
THE GPSS++ MODELLING LANGUAGE:
OBJECT-ORIENTED VERSION OF GPSS

Danko Basch, Igor Capan, Tomislav Ivančić, Hrvoje Prgeša, Tomislav Sukser

University of Zagreb, Faculty of Electrical Engineering and Computing,
HR-10000 Zagreb, Unska 3, Croatia

danko.basch@fer.hr (Danko Basch)

Abstract

This paper describes the modelling language GPSS++. One of the main purposes of the
language is its use in education. It extends the well-known discrete-event modelling language
GPSS in several aspects, among which an object-oriented modelling is one of the most
important. Other extensions of GPSS++ are: support for modular and hierarchical modelling,
support for hybrid modelling (discrete and continuous), and significantly enhanced features
for description of model behaviour (by using features of a general purpose programming
languages). Syntax of the language is also modernized. In the same time, GPSS++ tries to
retain the basic GPSS concept of modelling that uses transactions and blocks. The paper
describes the main features of the GPSS++ mentioned above. Results of comparison of
models written in GPSS and GPSS++ are given. The main advantages of GPSS++ over old
versions of the language are better organization of the model and improved readability and
writeability. Also, the language is better adapted to the programmers with the background in
modern and widely used object-oriented languages. In addition, GPSS++ is better suited for
larger models due to its modular and hierarchical organization. GPSS++ is currently under
development and here we describe its first version and we also give directions for future
improvements and research.

Keywords: Modelling languages, GPSS, Object-oriented languages.

Presenting Author’s biography

Danko Basch received B.Sc. in electrical engineering (1991), M.Sc. in
computer science (1994), and Ph.D. also in computer science (2000)
from the Faculty of Electrical Engineering and Computing (FER),
University of Zagreb, Croatia. In 1992 he joined the FER (Department of
Control and Computer Engineering) as a researcher. At present, he works
at the same Department as an associate professor. His research interests
include programming language design and implementation, and also
modelling and simulation languages.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

GPSS [1] is one of the oldest simulation languages -
its 40th anniversary was celebrated in 2001. However,
it is still in use and under active development, as noted
by panellists in [2]. GPSS has undergone many
changes through many versions, but the most valuable
legacy of GPSS, its concept, has been retained in all
versions. The concept is very simple, natural, and
straightforward, yet very powerful and flexible, and
afterwards, it has been used not only in GPSS, but also
in many other simulation languages and tools. The
main idea is to let many transactions simultaneously
flow through blocks that represent a model structure.

But, GPSS has come to age. Its syntax is partially
freed from rigorous and old-fashioned assembler-like
format in later versions (starting with GPSS V), but
from today’s point of view it is still arcane and strange
to most of programmers. Some versions of GPSS are
extended by hybrid modelling abilities (e.g. GPSS
World [3]). Also, some tools allow graphical
modelling (e.g. WebGPSS [4]). Many new blocks and
features have been added through years, making GPSS
more powerful, but also rather complex [5]. Previous
suggestions for changes of GPSS are summarised in a
paper by Ståhl [6]. Here we briefly repeat the most
important ones. They are: simplification, addition of
modularity, structural modelling, and designing a new
version based on GPSS and C. Backward
compatibility will certainly be lost in the case of
syntax changes, but some authors also propose that the
new language should be made from scratch [7].

When speaking about the improvements, it is
necessary to mention object oriented (OO) paradigm
(OOP). OOP is a concept invented in the modelling
community in the 1960s, introduced in well-known
languages Simula I and Simula 67 [8, 9]. It seems that,
during the following years, objects and classes
somehow slipped out from the major modelling
languages. But, OOP was widely accepted in the
programming community some 20 years ago, when a
general purpose programming language – C++ was
introduced [10]. Today, it is hard to imagine a new
programming language that has no OO features. In the
last ten years or so, OOP begins to return to its roots
[11]. As examples, we can mention OO version of
Simscript [12] and Simple++ [13]. General-purpose
OO programming languages are also used in
simulation, e.g. Java in SSJ [14].

Education was the main motive for the development
of a new version of GPSS. One author is involved in
teaching a modelling and simulation courses to
undergraduate and graduate computer science and
engineering students for several years. Most of the
students are familiar with modern programming
languages like C [15], C++ [10], Java [16], or C# [17],
and they have no problem in grasping the main
concepts of GPSS, but they found the language itself
as the biggest obstacle in writing models.

As with any new language, one may ask is it really
necessary. For each new language the answer could be
"No" since everything could be programmed using
assembly language. But, new languages bring new
ideas that will influence future languages, even if the
language itself never becomes widely used.

There are many modelling and simulation languages
available on the market. We could mention two of
them that are well known and in widespread use:
Modelica and Matlab.

Our students use Matlab in another course (but only
for continuous modelling). One of its drawbacks is its
cost and students are unable to use it at home.
Modelica is free, but it still has a main disadvantage
that we also found in Matlab. Both simulations
packages are very powerful, and both allow hybrid
modelling, but they are much more appropriate for
continuous modelling. Since we need a classical
discrete event modelling, we found them significantly
less appropriate than the languages that are designed
primarily for discrete models, like for example GPSS,
SLX, Simscript or Modsim. There is also a Matlab-
toolbox that enables script writing in a GPSS-like
language [18], but it basically offers the same features
as other GPSS dialects.

