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Abstract

We propose a method of sampling regular and irregular-grid volume data for visualisation.

The method is based on the Metropolis algorithm that is a type of Monte Carlo technique.

Our method enables ‘importance sampling’ of local regions of interest in the visualisation by

generating sample points intensively in regions where a user-specified transfer function takes

the peak values. The generated sample-point distribution is independent of the grid structure of

the given volume data. Therefore, our method is applicable to irregular grids as well as regular

grids. We demonstrate the effectiveness of our method by applying it to regular cubic grids

and irregular tetrahedral grids with adaptive cell sizes. We visualise volume data by projecting

the generated sample points onto the 2D image plane. We used three rendering models: an

X-ray model, a simple illuminant particle model, and an illuminant particle model with light-

attenuation effects. We also demonstrate that our method is suitable for parallel processing,

since it realizes computation speed almost proportional to the number of processors. The grid-

independency and the efficiency in the parallel processing mean that our method is suitable

for visualizing large-scale volume data. The former means that the required number of sample

points is proportional to the number of 2D pixels, not the number of 3D voxels. The latter

means that our method can be easily accelerated on the multiple-CPU and/or GPU platforms.

Keywords: Metropolis algorithm, importance sampling, volume visualisation, grid-

independent sampling, regular/irregular grid
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Fig. 1 Sample points generated by our method for the
301 × 324 × 56 lobster (regular-grid data).

1 Introduction

Direct volume rendering is widely used to extract use-
ful information from various kinds of volume data, e.g.,
medical data, fluids, and energy distribution. To render
(i.e., visualise) volume data, we need to generate sam-
ple points that represent the entire data set beforehand.

For cubic regular grids, the sample-point distribution is
usually made uniform over the whole grid space. In
rendering with object-order approaches such as splat-
ting [1] or cell projection [2, 3], we can regard the
regularly allocated voxels or cubes themselves as sam-
ple points. In an image-order approach such as ray
casting[4, 5] sample points are generated at regular in-
tervals along each ray.

For irregular grids, in which the shapes and/or sizes of
volume cells are non-uniform, it is not a trivial task
to define a proper sample-point distribution. The sim-
plest way is to adopt a uniform sample-point distribu-
tion just as for the regular grids. However, the distance
between neighboring sample points should be as small
as the width of the smallest cell, so that every cell can
be is sampled. However, by doing this, we may gen-
erate many unnecessary sample points, resulting in an
increased rendering time. Another way is to generate
sample points adaptively according to a voxel (grid-
point) distribution. In the object-order approach, we
can use voxels themselves as sample points. More in-
telligent approaches based on the octree subdivision of
grid space are also possible [6]. In the image-order ap-
proach, we can trace rays through volume cells, and we
use the ray-cell intersection points or the midpoints of
ray segments in the cells as sample points [7].

As described above, a sample-point distribution is usu-
ally decided either uniformly or based on a voxel distri-
bution. In this paper, we propose a method to distribute
sample points according to a density function that is ob-
tained by deforming the given volume data based on
a user-specified ‘transfer function’ and then executing
interpolation. Our method thus enables ‘importance
sampling’ of local regions where the transfer function
takes peak values. Such regions are usually of interest

in visualizing volume data. To realize such a sample-
point distribution, we use the Metropolis algorithm [8],
which is known as an efficient Monte Carlo technique in
chemistry, physics, and other fields. It is worth noting
that the Metropolis algorithm is also suitable for paral-
lel processing. We will demonstrate that the rendering
speed increases almost linearly as the number of pro-
cessors increase.

It should be noted here that the sample-point distribu-
tion realized by our method is independent of voxel dis-
tribution. This means that the sample-point distribution
is independent of a given grid structure. Therefore, our
method is applicable to irregular grids as well as to reg-
ular grids. In this paper, we demonstrate the effective-
ness of our method by applying it to adaptive tetrahe-
dral grids [9], in which the sizes of the tetrahedral cells
are not uniform.

