 describes a

model of the proposed RBF neuron including its

detailed evaluation. Section 4 describes hardware

implementation of RBF neural network and presents

results obtained from a FPGA synthesis tool.

2. RBF Neural Network

A single output, Radial Basis Function (RBF) neural

network [1] can be generally described by the

equations Eq. (1) and Eq. (2) as follows

 ∑
=

−=
N

1i

2
i

2)(x kik cϕ , (1)

 ∑
=

=
M

k

kkGwy

1

)(ϕ , (2)

where ix is the i-th input and kic is the i-th centroid

component of the k-th RBF neuron, N is the

dimension of the input vector, and M is the number of

RBF neurons.)(kG ϕ is typically the Gaussian function

defined as follows

2

e)(kk
kG

ϕλϕ −= , (3)

where
2

2

1

k

k
σ

λ = determines the slope of the)(kG ϕ

function. We can rewrite equations Eq. (1) and Eq. (2)

so that we replace multiplication by addition in the

)(kkGw ϕ expression. Then the output of the RBF

network is equal to

∑
=

+−
=

M

k

wkkkey

1

)log(
2ϕλ

. (4)

By replacing the xe and ln(x) with corresponding

functions with the base of two, we obtain

 ∑
=

+−=
M

k

wkkky

1

)(log2
2

2
ϕλ , (5)

where kλ is considered as a power of two constant.

By applying the linearly approximated functions

according to [2], we obtain

 ∑
=

−=
N

1i

i
2)(x kik c2SQRϕ , (6)

))((2
22 kkk ϕλξ AFRLOG= , (7)

 ∑
=

+=
M

k

kk wy

1

2))(LOG(EXP2 ξ , (8)

where SQR2 is a linearly approximated x
2
 function,

LOG2 is a linearly approximated log2(x) function,

EXP2 is a linearly approximated 2
x
 function and AFR2

is a linearly approximated Gaussian-like function

corresponding to the 2
-x

 function.

Figure 1: Multiplication of the RBF neuron output by

weight wk composed from the AFR2 , LOG2, and EXP2

blocks.

LOG2 AFR2

G(σkφk)

)(log2 kw

EXP2
+

σkφk

G(λkφk) * wk

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

It can be shown that LOG2(AFR2(x)) can be reduced

to a simple logic inversion operation that replaces the

chain of AFR2 and LOG2 blocks.

This allows rewriting Eq. (7) as follows

)(2
2 kkϕλξ LOGAFR= , (9)

which corresponds to 2
kkϕλξ -= formula.

Since)(log
2 k

w is a constant that can be entirely stored

in a register, Eq. (8) can be implemented as shown in

Figure 2. Compare the lower complexity with the

corresponding circuit in Figure 1.

Figure 2: Multiplication of the RBF neuron output by

weight wk composed from the AFRLOG2 and EXP2

blocks.

3. Linearly Approximated Functions

In this section, we give an overview of the set of

linearly approximated functions that were published in

[2] and are used in our RBF neural network

implementation.

3.1. SQR

The SQR2 function can be described by the equation

)(2c)(a)(1

0

nxx n −>>+= −2SQR (10)

where x is in the range of)1,0 , na 2= , n is the

position of the left-most one in a binary representation

of x, 1
12 −

−= n
nxb , and 1−nx is the value of the bit which

is the right side neighbor of the left-most one. We can

write that b.-a-x=c Note that n is always negative

for x in the range of)1,0 . The
0

>> operator represents

the shift-right operation inserting zeros from the left.

3.2. LOG

The linearly approximated LOG2 function is defined

as follows:

 1
2

x
))(floor(log)(

))(floor(log2
2

−+=
x

xx2LOG (11)

where x is in the range of)1,0 .