The price is one of the main concerns, since we want
our students to be able to work at home and, if
possible, for free. Many simulators are available at
reduced fees for students but with unacceptable
evaluation periods, limitations in model size or
simulation duration, etc.

Among existing discrete modelling languages, from
the viewpoint of education, we found transaction-
oriented modelling offered by GPSS more appropriate
than event/process-oriented modelling, although it
must be said that this is only a matter of personal
preference. It is true that an event/process-oriented
modelling offers a greater flexibility in some cases,
but in our opinion it is more complicated, less
problem-oriented, and it exposes more of the
underlying simulation algorithm.

A year ago we have started the development of a new
version of GPSS as a student project. The language
was named GPSS++. The compiler for GPSS++ is
finished, and the simulator is still under development.
We expect it to be operational until the end of this
year. We plan to use it for a year or two in education.
After that, we plan to design and implement the
second version. It should be designed and improved
according to the collected experience and feedback
from the students (and hopefully from a wider
community).

The main features of GPSS are briefly described in the
following section. The rest of the paper introduces the
GPSS++ language, with explanation of the basic
design principles followed by the main language
features introduced in more details. We compared

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

several models written in old and new GPSS, and the
comparison results are presented here as well. At the
end of the paper we give the proposals for the future
work and refinements of GPSS++.

2 A short introduction to GPSS

For a reader unfamiliar with the GPSS language, we
shall briefly describe its main features. GPSS is a
discrete-event modelling language that supports
transaction-oriented modelling. Its main notions are
transactions and blocks, and it also uses static
simulation entities.

Dynamic entities in GPSS that enter and leave a
model are called transactions (e.g. a transaction can
represent a customer in a bank model).

Static entities, called facilities and storages in GPSS,
represent the resources of a system. Transactions are
served by the static entities. Facility can serve one
transaction at the time, while storage can contain
several transactions (e.g. facility can represent a teller,
and storage can represent a group of tellers in a bank).

Blocks form sequences through which transaction
passes during simulation. Blocks describe lifetime of a
transaction, or structure of the system through which
transaction passes. Blocks are used to define: creation
of transactions, capturing and freeing of resources,
duration of activities, collection of statistics,
conditional movement of transactions, removal of
transactions from the model, etc.

The sequences of connected blocks, called segments,
are the main parts of the models in GPSS. They are
preceded with declarations, and followed by
statements for controlling the experiment.

We shall use a simple model of a barbershop to
illustrate the features of GPSS. First, the system will
be described, and than the model in GPSS will be
given with a more detailed explanation.

Our system will be a barbershop where customers
arrive with the inter-arrival time (IAT) distributed
uniformly with a mean of 12 and spread of 6 minutes.
The first customer will arrive at the first minute, and
at most 400 customers will be generated during the
simulation. 25% of customers need haircut, and 75%
need shaving. There are two barbers working in the
barbershop, and each of them has his own scissors but
they have only one razor. Haircut takes from 12 to 24
minutes, and shaving from 8 to 12 minutes, both
distributed uniformly. The simulation experiment
consists of 3 independent replications, and each
replication will last for one working day, i.e. 8 hours.

The barbershop model in GPSS is given in Fig. 1.
Line numbers at the right side are not the part of the
model, and they are added for an easier orientation.

Transaction in the model represents a customer.
Barbers are represented by a storage with capacity

defined explicitly (2) in the declaration part which
starts with the keyword simulate (1).

 simulate 1

barber storage 2 2

 3

 4

 generate 12,6,1,400 5

 transfer 0.25,haircut 6

shave queue qbarber 7

 enter barber 8

 depart qbarber 9

 seize razor 10

 advance 10,2 11

 release razor 12

 leave barber 13

 transfer ,exit 14

 15

haircut queue qbarber 16

 enter barber 17

 depart qbarber 18

 advance 18,6 19

 leave barber 20

exit terminate 21

 22

timer generate 60 23

 terminate 1 24

 25

 26

 start 8 27

 clear 28

 start 8 29

 clear 30

 start 8 31

Fig. 1 Barbershop model in GPSS

Transactions are created and inserted into the model
by the generate block (5) whose parameters
"12,6,1,400" define: mean and spread of IAT, first
arrival time, and maximum number of transactions
generated, respectively. The transfer block (6) sends
25% of transactions (i.e. customers) to the haircut, and
the remaining 75% proceeds to the next block for
shaving.

The enter block (8) has to be used for the transaction
to capture a place in the storage. In this case, capturing
of a barber by a customer represents a beginning of
servicing activity (i.e. shaving). Queue and depart
blocks (7 and 9) are used to collect statistics about the
waiting queues of customers. The queue will be
automatically formed in the front of the barber storage
when customers try to enter a busy barber.

The transaction uses seize block in order to capture a
facility (10). The razor facility represents single razor
that exists in the barbershop, and it is not (and cannot
be) explicitly defined at the beginning of the model (in
contrast with the barber storage (2)).

To simulate the duration of a certain activity (in the
case of shaving), the advance block is used (11). Its
parameters are the same as the first two parameters of
generate blocks (mean and spread). After the shaving
is completed, the customer will free resources razor
(12) and barber (13) using appropriate blocks release
(for facility) and leave (for storage), so another
waiting customer could capture them afterwards. After
that, the customer is unconditionally transferred (14)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

to the exit of the barbershop, where he is destroyed
and therefore removed from the model (21).

The blocks after the label haircut (16-21) are similarly
organized, but for the haircut activity. Here, the razor
is not used, and the service time is longer (19).