The above-mentioned grid-independency, as well as the
efficiency in the parallel processing, means that our
method is suitable for visualizing large-scale volume
data. Suppose that we render volume data with size
N3. The grid-independency means that we need not
traverse all the N3 voxels, being different from the clas-
sical methods such as the ray casting [4, 5] or splatting
[1]. (The classical methods can be accelerated such that
the calculational time is proportional to N2 log N [10].)
In fact the number of Monte Carlo averages that are cal-
culated in our method is identical to the number of pix-
els, which means that the number of required sample
points is proportional to N2. Therefore our method be-
comes more advantageous for large-scale data, more-
over, enabling their importance sampling of the regions
of interest.

Our method can generate high-density sample points in-
tensively in the regions of interest. We use such ‘adap-
tive high-density points’ for volume rendering, which
differs from the classical object-order approaches such
as splatting [1] or cell projection [2, 3]. We render (vi-
sualise) the volume data effectively by projecting the
adaptively distributed sample points onto the 2D im-
age plane. Fig.1 shows sample points generated by our
method. In the 301 × 324 × 56 regular-grid space, a
portion of the lobster is sampled intensively.

The organization of this paper is as follows. In Section
2, we explain the concept of our method. In Section 3,
we apply our method to regular-grid and irregular-grid
data. Section 4 is the concluding section.

Related works

Csébfalvi and Szirmay-Kalos proposed “Monte Carlo
volume rendering” [11]. In their method, a voxel is
randomly selected, and then sample points are gener-
ated locally around the voxel. (Their way of sampling
is similar to the interleaved sampling [12], which was
proposed to reduce inter-pixel aliasing.) The generated
sample points are projected onto the image plane. Then,
the number of points projected into each pixel is simply
counted, and the normalised pixel color (pixel inten-
sity) is made proportional to the number. This method
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enables importance sampling of the regions around the
peaks of the transfer function, as does our method. The
concept of this method is interesting, and our study was
inspired by it. However, it is not a trivial job to apply
the method to general irregular grids, since it assumes
a uniform cubic distribution of voxels. The luminos-
ity of sample points, i.e., the particle luminosity, is not
considered, either.

Sakamoto and Koyamada also proposed a method of
volume rendering based on Monte Carlo and point-
based techniques [13]. In their method, fully opaque
particles are generated with the hit-and-miss algorithm
and projected onto the image plane. Semi-transparent
rendering effects are realized by particle occlusion and
sub-pixel averaging. Their method is simple and quite
fast, but the statistical accuracy that influences the ren-
dering quality still needs to be improved. Applicability
of the method is also restricted to cubic regular grids.

Our method, which also uses a Monte Carlo technique,
is applicable to general irregular grids as well as cubic
regular grids. The number of particles contributing to
pixel colors is much larger than the method of reference
[13], and thus realizes higher statistical accuracy, i.e.,
higher-quality rendering.

2 Metropolis sampling and rendering

2.1 Transfer function and density function

For the sampling of volume data, we utilize the
Metropolis algorithm [8], which can rapidly generate
points according to a given continuous density func-
tion ρ(x). Our sampling method is applicable to either
regular-grid or irreglar-grid data with the same form,
once a continuous ρ(x) is defined. The functional form
of ρ(x) is decided as follows.

First, we map (deform) given discrete volume data
(voxel values) to proper scalar values by using a user-
specified transfer function. It is to highlight the regions
of interest by amplifying our focusing voxel values and
also making the unnecessary voxel values vanish.

Next, we define ρ(x) by interpolating the scalar values
obtained in the above. In this paper, we adopt the stan-
dard trilinear interpolation for regular cubic grids, and
the barycentric interpolation [14, 9] for tetrahedral (ir-
regular) grids. Any interpolation, which defines a con-
tinuous functional form of ρ(x), is available.

