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Abstract  

In this article we introduce a new compression scheme that can be effectively used to 
compress volume data sets by exploiting a multiresolution model based on a semi-regular 
tetrahedral mesh, that is a mesh that is regular except on the coarsest level. In order to 
generate the multiresolution representation, we use a wavelet based approach that allows 
compression and progressive transmission. Starting with an initial semi-regular tetrahedral 
mesh Γ∞ and successively applying the wavelet transform, we construct coarser representation 
levels of the given mesh. At the end, a coarse base mesh Γ0 together with a sequence of detail 
coefficients are obtained from the decomposition of the mesh at these different levels of 
detail. In order to do that, we use a Haar-like wavelet basis defined over a tetrahedron as the 
first step for defining this kind of bases over an object represented by tetrahedra. The 
considered base mesh is represented at the lowest resolution and it does not have the 
connectivity subdivision property. The obtained result is a hierarchical data description suited 
for compression. In addition, we can obtain higher levels of compression using the lossy and 
lossless compression algorithms proposed in this paper. In the case of transmission, we have 
analyzed a protocol that allows progressive transmission of the mesh. 
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1 Introduction 
Tetrahedral meshes are well suited for irregular 
sampling and multiresolution analysis; they can be 
used to model an object given by sparse data, and this 
mesh is a general topological domain for the intrinsic 
representation of the volume. Due to the good well 
known properties of tetrahedral meshes, they are the 
natural choice for volume data representation.  

In most application areas using tetrahedral meshes, 
data can be attached to different mesh elements. In 
this way, data can be attached to vertices, edges, faces, 
border faces or tetrahedra. For example, the material 
identifiers might be attached to the tetrahedra, the 
density to the vertices or to the tetrahedra, the 
intensity of a flow to the edges. The tetrahedral mesh 
also serves to parameterize the domain of a function 
that can be a scalar one. 

In this paper we propose a volumetric model based on 
wavelets that allow compression and progressive 
transmission. We also present the whole compression 
pipeline, including the complete description of each 
stage. For lossy compression, how to control the 
compression error is described. Our compression 
algorithm can be extended in a natural way to support 
compression of different kind of data functions 
defined on different types of mesh elements. 

2 Related work 
Chui [1] reported that the comparison among several 
2D lossy compression techniques shows that methods 
based on wavelet transform (WT in short) are the best 
ones. The idea of using a three dimensional wavelet to 
approximate three dimensional volume datasets was 
introduced by Muraki ([2], [3]). He constructs a 3D 
orthonormal wavelet basis using all possible tensor 
products of one-dimensional basis functions and 
presents the potential of the 3D WT for volume 
visualization but he did not mention whether the 
encoding technique actually reduces storage space. 

In [4] is presented a wavelet-based 3D compression 
scheme for very large volume data. This is an 
effective 3D compression scheme that exploits the 
power of wavelet theory; the definition of the wavelets 
is also based on the tensor products of one 
dimensional wavelets. 

Although this methodology gives a simple way for 
wavelet constructions, it cannot be used without 
introducing degeneracies when representing surfaces 
or volumes defined on general domains of arbitrary 
topological type, like spherical domains. In order to 
compress tetrahedral meshes using wavelets, it is first 
necessary to define the wavelets on arbitrary 
topological domains on R3. 

Lounsbery [5] and Stollnitz et al. [6] were the first 
who introduced wavelets from a different point of 
view, defining them on arbitrary topological domains 

on R2. This approach was generalized a posteriori by 
Sweldens ([7], [8]) who recognized that the lifting 
scheme he proposed was a generalization of 
Lounsbery’s methodology. Other wavelet 
constructions based on subdivision to represents 
functions defined on spherical triangles defined for 
spherical domains were introduced by Schröder and 
Sweldens [9], Nielson et al. [10], Bertram et al. [11], 
and Bonneau [12]. 

In [13] and [14], other techniques for representing 
wavelet based volume data are given. It is clear that in 
order to have a compression algorithm based on 
wavelets, it is necessary to define the underlying 
wavelets. Then if we want to compress tetrahedral 
meshes based on wavelets we first need to have 
wavelets defined over tetrahedra.  

In this article, we introduce a new compression 
scheme based on wavelets that can be used to 
compress semi-regular tetrahedral meshes. In order to 
do that, we use the Haar-like wavelet basis defined 
over a tetrahedron [4] as the first step for defining this 
kind of bases over an object represented by tetrahedra. 
The paper is organized as follows. In Section 3, we 
introduce the wavelets basis defined over a 
tetrahedron, the model and its respective Data 
Representation. In Section 4, we provide a detailed 
description of our compression scheme. Finally, in 
Section 5 we present the conclusions and directions 
for future work. 

3 Wavelets volumetric model 
The mesh representing the object must store the 3D 
geometry, its topology and its attributes. One of the 
main advantages of tetrahedral meshes is that any 
other polyhedral mesh can be reduced to a tetrahedral 
one; hence a tetrahedral mesh can represent a volume 
with arbitrary topological type. Then, beginning with 
a tetrahedral mesh and using the subdivision and the 
defined wavelets, we will show how to generate a 
model of a volumetric object of arbitrary topological 
type that can be used for compression and progressive 
transmission. 