An independent simple segment is typically used for
stopping the simulation (23-24). The transactions will
be generated every 60 time units (i.e. every hour), and
they will increase the termination counter by one (24)
since the terminate block has 1 as its parameter.

The simulation is started with the control statement
start (27), and its parameter 8 defines the value of the
termination counter that will stop the simulation after
8 hours. Clear (28) is used to reset the collected
statistics and to remove the transactions remaining in
the model in order to prepare the model for the next
replication. Two more replications are started by
repeating the mentioned sequence (28-31).

Simple models, like the one presented here, are quite
readable and easy to understand. Larger and more
complex models quickly become less understandable
and their structure is not so easy to follow.

3 Basic principles of GPSS++ design

The first question to answer in a language design is
"Who will use the language and for what purpose?"
Our primary goal was to develop a language that will
be used in education, namely by students with the
strong background in computing. The models that are
to be written in GPSS++ will be small to medium
sized. The second goal was to design a language that
can be used in the wider community and will enable
the development of large models.

The mentioned goals influenced all further decisions
in language design. The list of the main decisions that
we tried to follow during the development of GPSS++
is presented here:

1) GPSS++ should retain the original concept (one of
the most important contributions of GPSS) of
transactions and blocks as much as possible. As such
it is appropriate not only for the education but also for
the modelling of complex systems.

2) The syntax should be thoroughly modernised, and it
should resemble the C-like syntax of contemporary
languages. With this decision we consciously give up
on backward compatibility, but for the educational
purposes we do not see syntax changes as a great
disadvantage. In addition, different versions of GPSS
are also not compatible.

3) Simplicity of the language is very important
because it reduces a learning curve for students or
other potential users of GPSS++.

4) Modular and hierarchical modelling should be
supported. It means that any part of a complex model
can be separated as a standalone parameterised

submodel and used in other models. This request is
crucial for the modelling of complex systems and
achieving the better structure of the models of any
size.

5) Although very flexible and powerful, the block
structure of GPSS tends to produce very complicated
and unstructured sequences of blocks (i.e. segments).
In the previous section, the high-level model structure
is addressed, and here the low-level structure of
segments should be improved.

6) GPSS++ should allow hybrid modelling, i.e.
mixture of continuous and discrete modelling. Even if
it is not necessary for the educational purposes, some
systems can naturally be expressed as hybrid models.

7) The flexibility of old GPSS is smaller compared to
the modelling languages more similar to general-
purpose programming languages (e.g. SIMSCRIPT).
GPSS++ should extend the block structure with
executable statements, like some versions of GPSS
already did (e.g. GPSS World).

8) GPSS++ should have OO modelling abilities. The
extent of the integration between "core-GPSS" and
OOP is still under question.

9) GPSS is a special-purpose language and should be
a high-level language, suitable for fast modelling and
prototyping. The dynamic typing of GPSS is an
advantage in that sense. Nevertheless, we think that
GPSS++ should use static typing, because it improves
readability and reliability of programs.

10) GPSS is very terse, since the keywords are used
(almost) only at the beginning of a “statement”. All
arguments, conditions, etc. are given in form of a
coma-separated list, which forces users to remember
the meaning and position of parameters for each
“statement”. The syntax should be more verbose to
help users in both reading and writing programs. On
the other side, we think that English-like syntax can
sometimes be more confusing than more formal and
programming language-like syntax, so the
compromise has to be made.

4 Non-modelling features of GPSS++

GPSS++ allows free formatting of a program text,
unlike the old GPSS. It means that any block or
statement can span over several lines of text, but also
that a line of text can contain more than one block or
statement. Comments can be single-line or multi-line
and they follow the syntax of C++/Java.

The language is case sensitive. The number of leading
characters in identifiers is neither prescribed nor
restricted, and the same holds for the length of
identifiers. The declaration part, segments, and
experiment control parts are now clearly separated.

More details on some important language features are
given in the following subsections.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

4.1 Data types

There are a few basic built-in data types: integers
(int), floating-point numbers (float), and Boolean
values (bool). Two simulation-related built-in types
are time and state. Time is similar to float, but its
value is always positive and some operations act
differently (e.g. the difference between two time
values is always positive). State type is used in
continuous modelling. Basically, state is float type
with some internal data invisible to the programmer.

Some other types are not built-in, but rather library-
based (e.g. String, File, List, etc.), although for a user
this distinction is not important. User-defined types of
GPSS++ are enumerations (enum), multidimensional
arrays, classes, and generic classes (template).

4.2 Variables

Variables are similar to the variables in Java. Types
with simple values, like int, float, bool, enum, time,
and state have variables that contain the value itself.
Arrays and objects have referential semantics, i.e. the
variable holds the reference (pointer) to the real
object. Objects are freed automatically if become
unreachable (i.e. GPSS++ uses garbage collection).
All variables are statically typed and they have well-
defined initial values.

4.3 Expressions

Arithmetic expressions can use a standard set of
operators: like +, -. *, /, %, ^, and mathematical
functions like: trigonometric, logarithmic, square root,
rounding etc. Logical expressions can use standard
relational operators: ==, !=, <, <=, <, and >=, as well
as logical operators !, ||, &&, and ^^. Logical
operators have "short-circuit" semantics, as in C. It
means that the second operand in the expression is not

always evaluated (e.g. in the expression A && B, && is

a logical-and operator; if the operand A is false, there

is no need to evaluate the operand B).