Fig.2 is an example of the transfer function that high-
lights regions with volume data (voxel values) between
100 and 150. By tuning the peak position and the peak
width, we can easily select regions to be highlighted.
Fig.3 shows an example of highlighting different re-
gions of hydrogen data. A transfer function similar to
Fig.2 is used, and the peak is properly tuned to obtain
the two different rendering images. The rendering is
done with the generated high-density sample points and
the X-ray model explained in Section 2.3.1.

Fig. 2 Transfer function to highlight regions with vol-
ume data (voxel values) between 100 and 150.

Fig. 3 Highlighting different regions of hydrogen vol-
ume data by tuning the peak of the transfer function of
Fig.2.

2.2 Metropolis sampling of volume data

Once a functional form of ρ(x) is decided, we can gen-
erate sample points, following the prescription of the
Metropolis algorithm, as follows, starting at an arbitrary
initial position x0:

• Step 1: Calculate ρ(xi) for the current (ith gener-
ated) sample-point position, xi.

• Step 2: Generate a candidate (trial) position, x
′,

which is chosen randomly inside the grid space,
and calculate ρ(x′).

• Step 3: Calculate the ratio of ρ(x′) to ρ(xi), i.e.,

W (xi → x
′) ≡ ρ(x′)/ρ(xi) . (1)

• Step 4: If W (xi → x
′) ≥ 1, accept x

′ as an
updated sample-point position, xi+1, and go back
to Step 1. Otherwise, go on to Step 5.

• Step 5: Generate a uniform random number R ∈

[0, 1], and determine xi+1 as below.

xi+1 =

{

x
′ if W (xi → x

′) ≥ R

xi otherwise
. (2)

Then go back to Step 1.
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The description of Step 2 should be supplemented with
three additional rules for generating the trial sample-
point position x

′:

• Rule 1: The trial sample-point position x
′ is gen-

erated as follows, adding a random vector to the
current sample-point position xi:

x
′ = xi +∆xi , ∆xi = λ(ηi

x, ηi
y, ηi

z) , (3)

where ηi
x, ηi

y , and ηi
z are independent uniform ran-

dom numbers in a range [−1, 1], and λ is a positive
constant to decide the average sampling width. We
choose λ = 5.

• Rule 2: If x
′ generated according to Rule 1 is out-

side the grid space, we abandon it. Instead we
randomly select a voxel position where a non-zero
scalar value of ρ is assigned, and we use the posi-
tion as x

′.

• Rule 3: We sometimes add an effect of ‘random
jump’ to the sampling. Namely, once in dozens of
sampling steps, we randomly select a voxel posi-
tion where a non-zero scalar value of ρ is assigned,
and we adopt it as x

′ as in Rule 2. This rule should
not be applied too frequently, so that it does not
influence the sample-point distribution. For exam-
ple, once in every 30 sampling steps seems to be
an appropriate frequency.

Let us explain the meanings of the above rules one by
one.

Rule 1 describes the standard way of generating the trial
sample-point position, x

′. We choose λ = 5, which
means that the average sampling width is sufficiently
larger than the minimal cell size. For efficiency of
sampling, λ ∼ (several) × (minimum cell size) seems
to be an appropriate choice, although theoretically the
Metropolis algorithm should work with an arbitrary
value of λ.

Rule 2 describes the ‘boundary condition.’ Rule 1
makes the sample-point position update by adding ran-
dom vectors recursively. Then x

′ sometimes steps out
of the grid space. In such an exception, we need another
rule to redefine x

′. For sampling efficiency, i.e., to ac-
celerate updating of the sample-point position, we ran-
domly select a voxel position, where a non-zero scalar
value of ρ is assigned, as x

′. This increases the ratio that
x
′ is accepted, and so accelerates the sampling. Rule 2

can be executed quickly by preparing a table of voxels
with non-zero scalar values beforehand as preprocess-
ing.