This function is realized by a shifter (set of

multiplexers) that shifts the binary representation of x

to the left until the left-most one of x appears at the 2
0

position. The integral part of the result is equal to

15-n, where n is the number of shifts. The fractional

part is composed from x shifted by n to the left but

with the left-most one excluded. For our 16-bit binary

representation of x, the shifter has four stages shifting

by 8, 4, 2, 1 to the left. The result is in sign-and-

magnitude binary representation consisting of the sign

bit, 5 bits of the integral part and 14 bits of the

fractional part.

3.3. EXP

The linearly approximated EXP2 function is defined as

follows

))frac(1(2)()int(xx x +=2EXP , (12)

where frac(x) is the fractional part of x. This function

is implemented by a four-stage shifter to the right. The

number of shifts is given by the integral part of x. The

shifter shifts the fractional part of x, which must be

extended by one from the left.

3.4. AFR

The AFR2 function is a linearly approximated
x−2 function. This is described by the following

equation

−=

2

)frac(
1

2

1
)(

)xint(

x
x2AFR (13)

This function is implemented by a four-stage shifter

that shifts the inverted value of one half of the

fractional part of the absolute value of x.

3.5. AFRLOG

The proposed AFRLOG2 function covers the

functionality of both LOG2 and AFR2 blocks. From

Eq. (11) and Eq. (13) it can be derived that

Figure 3: Model of the Proposed RBF Neural Network

-
SQR2

AFR

LOG2 +

SCL

+

EXP2
+

y

From other RBF
neurons

log2(wk)

ξk

2

kkϕλ

kλ

cki

xi

AFRLOG2

)(log2 kw

EXP2
+

σkφk

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

)frac()int()(xxx −−=2AFRLOG (14)

The AFRLOG function is implemented as a set of

invertors that corresponds to multiplication of x by -1

for one's complement binary representation of x.

3.6. Model of the Proposed RBF Neural

Network

A model of the proposed RBF neural network is

shown in Figure 3. This model is composed of linearly

approximated functions described in the previous

section. The subtracter followed by SQR block and

accumulator calculates the Euclidean distance of the

input vector and centroid. The Euclidean distance is

passed through the SCL block which shifts the value

to the left or right according to required kλ which is

limited to powers of two. The chain of the AFRLOG

block followed by an adder and the EXP block

calculates the activation function of the RBF neuron

which is multiplied by the weight of the output

neuron.

The proposed model was written in Java and evaluated

from functionality and precision points of view.

Figure 4 depicts the response of a two-dimensional

RBF neuron with linearly approximated functions.

The very low impact of linearly approximated

functions on the RBF neuron behavior can be seen.

The maximum absolute error produced by two input

RBF neuron is equal to ±0,0736 (i.e. 7,36% of the

output range).

Figure 4: Response of the two-input RBF neuron

implemented by linearly approximated functions.

The y axis represents the output of the neuron.

4. Hardware implementation

The RBF neural network was implemented in

synthesizable VHDL on the Xilinx Virtex 4 FPGA.

The main goal of the design was to exploit maximum

parallelism for the given neural network topology

allowing all neurons to work in parallel and produce

the output just after processing all vector elements.

The only part which cannot be truly parallelized is the

final linear weighted sum of RBF neuron outputs. In

the worst case scenario, it would take as many clocks

as the number of RBF neurons in the design. Two

approaches solving this problem were considered: a

tree of adders and pipelining.

The tree of adders would require log2(n) clocks to

accomplish the operation, but also require n-1

functional units.

Without a tree of adders, the output neuron needs as

many clocks as the number of RBF neurons, but we

used pipelining to overlap the computation and

summation. This allows the RBF neurons to compute

a new vector while summing the previous output

value. This means that full utilization of the hardware

may be achieved if the number of RBF neurons is

equal to the dimension of the input vector. In further

text we denote such units as base units.

Larger networks may be built from multiple base

units. In this case, the sum operation is implemented

as a tree of adders.

4.1. Base unit

We created a base unit containing a single output RBF

network with sixteen RBF neurons, one linear

weighted output neuron and accepting sixteen

dimensional input vectors. The RBF neurons in this

unit take exactly the same number of clocks as the

input dimension. The structure of the base unit is

shown in Figure 5.