4.4 Overall program structure

In order to prevent the namespace pollution, GPSS++
uses namespaces. Inside a namespace, a programmer
can define all other entities of the language: functions,
classes, models, experiments, variables, other
namespaces, etc. All these entities can have public or
private visibility. Qualified names are used to access
public entities from other namespaces:

SomeNamespace.SubNamespace.publicName = 3;

Shorter writing is available by means of using
directive that enables direct naming of entities:

using SomeNamespace.SubNamespace;

publicName = 3;

The program text can be divided into several files.
Namespaces can span across several files, but the
definitions of other entities cannot (e.g. functions,
models, classes etc.).

4.5 Functions

A function in GPSS is actually a list of value pairs
(x, f(x)). The GPSS functions defined in this way are
very limited.

A variable in GPSS is similar to a macrostatement and
it can be used as a very simple function, but it is
restricted to a single arithmetic expression, without
loop and branch statements. To pass parameters to a
variable, a programmer must use savevalues (i.e.
global variables), which could be very inconvenient.
The term "variable" has completely different meaning
in modern languages, and that is additional reason
why GPSS++ has no equivalent feature. Variables in
GPSS++ have the same meaning as in other
programming languages, and they have nothing in
common with variables of GPSS.

The GPSS-style functions are retained in GPSS++.
They are called numerical functions. The numerical
function has a slightly modified syntax, and its
definition can be extended beyond the limits of the
first or the last point (+INF in the following example).

Fig. 2 shows continuous function f1 (dotted line)

and discrete function f2 (single line), which can be
defined like this:

continuous float f1 (float x) {

 1->2; 3->4; 4->3; 6->5; +INF

}

discrete float f2 (floatx) {

 1->1; 3->2; 5->2; 6->3

}

4321 65
0

1

2

3

4

5
f1

f2

Fig. 2 Example of numerical functions

In addition, GPSS++ has functions like other
programming languages. They are used to describe
behaviour of a model or its parts. A function has zero
or more call-by-value parameters. A function can
return a value, or declare void as a return-type if it
does not return a value. The definition of a
mathematical function signum is shown here:

float signum (float x) {

 if (x==0) {

 return 0;

 } else if (x < 0) {

 return -1;

 } else {

 return 1;

 }

}

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

Functions are standalone if defined outside the class
(e.g. inside model or namespace). Like in other OO
languages, functions defined inside class are called
methods and can be overloaded.

Since the functions are purely executable, they can
have only statements; in contrast with the models
which contain only GPSS-blocks (they are purely
structural). GPSS++ also have a special kind of
functions (named processes) used in continuous
modelling.

GPSS++ does not have a main function, unlike C,
C++, Java or Simscript. Starting points for the
simulation are generate blocks inside the models, like
in GPSS.

4.6 Classes

Classes in GPSS++ are alike classes in Java and C#.
Class is a user-defined data type, and the instance of a
class is called object. As usual, a class defines fields
(i.e. member variables) and methods for its instances.
Properties can be defined similar as in C#, and they
are used as read and/or write accessors. Every part
(i.e. field, method or property) of an object has
private, protected or public visibility. Parts of a class
declared by using keyword static belong to the class,
and not to the objects.

A class can have a constructor, which is a special kind
of function used for initialization of objects during
their creation. Methods can be virtually overridden.
Classes, methods, and properties can be abstract or
final. GPSS++ allows definition of generic classes,
similar to templates in C++. Many library-based
classes are actually generic classes (e.g. List).

The following example shows a definition of

Customer class that inherits Transaction class:

class Customer : Transaction {

 // fields

 public Time serviceTime;

 private int noOfServices [] = new int[5];

 // constructor

 Customer () { // constructor

 serviceTime = uniform(25,45);

 }

 // method

 public Count (int service_type) {

 noOfServices[service_type] ++;

 }

}

Objects (i.e. instances) of Customer class have two

fields: publicly visible serviceTime used to store a
service time for that instance, and private array of 5

integers named noOfServices where number of
occurrence of each of 5 types of services will be

recorded. A constructor initializes serviceTime
variable by using random uniform distribution. The
constructor is called automatically during the creation
of an instance which takes place in the generate block
(the next section explain this in more details). Public

method Count will be called upon completion of
service, and the parameter indicates one of five
possible service types.

Single inheritance is supported in the current version
of GPSS++. Here are few examples which illustrate
the need and the application of multiple inheritance in
the modelling of transactions.

In the imaginary model of a university transactions
can represent real persons. Persons can be divided in
students and employees. The further division of
students can be made to graduate and postgraduate
students. Employees can be divided to teachers,
technical staff etc. In order to model a teaching
assistant who is postgraduate student and employee at
the same time, multiple inheritance is preferred and
greatly simplifies the modelling process.

Next example will illustrate the need and the
appropriate application of multiple inheritance in

traffic. Transaction types Car, Truck, Van, and
PriorityVehicle are defined as subclasses of

Vehicle class. So, the PoliceCar class can be

modelled as a subclass of Car and PriorityVehicle

classes, and the FiremanTruck class can be a subclass

of PriorityVehicle and Truck classes.

Similar reasons can be found in the modelling of bank
transactions, which are divided into Deposit,

Withdrawal, etc. The MoneyTransfer class, that
represent transfer from one account to another, can be

subclass of both classes - Deposit and Withdrawal.