Finally, Rule 3 describes the ‘random jump’ to guaran-
tee sampling of the whole grid space. If the grid space
has more than one disconnected regions with non-zero
ρ(x), and ρ(x) vanishes in the intermediate regions,
then the sample-point position x may not travel from
one non-zero-ρ(x) region to another. This is because
the ‘otherwise’ of Step 5 is realized in the intermediate

regions where ρ(x) = 0. Fortunately this problem can
be solved by sometimes making the sample-point po-
sition jump randomly in the grid space. Rule 3 is also
effective in accelerating sampling, even if there are not
disconnected non-zero-ρ(x) regions.

In Fig.4, we show an example of sampling 301×324×
56 lobster (regular-grid data). The 0.1M (million) sam-
ple points generated are plotted three-dimensionally.
The original volume data are directly interpolated with
the trilinear interpolation to define a continuous density
function ρ(x), which we use for the Metropolis sam-
pling. The sample-point distribution shown in Fig.4 co-
incides with the functional form of ρ(x), i.e., the distri-
bution of the voxel values in the original volume data.

Fig. 4 Sample points generated by our method for the
301×324×56 lobster (regular-grid data). The original
volume data are directly interpolated to define a contin-
uous density function ρ(x).

Fig.1 shows a similar sample-point distribution in the
case when the transfer function of Fig.5 is applied. The
original volume data are deformed based on this trans-
fer function that works as a simple low-cut filter. Then
the deformed data are interpolated to define ρ(x) for the
Metropolis sampling. We can clearly see that sample
points are not generated outside the lobster, although
the original volume data have small voxel values there.

We show another example of the Metropolis sampling
in Fig.6 (left). The 0.1M sample points generated
for the 256 × 256 × 256 tornado are plotted three-
dimensionally. In the sampling the transfer function in
the right figure is applied. We can clearly see that the
core part of the tornado is intensively sampled with the
effect of the transfer function.

As demonstrated in the above, we can control the
sample-point distribution with the transfer function, be-
ing independent of a given grid structure.

2.3 Determination of pixel colors

A volume-rendering image can be created by projecting
sample points onto the image plane, i.e., the 2D pixel
space, and determining the pixel colors with a proper
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Fig. 5 The transfer function used to create Fig.1. This
transfer function works as a simple low-cut filter.

Fig. 6 Left: sample points generated by our method for
the 256× 256× 256 tornado (regular-grid data). Right:
The transfer function adopted for the sampling.

prescription [1, 2, 3, 11]. In this paper, utilizing the
sample points generated by our Metropolis algorithm,
we investigate three rendering models to determine the
pixel colors.

2.3.1 X-ray model

In this rendering model, the number of sample points
projected into each pixel is simply counted, and the
number directly determines its pixel color (pixel inten-
sity) [11]. A normalised pixel color is made propor-
tional to the number of points projected into the pixel.
The explicit expression of the determined color for the

pth pixel, C
(X)
p , is as follows:

C(X)
p =

Np Imax

Nmax
, (4)

where Np is the number of sample points projected into
the pth pixel, Nmax is its maximum among all pixels on
the image plane, and Imax is the maximum intensity,
e.g., Imax = 255.

In the X-ray model, an image of the density function
ρ(x) directly determines the pixel colors. Therefore, it
visualises the distribution of the original volume data
straightforwardly. The effects of particle luminosity are

not taken into account. In Section 3, we show examples
of rendering with the X-ray model

2.3.2 Simple illuminant particle model

In this rendering model, we regard the sample points as
‘illuminant particles’ [13]. To each particle at position
x, we assign an illuminant color (illuminant intensity)
that is identical to ρ(x). Then we project the particle
into a pixel on the image plane. In each pixel, we calcu-
late an average of the illuminant colors of the projected
particles, and identify it with the pixel color. The color

of the pth pixel, C
(A)
p , is determined as

C(A)
p =

c̃
(A)
p Imax

c̃
(A)
max

, c̃(A)
p =

1

Np

Np
∑

j=1

ρ(x
(p)
j ) , (5)

where c̃p
(A) is an unnormalised color of the pth pixel,

c̃
(A)
max is its maximum among all pixels, and x

(p)
j is a 3D

position of the jth particle projected into the pth pixel.