The dimension of the input vectors in our design was

arbitrarily chosen. The design can be easily extended

to support more dimensional input to fit specific

needs.

The design goal of the proposed base unit was to ease

its scalability in terms of neuron used per unit, as well

as to ensure that even many of such units will be able

to easily perform the computations together.

Therefore, all neurons are interconnected with four

different buses:

� command bus

� address bus

� input data bus

� inner data bus/output enable bus

All neurons are connected to the command and

address buses. Each neuron has a unique address

assigned and may respond to commands issued on the

command bus only if its address matches the address

issued on the address bus. There are also broadcast

addresses that allow feeding of all neurons with the

same command or data. This is suitable for fetching a

vector component for all RBF neurons at once. The

outputs of RBF neurons are connected to the inner

data bus, which is connected to the output neuron (S).

-1 -0.8 -0.6 -0.2 0 0.2 0.4 0.6 0.8 1

Input 1

-1
-0.8

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6
 0.8

 1 Input 2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0.4

y

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

Figure 5: Structure of the Base Unit

Each RBF neuron accepts the following set of

commands:

� compute the output based on input vector

elements

� load the weights into the neuron

� load the scale factor into the neuron

� compute the weighted sum of RBF neurons

output (for the output neuron)

Loading of the internal weight/scale register is

achieved though the input data bus.

4.2. RBF Neuron Implementation

The RBF neuron implements equations Eq.(6), Eq.(7)

and Eq. (8) according to Figure 3. The structure of the

RBF neuron is shown in Figure 6.

FSM

SUB

SQRSH REG
ACC REG

Y

DATA

CMD

ADDR

AFRLOG

Figure 6: Structure of the RBF Neuron

All blocks inside the neuron are controlled by the

finite state machine, which controls the computations

based on commands fed from the command bus.

The SUB-SQR block and AFRLOG block are

implemented as combinatorial logic circuits providing

output within a single clock cycle. The Euclidean

distance is accumulated in the ACC block, which is a

sequential circuit with the need for clocking. For a 16-

component vector, the accumulator requires 16 clock

cycles to complete the computation. In each clock

cycle, a new vector component is fed from the data

bus. Simultaneously, in each clock cycle, individual

centroid components are pulled from a circular shift

register to the subtracter. Each neuron has its own

shift register for storing components of the centroid.

After processing of all vector components, the

Euclidean distance is fed into the AFRLOG block.

The output of the AFRLOG block is stored in a

register, from which it is sent to the output neuron.

4.3. Output neuron implementation

Figure 7 depicts the structure of the output neuron,

which calculates the linear weighted sum.

The output neuron is designed similarly to the RBF

neuron. The weights are stored in logarithmic form in

the shift register. In each clock cycle, one of all RBF

neuron outputs is enabled and added with

corresponding weight together. The sum is passed into

the EXP block (combinatorial circuit) and then stored

in the accumulator. After all neurons have been

processed, the accumulator contains the output of the

RBF network.

4.4. Design testing and verification

The FPGA design was tested and verified successfully

against the software model written in Java. VHDL test

benches were generated using additional bash shell

scripts and loaded into the VHDL simulator.

Simulation of the VHDL code was performed in the

ModelSim 6.2d simulator software.

4.5. Synthesis results

VHDL code synthesis was performed with Xilinx ISE

8.2i.

The base unit with 16 RBF neurons and one output

neuron runs on a frequency up to 96MHz. The table

below shows achieved speeds for a selected number of

neurons connected to the unit.

Number of RBF

Neurons

Frequency [MHz]

8 100.8

16 96.3

Table 1: Maximum Clock Frequency of the Base Unit

As shown in Table 1, the design scales well with a

growing number of neurons connected to the base

unit.

The design was optimized for speed and synthesized

for the Xilinx Virtex-4 device (4vlx25sf363-12).