We should mention that the multiple inheritance,
together with other extensions to GPSS++, could
enable a mixture of transactions and simulation
entities, i.e. dynamic and static entities of simulation.

For example, a Truck class can be viewed as a facility
in the transport simulation, but it can be viewed as a
transaction when it comes to the servicing of the
mentioned Truck.

5 Transactions and blocks

Transactions in GPSS can have a number of
parameters that need not be declared in advance. They
are used as needed, and the simulator will dynamically
create them. As we already mentioned, this can be a
desirable feature for a high-level language, but it can
also easily introduce hard-to-find errors, and reduce
the readability of a program.

Transactions in GPSS++ are just a kind of objects and
they are defined by using classes (they have to inherit

the Transaction class). The Transaction class has
most properties of transactions in GPSS. For example,
it defines fields Priority, CreationTime, Lifetime,
etc. GPSS++ uses object's fields instead of the GPSS
parameters. In addition, GPSS++ offers methods,
properties and constructors for the transactions.

Since the transactions have to be explicitly defined, a
GPSS++ model is typically bigger than its counterpart

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

in GPSS. But, the GPSS++ model is much more
understandable, readable, and better self-documented.
Later, we shall see that transactions are not the only
part of the language that should be explicitly defined
in GPSS++.

Most of the blocks from GPSS can be found in
GPSS++. Some of them are modified for the same
reasons as in WebGPSS, namely for the simplicity and
ease of learning. Other blocks are enhanced with some
abilities for which we believe that they will be useful
in modelling. In general, we dismissed the syntax
where parameters of blocks were given as a comma-
separated list, which we found hard to read. Several
GPSS++ features are explained in the following
subsections in order to illustrate the changes.

5.1 Generate block

Like in old GPSS, generate blocks create
transactions. An example shows the block that

generates Vehicle transactions with inter-arrival time
uniformly distributed between 2 and 10 time units.
The number of generated vehicles is restricted to
12000, and the first vehicle is generated after 200 time

units. Presumably, Vehicle is a class of transactions
defined elsewhere:

generate upto 12000 Vehicle

 after 200 every 6 +- 4;

We think that such syntax is much more obvious and
natural than in old GPSS (generate 6,4,200,12000),
and especially in the case of omitting some

parameters. (generate 6,,,12000).

Additionally, in GPSS++ we can easily define the
generation of several types of transactions, e.g. we can

define that among Vehicle transactions there are 80%
of cars, 13% of busses, and 7% of trucks (here,

besides Vehicle class, we had to define three classes:

Car, Bus, and Truck that are inherited from Vehicle):

generate upto 12000 Vehicle

 (Car: 80; Bus: 13; Truck:7)

 after 200 every 6 +- 4;

5.2 Facilities and queues

GPSS requires no explicit definition for the most
simulation entities, like facilities, queues, savevalues
(i.e. global variables), etc. When such entity is used
for the first time somewhere in the model, it will be
created. In GPSS++, everything has to be defined in
advance, and that also holds for the simulation entities
which are nothing more than objects, i.e. the instances
of the predefined classes.

In the next example, the facility named Barber is
defined. Afterwards, we can use blocks seize and
release like in old GPSS. To gather statistics about the
waiting in the queue in the front of Barber, we can

additionally define a queue named barberQueue.
Blocks queue and depart are called inqueue and
outqueue in GPSS++, but they can be replaced by a
forming-expression (similar to WebGPSS):

Facility Barber = new Facility(priorityFifo);

Queue BarberQueue = new Queue();

...

generate Customer every exponential(880);

seize Barber forming BarberQueue;

advance 600+-120;

release Barber;

terminate;

Transactions trying to capture certain facility form an
implicit queue. The default queue order is FIFO with
priority (like in this example), but it can also be FIFO
without priority, LIFO with or without priority, or
FIRO (first-in random-out) with or without priority.

GPSS uses SNAs (system or standard numerical
attributes) as a mean of accessing the different values.
For this example, let us just mention SNA F used to
check whether a facility is free or busy. Instead of
using cryptic syntax F$Barber, GPSS++ uses simple

OO-style: Barber.Free or Barber.InUse.

Furthermore, GPSS++ allows the dynamic change of
queue order and the dynamic change of storage
capacity.

5.3 If block

The structure of blocks in GPSS is hard to follow
since it uses numerous jumps, similar to "spaghetti-
code". In order to obtain a better structure of models
we have introduced an if block:

if(Vehicle.route == Direction.left) {

 seize left_road;

 advance 12 +- 2;

 release left_road;

} else {

 seize right_road;

 advance 20 +- 5;

 release right_road;

}

In the old GPSS this example would be implemented
by using test block, transfer block and labels. Note
that the branches of the if block can contain only
another blocks. However, we did not prohibit transfer
of the transactions to any label inside the model. For
that purpose, a goto block is used.