In this rendering model, we regard the value of ρ(x)
as the particle luminosity. Since our Metropolis sam-
pling generates high-density sample points around the
peaks of ρ(x), 3D regions with high ρ(x) make a major
contribution to the pixel colors. (It is also easy to re-
alize shaded colors by incorporating the effects to ρ(x)
before the projection.) We will show examples of ap-
plying this rendering model in Section 3.

Mathematically, the normalized average Eq.(5) deter-

mining the pixel color C
(A)
p is the average of ρ(x)

along the ray passing though the pixel. Since the

averaging weight is also ρ(x), C
(A)
p corresponds to

∫

ρ2dℓ/
∫

ρdℓ with ℓ a coordinate along the ray. This

integration can be approximated as
∫

ρ2dℓ/
∫

ρdℓ ≃

(
∫

ρdℓ)2/
∫

ρdℓ =
∫

ρdℓ, which is the simple inte-
gration of ρ along the ray. Therefore, the simple illu-
minant particle model should produce images similar
to the ones by the conventional ray-casting rendering
without opacity accumulation.

2.3.3 Illuminant particle model with light-
attenuation effects

This model is similar to the above, but light-attenuation
effects are taken into account. The difference appears
in how to calculate averages to determine the pixel col-
ors. The ‘weighted average’ is introduced such that
light coming from deep inside the volume data gives
little contribution to the pixel colors. This realizes an
effect similar to the accumulation of opacity in the ray-
casting rendering without necessity of the depth sort of
the particles (sample points). The color of the pth pixel,

C
(W)
p , is determined as

C(W)
p =

c̃
(W)
p Imax

c̃
(W)
max

, c̃(W)
p =

∑Np

j=1 wp(z
(p)
j )ρ(x

(p)
j )

∑Np

j=1 wp(z
(p)
j )

,

(6)

where z
(p)
j is the z component of x

(p)
j , and we choose

a proper coordinate system such that the particles are
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projected in the z direction. The weight function wp(z)
is defined by

wp(z) =
a

(z
(p)
max − z)2 + a

, (7)

where a is a positive constant to control the rapidity of

light attenuation, and z
(p)
max is the maximum z of the

non-zero-ρ(x) region along the z-directional line pass-

ing through the pth pixel. For each pixel, z
(p)
max is cal-

culated and stored beforehand as preprocessing. The

calculation of z
(p)
max for each pixel can be executed quite

quickly by investigating the scalar values of the origi-
nal voxels and then by making the proper interpolation.
In Fig.7, we illustrate the prescription of this rendering
model schematically. (Zhou and Garland[15] proposed
a similar way of the weighted average in their point-
based volume rendering. But their zmax is constant for
all the pixels.)

Fig. 7 Schematic illustration of the illuminant particle

model with light-attenuation effects. The z
(p)
max may be

different in each pixel.

The above weight function wp(z) takes its maximum
value, 1, for z = zmax, i.e., on the boundary of the non-
zero-ρ(x) region. Therefore, this rendering model is
useful to visualise intensively regions near the surfaces
of volume structures. In Section 3, we will compare the
results of this rendering model with those of the above
two models. For example, we will clearly see lobster
legs on its surface of the body in Fig.8(c).

For the same reason as before, the illuminant particle
model with light-attenuation effects should also pro-
duce images similar to the ones by the conventional
ray-casting rendering. But the model can realize ef-
fects similar to the opacity accumulation, making sur-
face parts of the volume structures visible clearly.

2.4 Parallel processing

Our method is suitable for the parallel processing with
multiple CPUs. The method is easily parallelised based
on the simple master-slave model as follows:

1. Each slave process executes the Metropolis sam-
pling and projection of sample points indepen-
dently.

2. After the above sampling, each slave process sends
the following 2D information to the master pro-
cess, and the master process finalizes calculation
of the pixel colors. The 2D information that is
gathered by the master process is as follows:

• In the X-ray model, Np is gathered.