Figure 7: Structure of the Output Neuron

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

Table 2 summarizes the FPGA resources used for the

base unit implementation with 16 RBF neurons.

Macroblocks that were synthesized for the base unit

are shown in Table 3.

Resource name Absolute

number of

FPGA resource

Total

percentage of

FPGA resource

Slices 3775 35%

Slices Flip/Flop 1104 5%

4 input LUT

used as logic

7294 35%

4 input LUT

used as shift

register

274 0.1%

Table 2: Resources of FPGA Occupied by the Base

Unit

Macro name Count

4-bit up counter 17

16-bit register 320

18-bit register 32

4-bit register 16

5-bit register 16

8-bit comparator equal 16

1-of-16 decoder 1

18-bit tristate buffer 16

Table 3: Macroblocks Synthesized for the Base Unit

5. Conclusion

In this paper we present fully parallel FPGA

synthesizable VHDL implementation of the RBF

network using linearly approximated functions. We

showed that the combination of activation function

and logarithm function results in a very simple

operation (negation), which significantly simplifies

the hardware implementation of the whole RBF neural

network. The proposed RBF neural network consists

of adders and multiplexers, no multiplier or large

look-up tables are necessary.

Bus interconnections among neurons and command

based control of neurons provide very good scalability

of the proposed architecture. It allows increasing the

number of RBF neurons as well as increasing the

dimension of the input vector. The pipelining

technique used for RBF neurons allows full utilization

of the hardware.

We presented the synthesis results as well as the usage

of RTL blocks obtained from the Xilinx ISE 8.2. The

results show that more than 32 RBF neurons at a

minimum can be implemented in 4vlx25sf363-12

FPGA. For a base unit containing 16 RBF neurons, we

can achieve a processing rate equal to 1,5GCPS at

96MHz clock frequency. The architecture was

simulated by the ModelSim VHDL simulator and

validated against the model written in Java.

This research is supported by the research program

"Transdisciplinary Research in the Area of Biomedical

Engineering II" (MSM6840770012) sponsored by the

Ministry of Education, Youth and Sports of the Czech

Republic and the internal grant “Hardware Accelerated

Computational Intelligence” of the Czech Technical

University in Prague (CTU0707313).

6. References

[1] Haykin, S.: Neural Networks a Comprehensive

Foundation. Macmillan College Publishing

Company, New York, 1994, ISBN 0-02-352761-7

[2] Skrbek, M.: Fast Neural Network Implementation.

In: Neural Network World. 9, No. 5, (1999) p.

375-391. ISSN 1210-0552.

[3] Zhi-gang, L., Jun-zheng, W: RBF-Neural

Network Adaptive PID Control for 3-Axis

Stabilized Tracking System. Proceedings of the

Sixth International Conference on Hybrid

Intelligent Systems (HIS'06), 2006

[4] Shen, M., Zhang, Y., Li, Z., Yang. J, Beadle, P.:

Real-Time Detection of Signal in the Noise Based

on the RBF Neural Network and Its Application.

ISNN 2004, LNCS 3174, pp. 350–355, 2004.

[5] Chang, C., Fu, S.: Image Classification using a

Module RBF Neural Network. Proceedings of the

First International Conference on Innovative

Computing, Information and Control (ICICIC'06),

2006.

[6] Krips, M., Lammert, T., and Kummert, A: FPGA

Implementation of a Neural Network for a Real-

Time Hand Tracking System. Proceedings of the

First IEEE International Workshop on Electronic

Design, Test and Applications, 2002.

[7] Pandya, V., Areibi, S., Moussa, M.: A Handel-C

Implementation of the Back-Propagation

Algorithm On Field Programmable Gate Arrays.

Proceedings of the 2005 International Conference

on Reconfigurable Computing and FPGAs, 2005.

[8] Virtex-4 User Guide. Technical document Xilinx

Inc., April, 2007. http://www.xilinx.com.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