5.4 Wait block

Wait block is introduced to replace the GPSS blocks
that operate in the refusal mode (e.g. gate, test, etc.).
It has two forms: wait while and wait until. The
waiting condition has some restrictions, but this is
beyond the scope of this paper. Here is an example of
the wait block that will hold transactions until a place

is freed in the Parking storage but with a limited
waiting time of 120 time units. Additionally, queue

statistics is gathered by using ParkingQueue:

wait until (Parking.NotFull)

 forming ParkingQueue

 timeout 120;

Wait allows a more complicated behaviour definition.
For example, one can write:

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

wait until (condition) then {

 ... // blocks "executed" if a transaction

 // has passed after some waiting

} else {

 ... // blocks "executed" if a transaction

 // has passed without waiting

} timeout 120 {

 ... // blocks "executed" if a transaction

 // has passed due to a timeout

}

5.5 Execute block

The old GPSS uses blocks savevalue and assign to
store a value in the savevalues and transaction
parameters. Another usual task is to compute
something during the transaction movement. This is
either complicated in GPSS, or requires the external
procedures written in FORTRAN. GPSS++ uses the
execute block for all these purposes. After execute
block, there can be any sequence of statements written
inside braces. The execute block is activated when a
transactions enters it. For example:

// Vehicle enters the road section

seize Road_section_332;

execute {

 // instead of savevalue

 vehicles_count = vehicles_count + 1;

 for (...) {...} // any statements

 // instead of assign

 Vehicle.km = Vehicle.km + 2.3;

}

advance 140 +- 35;

release Road_section_332;

6 Submodels

A user can define a named sequence of blocks that can
be used in other parts of a model as a submodel. A
submodel can have its own local variables, functions,
storages etc., it can have more than one entry end exit
point for the transactions, and it can use parameters.
An example of a very simple submodel and its usage
is shown next:

// "submodel"

public model machine_operation

(Facility machine, Time operation_time) {

 seize machine;

 advance operation_time;

 release machine;

}

// "supermodel" - factory with 2 machines

public model factory () {

 define {

 Facilty machine[]=new Facility[2](Firo);

 }

 generate Products every 40 +- 10;

 machine_operation(machine[0],

 exponential(38));

 machine_operation(machine[1],

 exponential(16));

 terminate;

}

7 Continuous modelling

Continuous part of a model is defined by a set of
differential equations placed inside the special kind of
function, called process. The process is started and
stopped explicitly using the statements start and stop
(it can be also started automatically). Processes can be
defined inside objects, classes, models, or
namespaces. The given example depicts a system
where the transactions represent ingots arriving to the
oven for heating:

class ingot : Transaction {

 // temperature of the ingot

 public state temp;

 // size of the ingot

 public int size;

 // continuous process of heating

 public process void HeatUp

 (float ovenTemperature) {

 derivation

 temp = 0.027 * (ovenTemperature – temp);

 }

}

...

// somewhere in the model: ingots arrive

// entering the Oven storage

enter ingot.size units in Oven;

execute { start ingot.HeatUp(800); }

wait until ingot.temp > 600;

execute { stop ingot.HeatUp; }

leave ingot.size units in Oven;

The variables used in differential equations have to be
defined as state. Processes can communicate through
non-local state variables, thereby forming a structure
of connected continuous subsystems.

8 Statistics

The old GPSS uses queues with the queue/depart
blocks and tables with the mark/tabulate blocks in
order to gather the statistics. Besides the renaming the
queue/depart, we removed the mark/tabulate blocks
and added traced variables, conceptually more similar
to the accumulate and tally statements of Simscript
[12]. Traced variables are sampled on every change,
and the samples can be weighted by time (trace

continuous) or non-weighted (trace discrete). The
following statistics can be obtained: mean, variance,
standard deviation, maximum, minimum, histogram,
etc.

Random numbers can be generated by using a default
generator, or by creating the arbitrary number of
independent generators. Such generator is simply an
object of an RND class. GPSS++ also have built-in
exponential, normal, uniform, triangular, Poisson, and
discrete uniform distributions.

9 Simulation experiments

GPSS++ uses specific statements placed in a
simulation block for the control of the simulation
experiment. Every model that should be simulated is

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

defined by configuration statement that loads the
model. Afterwards, the simulation is started with the
run statement:

simulation {

 // load model parameterised by 22

 configuration BusStation(22);

 // warm up for 1 hr (3600 seconds)

 run upto 3600;

 // reset statistics, leave transactions

 reset;

 // simulate for next 100 hrs

 run upto 360000;

 // load model parameterised by 32

 configuration BusStation(32);

 // simulate 5 times

 run 5 simulations upto 3600;

}

10 Example of a barbershop in GPSS++

The model from the section 2 is presented here, but
this time written in GPSS++ (Fig. 3). It could be
written more similarly to the original, but we wanted
to illustrate some new features of GPSS and make the
model well structured and more object-oriented.

The model in GPSS++ is not restricted to the sequence
of the declaration part, segments, and the experiment
control. Any part can be placed in a separate file, or
the parts can be combined in a single file. For a simple
model as the barbershop model, we put all parts in a
single file.

At the beginning, the Customer class is defined (1-11)
as abstract since its instances are not going to be used
in the model. Customer is a subclass of the

Transaction class, and hence its (indirect) instances
will be used as transactions in the model. The

Customer class defines two private fields for storing
the mean and the spread of the service time (3). The

property serviceTime (5-10) is used to obtain a
random value and it uses fields mean and spread to
define the parameters of uniform random distribution.

Two concrete classes, ShaveCustomer (14-19) and

HaircutCustomer (22-27), inherit the Customer class.
They represent two types of customers. They extend
their superclass with the constructors (16-18 and 24-

26). The constructors simply initialize the mean and

spread fields to the appropriate values (17 and 25).

The barbershop model is defined next (31-58). It is
parameterized with a number of barbers, and with the
duration of simulation (31-32). The definition block
(33-37) is at the beginning of the model. It contains
the definitions of all static simulation objects. Here we
can see the explicit definitions of the facility and the
queue, which were not present in the GPSS model.