• In the simple illuminant particle model, Np

and
∑Np

j=1 ρ(x
(p)
j ) are gathered.

• In the illuminant particle model with

light-attenuation effects,
∑Np

j=1 wp(z) and
∑Np

j=1 wp(z)ρ(x
(p)
j ) are gathered.

Note that the inter-process communication occurs only
in the second step, i.e., at the end of creating an im-
age. Therefore, most of the computation can be exe-
cuted independently, which leads to efficient paralleli-
sation. We will show our experiments on the parallel
processing in Section 3.

3 Experiments

In this section, we apply our method to the volume data
of regular and irregular grids, and demonstrate its ef-
fectiveness. We also compare the results of applying
the three rendering models described in Section 2.3.

3.1 Application to regular-grid data

We have applied our method to the following three
regular-grid volume data: 301 × 324 × 56 lobster,
256×256×256 tornado, and 161×321×129 foot. Their
rendering resolutions are 301×324 (lobster), 256×256
(tornado), and 161× 321 (foot). Figs.8, 9, and 10 show
the rendering results. We can see that the proper ren-
dering images are obtained.

With the X-ray model (Figs.8 (a), 9 (a), and 10 (a)),
the density function ρ(x) directly determines pixel col-
ors. Therefore, by using the linear transfer function
(with the low-cut filter effect as in Fig.5 if necessary),
we can investigate the distribution of the original vol-
ume data (voxel values) straightforwardly. The larger a
voxel value is, the more it contributes to make the corre-
sponding pixel bright. For example, in Fig.8 (a), we can
see that the chest portion of the lobster is brightest, and
so the voxel values should be largest there. In Fig.11,
we show a colored image created with the X-ray model.
The red color corresponds to largest voxel values, while
the blue color to smallest voxel values.

With the simple illuminant particle model (Figs.8 (b), 9
(b), and 10 (b)), whole regions of the grid spaces are vi-
sualised more clearly. Images similar to the ray-casting
rendering without opacity accumulation effects are ob-
tained as expected.

With the illuminant particle model with light-
attenuation effects (Figs.8 (c), 9 (c), and 10 (c)), por-
tions near the surfaces of the volume structures are vi-
sualised more clearly. Note the legs in the stomach of
the lobster (Fig.8 (c)), the central part of the foot bone
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Tab. 1 Computational time for sampling + render-
ing. ‘Illum (1)’ indicates the simple illuminant parti-
cle model. ‘Illum (2)’ indicates the illuminant particle
model with light-attenuation effects.

Lobster Foot Tornado

(5M points) (10M points) (10M points)

X-Ray 3.2 (sec) 7.4 (sec) 7.8 (sec)

Illum (1) 3.3 (sec) 7.6 (sec) 8.0 (sec)

Illum (2) 3.5 (sec) 8.0 (sec) 8.7 (sec)

(Fig.10 (c)), etc. Namely, the images similar to ray-
casting rendering with opacity accumulation effects are
obtained as expected.

(a) (b)

(c)

Fig. 8 Rendering of the 301 × 324 × 56 lobster (regu-
lar grid) with 5M sample points: (a) X-ray model, (b)
simple illuminant particle model, (c) illuminant parti-
cle model with light-attenuation effects (a = 50). In the
sampling, the transfer function of Fig.5 is used.

Tab.1 summarizes the computation time for creating the
images of Figs.8, 9, and 10. The time is measured in
our PC with a Pentium Xeon 3.0 GHz processor and
2.0 GB memory. The computation time includes both
sampling and rendering time. No hardware acceleration
is used for the computation. A few or several seconds
are enough to create an image of the current resolution.
(We have already started researches on executing our
Metropolis sampling with GPU [16]. Their preliminary
results show that the sampling is a few or several times
faster.)