The remaining of the model consists of segments (39-
57). The generate block is much longer, and much

more readable than in old GPSS. The central part of
the model is not implemented using transfer blocks
that produce spaghetti-code. Instead, the better
structure on block-level is achieved by using if block,
similar to well-known if-statement. Two branches of if
block represent two different types of services. The
branches itself are quite similar to the original model,
and the same holds for all the blocks in the model.

abstract class Customer : Transaction { 1

 2

 private Time mean, spread; 3

 4

 public Time serviceTime { 5

 read { 6

 return uniform(mean-spread, 7

 mean+spread); 8

 } 9

 } 10

} 11

 12

 13

class ShaveCustomer : Customer { 14

 15

 ShaveCustomer () { 16

 mean = 10; spread = 2; 17

 } 18

} 19

 20

 21

class HaircutCustomer : Customer { 22

 23

 ShaveCustomer () { 24

 mean = 18; spread = 6; 25

 } 26

} 27

 28

 29

 30

model barbershop (int NoOfBarbers, 31

 int Timeout) { 32

 define { 33

 Storage barber = new Storage(2); 34

 Queue qbarber = new Queue(); 35

 Facility razor = new Facility(); 36

 } 37

 38

 generate upto 400 Customer 39

 (HaircutCustomer : 0.25, 40

 ShaveCustomer : 0.75) 41

 after 1 every 12+-6; 42

 43

 enter barber forming qbarber; 44

 45

 if(Customer instanceof ShaveCustomer){ 46

 seize razor; 47

 advance Customer.serviceTime; 48

 release razor; 49

 } else { 50

 advance Customer.serviceTime; 51

 } 52

 leave barber; 53

 terminate; 54

 55

 generate after Timeout; 56

 terminate; 57

} 58

 59

 60

 61

simulate { 62

 configuration barbershop(2,480); 63

 run 3 simulations; 64

} 65

Fig. 3 Barbershop model in GPSS++

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

The stopping segment (56-57) uses the Timeout
parameter of the model to define the end of the
simulation.

Finally, the simulation experiment is defined in a
separate block (62-65). The first statement (63)
defines the model which will be simulated. Parameters
define that 2 barbers will be used, and the simulation
duration will be 480 time units. The second statement
(64) begins the simulation that will consist of three
independent replications.

A short comparison shows that the original model in
GPSS has 25 lines of code, while the GPSS++ model
has effectively 31 lines (without lines with closing
brace only, and without lines that are wrapped due to a
line length limit).

11 Comparison of GPSS and GPSS++

models

For a comparison we took about 50 small-sized
examples from the widely known and available
sources [19, 3]. Then we implemented the same
models in GPSS++. We found that in most cases
GPSS++ programs are longer than the originals (about
20%), especially for “small” models (about 50 lines),
where explicit definitions required by GPSS++ add
significant amounts of code. If the original model uses
some of the features omitted from GPSS++, the
implementation of such features can increase the
program size and its complexity by 80%. In the case
of “bigger” models (about 150 lines), the advantages
of GPSS++ became more obvious. Submodels
reduced the code size by 20%, and sometimes even by
50%, depending on the system implemented.

Obviously, the main advantage of GPSS++ is not the
code reduction. Instead, the better organization,
improved readability and modularity, easier
modelling, debugging etc. are the major improvements
of GPSS++ over previous versions of the language.

12 Conclusion and future work

GPSS has been successfully used for many years in
the modelling and simulation of discrete-event
systems. We have proposed several improvements of
GPSS that should make it more appropriate for
today’s programmers, but at the same time we have
tried to keep the concept of transactions and block
structure.

The main improvements are: modernized and more
verbose syntax, static typing, modularity and
hierarchical modelling, features of general-purpose
language for modelling complex behaviour and
algorithms, hybrid modelling of discrete and
continuous systems, and finally object-oriented
modelling.

Currently, the GPSS++ tools are still under
development, and for now we plan to implement only

compiler and simulator without a support for visual
modelling, animation, graphical presentation of
results, etc. The language itself is also under
development. We can mention a few problems noted
so far and possible future improvements.

Firstly, some GPSS blocks are omitted (e.g. link,
unlink, select, scan, match, buffer, preempt)
together with some options available with particular
blocks (e.g. both, pick, and all options for transfer
block). Here we did not count for omitted features that
are replaced or can be easily implemented using the
new features of GPSS++. The missing functionality
can be implemented in most of the cases by using the
execute block, but the implementation is not always
simple enough. Therefore, some of the omitted blocks
(e.g. preempt) should be included in the next version
of GPSS++.

GPSS++ has no support for the user-defined blocks,
although the similar effect can be achieved using
submodels (but not to the full extent). Namely, a
submodel cannot use other block segments enclosed in
the braces, like built-in blocks (e.g. branches of an if
block or wait block). Also, it is not possible to use
call-by-reference or call-by-name parameters with
functions and submodels. The mentioned features
would significantly improve the flexibility of
modelling.

Another missing feature is related to the constructors
of transactions. Namely, constructors of transactions
cannot have parameters. Now, in the case that
parameters are required, additional call has to be made
after the transaction leaves a generate block. It should
be possible to call a constructor with parameters
immediately in the generate block.

Next, we plan to add a multiple inheritance. It could
be useful in general cases if a class have the properties
of two or more existing classes, but also for the
modelling, as explained in section 4.6.

Using functions as first-class values, i.e. as parameters
and as results of other functions, is supported in
functional programming paradigm, and possible in
languages with pointers to functions (e.g. C). Such
usage of functions would be of great help in some
situations and this is currently not supported in
GPSS++. The old versions of GPSS are able to return
a function as a result of other function (it can even
return a label as a result). Of course, it is not a
consequence of GPSS being supported functional
programming paradigm, but rather its closeness to the
assembly language level in some aspects.

Finally, the level of the integration between old GPSS
and new OO and general programming language
features is still under question. In the current version
of GPSS++, the border between the two is quite clear.
We will investigate the possibility of closer
integration with no giving up on the main concepts of
GPSS.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

13 References

[1] G. Gordon. System Simulation, Prentice-Hall.
1969.

[2] T. J. Schriber, S. Cox, J. O. Henriksen, P. Lorenz,
J. Reitman, and I. Ståhl. GPSS Turns 40: Selected
Perspectives. In B. A. Peters, J. S. Smith, D. J.
Medeiros, and M. W. Rohrer, editors,
Proceedings of the 2001 Winter Simulation

Conference, 2001 Winter Simulation Conference,
pages 565-576, December 9-12 2001. Arlington,
USA.

[3] http://www.minutemansoftware.com/tutorial/tutor
ial_manual.htm

[4] http://www.webgpss.com

[5] I. Ståhl. From 44 to 31 to 28 to 22 and Now to 18
Less Becomes More in GPSS. In T. Schulze, S.
Schlechtweg, V. Hinz, editors, Simulation und

Visualisierung 2003 (SimVis 2003). Simulation
and Visualisation Conference, pages 465-478,
March 6-7 2003. Otto-von-Guericke-Universitat,
Magdeburg, Germany.

[6] I. Ståhl. GPSS - 40 Years of Development. In B.
A. Peters, J. S. Smith, D. J. Medeiros, and M. W.
Rohrer, editors, Proceedings of the 2001 Winter

Simulation Conference, 2001 Winter Simulation
Conference, pages 577-585, December 9-12 2001.
Arlington, USA.

[7] J. O. Henriksen. An Introduction to SLX. In S.
Andradottir, K. J. Healy, D. H. Withers, and B. L.
Nelson, editors, Proceedings of the 1997 Winter

Simulation Conference, 1997 Winter Simulation
Conference, pages 559-566, December 7-10 1998.
Atlanta, USA.

[8] O.-J. Dahl and K. Nygaard. Simula - an ALGOL-
Based Simulation Language. Communications of

the ACM, 9:671-678, 1966.

[9] O.-J. Dahl, B. Myhrhaug, and K. Nygaard. Some
Features of the Simula 67 Language. In J.
Reitman, J. Waxweiler, H. Falk, and A. Ockene,
editors, Proceedings of the second conference on

Applications of simulations, Conference on
Applications of Simulations 1968, pages 29-31,
December 2-4 1968. New York, USA.

[10] B. Stroustrup. The C++ Programming Language.
Addison-Wesley. 1991.

[11] J. A. Joines and S. D. Roberts. Fundamentals of
Object-Oriented Simulation. In D. J. Medeiros, E.
F. Watson, J. S. Carson, and M. S. Manivannan,
editors, Proceedings of the 1998 Winter

Simulation Conference, 1998 Winter Simulation
Conference, pages 141-149, December 13-16
1998. Washington, USA.

[12] S. V. Rice, H. M. Markowitz, A. Marjanski, and
S. M. Bailey. The SIMSCRIPT III Programming

Language for Modular Object-Oriented
Simulation. In M. E. Kuhl, N. M. Steiger, F. B.
Armstrong, and J. A. Joines, editors, Proceedings

of the 2005 Winter Simulation Conference, 2005
Winter Simulation Conference, pages 621-630,
December 4-7 2005. Orlando, USA.

[13] D. R. Kalasky and G. A. Levasseur. Using
Simple++ for Improved Modeling Efficiencies
and Extending Model Life Cycles. In S.
Andradottir, K. J. Healy, D. H. Withers, and B. L.
Nelson, editors, Proceedings of the 1997 Winter

Simulation Conference, 1997 Winter Simulation
Conference, pages 611-618, December 7-10 1998.
Atlanta, USA.

[14] P. L’Ecuyer and E. Buist. Simulation in Java with
SSJ. In M. E. Kuhl, N. M. Steiger, F. B.
Armstrong, and J. A. Joines, editors, Proceedings

of the 2005 Winter Simulation Conference, 2005
Winter Simulation Conference, pages 611-620,
December 4-7 2005. Orlando, USA.

[15] B. W. Kernighan and D. M. Ritchie. The C
Programming Language. Prentice-Hall. 1988.

[16] K. Arnold and J. Gosling. The Java Programming
Language. Addison-Wesley. 1996.

[17] http://msdn2.microsoft.com/en-us/library/618ayhy
6(VS.80).aspx

[18] T. Pawletta, S. Drewelow, S. Pawletta. Discrete
Event Simulation in Interactive Scientific and
Technical Computing Environments. In R. N.
Zobel and D. P. F. Möller, editors, Proceedings of

the 12th European Simulation Multiconference,
12th European Simulation Multiconference, pages
529-533, June 16-19 1998. Manchester, UK.

[19] T. J. Schriber. Simulation Using GPSS. John
Wiley & Sons. 1974.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 11 Copyright © 2007 EUROSIM / SLOSIM