Fig.12 shows the computation speeds in the parallel

(a) (b)

(c)

Fig. 9 Rendering of the 256×256×256 tornado (regu-
lar grid) with 10M sample points: (a) X-ray model, (b)
simple illuminant particle model, (c) illuminant particle
model with light-attenuation effects (a = 300). In the
sampling, the transfer function of Fig.6 (right) is used.

processing. The computation time is measured for cre-
ating images of the 301 × 324 × 56 lobster (squares)
and the 477 × 477 × 133 lobster (diamonds) with 50M
sample points. Inverses of the computation time, i.e.,
the computation speeds, are plotted for the increasing
number of slave processes. The computation speed in-
creases almost linearly, reflecting high-level indepen-
dency of our Metropolis sampling. In Fig.12, we can
also see that the computation speed is independent of
the volume-data sizes. This is because the Metropo-
lis algorithm makes the sample-point position update
based only on local evaluation of ρ(x). These proper-
ties, shown in Fig.12, suggest that our method is suit-
able for rendering large-scale volume data.

The grid-independency of our sampling method also
makes it suitable for visualizing large-scale volume
data. For volume data with size N3, our method re-
quires sample points proportional to N2, i.e., to the im-
age resolution. It is because the number of calculated
Monte Carlo averages, which determine pixel colors, is
nothing but the number of pixels on the image plane.
On the other hand, the classical volume-rendering
methods have to generate sample points proportional to
N3, since their sampling is based on traversing the 3D
distribution of voxels. Fig.13 shows rendering of vol-
ume data with different data sizes. Fig.13 proves that
we can keep the same image qualities for the increas-
ing data size by making the number of sample points
proportional to N2. (The sampling should terminate
when a sufficient number of sample points accumulates.
The ‘sufficient’ number could be automatically decided
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(a) (b) (c)

Fig. 10 Rendering of the 161 × 321 × 129 foot (regu-
lar grid) with 10M sample points: (a) X-ray model, (b)
simple illuminant particle model, (c) illuminant particle
model with light-attenuation effects (a = 300). A trans-
fer function similar to Fig.5 is used as a low-cut filter
with the threshold value 55.

by monitoring the improving quality of the images cre-
ated.)

3.2 Application to irregular-grid data

We have also applied our method to tetrahedral
adaptive-grid data with different cell sizes [9]. These
are irregular-grid data in the sense that their cell sizes
are not uniform. The adaptive grids are created by prop-
erly eliminating parts of the voxels from original reg-
ular grids, taking care of local uniformity of the scalar
values. Therefore, the voxel positions of a created adap-
tive grid are a subset of those in the original regular
grid.

In Figs.14 and 15, we show the tetrahedral mesh struc-
tures of the adaptive-grid data to which we have applied
our method. The standard barycentric method is used
for interpolation to define a continuous density func-
tion ρ(x). Our method is applicable to irregular-grid
data without any difficulty as long as continuous inter-
polation of ρ(x) is defined.

In Fig.16 (left), we show an example of sampling the
foot data of Fig.14. In the figure, generated 0.1M
sample points are plotted three-dimensionally. We
can clearly see that regions around the peaks of ρ(x)
are intensively sampled independently of the original
irregular-grid structure. Fig.16 (right) shows the ren-
dering result with the simple illuminant particle model.
This rendering result is quite similar to Fig.10 (b), cre-
ated for the regular grid data.

In Fig.17 (a), we show an example of sampling the tooth
data of Fig.15 (0.1M points). This figure shows the ex-
pected sampling result properly again. Fig.17 (b) shows
the rendering result with the simple illuminant particle
model (5M points). This figure properly visualises the
embedded structure of the tooth. Fig.17 (c) shows the
rendering result with the illuminant particle model with
light-attenuation effects (a=100, 5M points). This fig-

Fig. 11 Colored image of the 161 × 321 × 129 lob-
ster (regular grid) with 10M sample point and the X-ray
model.

Fig. 12 Computation speeds for the increasing number
of slave processes which run on Pentium Xeon 2.4 GHz
processors connected with Myrinet (regular-grid data).

ure visualises the asperity around the root of the tooth
properly.

Fig.18 shows the computation speeds in the parallel
processing. The computation time is measured for cre-
ating images of the foot of Fig.14 and the tooth of
Fig.15 with 10M sample points. Inverses of the com-
putation time, i.e., the computation speeds, are plotted
for the increasing number of slave processes. The com-
putation speed increases almost linearly, reflecting the
high-level independency of our Metropolis sampling.
The experimental result shown in Fig.18 suggests that
our method is suitable for rendering large irregular-grid
volume data. Since volume rendering of irregular-grid
data takes a longer time than regular-grid data, it is im-
portant to accelerate the rendering speed.

The computation times required to generate images in
this section is about one-order longer than those for the
regular-grid data in Section 3.1. Most of the time is
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(a) size=2563, resolution=2562, 20M sample points.

(b) size=5123, resolution=5122, 80M sample points.

(c) size=10243, resolution=10242, 320M sample
points.

Fig. 13 Rendering volume data with different data sizes.
(The X-ray rendering model is used.) The numbers of
sample points are made proportional to those of pixels.
The ratio (the number of sample points)/(data size) is
(a) 1.19, (b) 0.60, and (c) 0.30, respectively.

spent for evaluating ρ(x) by investigating a tree struc-
ture to search a tetrahedral cell including a given x,
which is not an essential part of our Metropolis sam-
pling. Acceleration of searching tetrahedral cells is not
a focus of this paper. But it is, of course, an important
issue for efficient rendering of irregular-grid data. It is
a common target issue for every rendering method of
irregular-grid data.

4 Conclusions

We have proposed a method of sampling
regular/irregular-grid volume data for their visu-
alisation. The method is based on the Metropolis
algorithm which realizes importance sampling of re-
gions of interest. Namely, the generated sample points
are distributed according to a scalar field ρ(x) that
is defined by given volume data and a user-specified

Fig. 14 Mesh structure of the adaptive grid (foot).

transfer function.

The sample-point distribution is independent of a grid
structure of given volume data, and so our method is
applicable to irregular grids as well as regular grids.
We have demonstrated the effectiveness of our method
by applying it to both regular cubic grids and irregular
tetrahedral grids with adaptive cell sizes.

The high-density sample points generated by our
method are suitable for rendering. We have success-
fully applied the generated sample points to the three
rendering models, i.e., the X-ray model, the simple
illuminant particle model, and the illuminant particle
model with light-attenuation effects.

We have also demonstrated that our method is suitable
for parallel processing by realizing computation speeds
almost proportional to the number of processors. (Our
Metropolis sampling can be accelerated by using GPU.
Our preliminary results show that the sampling speed
becomes a few or several times faster. Details will be
reported in our future paper.)

The grid-independency and the efficiency in the parallel
processing mean that our method is suitable for visual-
izing large-scale volume data. The former means that
the required number of sample points is proportional to
the number of 2D pixels, not the number of 3D voxels.
The latter means that our method can be easily acceler-
ated on the multiple-CPU and/or GPU platforms. Our
future work will be done to utilize such virtues of the
method for large-scale medical volume data.
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Fig. 15 Mesh structure of the adaptive grid (tooth).
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(a)

(b)

(c)

Fig. 17 Sampling and rendering results for the adaptive-
grid data of Fig.15 (tooth). A transfer function similar
to Fig.5 is used. (a) Generated sample points. (b) Ren-
dering with the simple illuminant particle model (5M
points) (c) Rendering with the illuminant particle model
with light-attenuation effects (a=100, 5M points).

Fig. 18 Computation speeds for the increasing num-
ber of slave processes which run on Pentium Xeon 2.4
GHz processors connected with Myrinet (irregular-grid
data).
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