3.1 Wavelet basis defined over a tetrahedron 

To define the wavelets we adopt the subdivision 
method defined in [15], based on the recursive 
subdivision of the tetrahedron. We have chosen this 
method because it has the property that the 
subdivision of any given tetrahedron results in a group 
of elements of at most three congruence classes, no 
matter how many successive refinement steps are 
performed.  
 
Beginning with a tetrahedral net and using this 
subdivision method, it is possible to construct a 
wavelet basis following the process given by Girardi 
and Sweldens [16]. Also, it is possible to calculate the 
coefficients related to the analysis and synthesis 
processes using the fast WT defined in [4].  

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM



3.2 Volumetric model 

The proposed model is based on a semi-regular 
tetrahedral mesh, i.e. a mesh that is regular except on 
the coarsest level. This kind of mesh is especially well 
suited for different multiresolution algorithms. A 
semi-regular tetrahedral representation is a sequence 
of approximations at different resolution levels. The 
corresponding sequence of nested refinements is 
transformed using the WT to a representation that 
consists of a coarse resolution or base mesh and a set 
of detail coefficients that represents the differences 
between successive resolution levels. The base mesh 
Γ0 is the mesh at the coarsest resolution and does not 
have the subdivision-connectivity property. Then, the 
model consists of a base mesh and a sequence of 
modifications. These modifications correspond to 
terms that locally capture the details of the object at 
different resolutions. 
 

Hence, the developed model begins with the finest 
resolution mesh Γ∞ and decomposes it on the coarsest 

mesh Γ0, together with a set of detail tetrahedra 
generated during the analysis. So the multiresolution 

representation of the volume consists of the base mesh 
and the whole set of details ( 

Fig. 1).  
 

 
 

Fig. 1. Multiresolution Representation of the Volume 

 
Taking into account that the WT concentrates the 
energy of the object on the coarsest resolution mesh 
and that the mesh has space localization, this model is 
suited for compression. However, the compression 
will depend not only on the chosen wavelets but also 
on the following issues: 
 
 The number of coefficients needed to achieve a 

good approximation tothe volume. 
 The mesh encoding and storage with the minima 

number of bits. 
 

If we transmit the base mesh and all the details, the 
compression method can be considered as a lossless 
compression encoding. If not all the coefficients are 
stored, it can be considered a lossy compression 
encoding. As the highest energy concentration is 
achieved in the lowest resolution mesh, only between 
the 10% and 15% of the detail coefficients are 
required in order to have a good approximation to the 
real volume. 
 
To transmit the underlying mesh of this model via 
Internet, we must consider the transmission of the 
base mesh and the detail coefficients. A robust 
transmission has to guarantee that the base mesh is 
completely transmitted before the details are 
transmitted and added. After transmitting the base 
mesh, the details must be sent and added to it. 
 
The transmitted details can be added to the base mesh 
all at once after they have been received or one by one 
as long as they are received, until certain requirements 
are fulfilled. This last option allows the progressive 
transmission of the model. 

3.3 Encoding wavelet coefficients: the data 
structure 

The data structure proposed for our model consists of 
the data structure for the base mesh Γ0=<σ0 , σ1 ,…, 
σn> and of a forest of octrees to store the details 

corresponding to each one of its cells. ( 

Fig. 2). 

 
 

Fig. 2. Data Structure 

 
 

Fig. 3 shows a tetrahedron of the base mesh and its 
associated details represented by a forest whose trees 
have the coefficients d0,j as roots. Each tree in the 
forest is a hierarchy of regular tetrahedra and the 
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relation of dependency is structured as an octree of 
tetrahedra. As every cell vertex define a regular grid, 
the coordinates of each vertex can be retrieved from 
its position on the grid.  

 
 

Fig. 3. Wavelet decomposition of a tetrahedron and 
graphical representation of that decomposition (base 

mesh+forest) 

 
This multiresolution data structure is generated from a 

given volume with the connectivity-subdivision 
property ΓJ, being J the maximum resolution level. 
The WT is performed on each set of tetrahedra that 

replaces the tetrahedron ΓJ until the lowest resolution 
tetrahedra Γ0 is obtained. The set σ0 coincide with a 

cell of Γ0 and its forest of details ( 

Fig. 4). 
 

 
 

Fig. 4. Base Mesh Tetrahedron and the Forest of 
Details 

 
A forest, the decomposition level and a key to a 
reference coordinate corresponding to the lowest 

resolution tetrahedron are stored in a heap for each 
cell of the base mesh. The reference coordinate will be 
used to retrieve the geometry of the tetrahedron 
corresponding to those ones obtained from it at a finer 
resolution. 

3.4 Space complexity of the data structure 

The mesh is stored using an indexed structure like 
winged edge that encodes, for each tetrahedron, the 
indices of its vertices and the adjacent tetrahedra, 
along with the four faces. The total storage cost 
corresponding to the data structure of the reference 
mesh can be calculated in the following way: 

TotalCost = ConnectivityCost + GeometryCost + 
AttributesCost. 

If n is the number of vertices of the reference mesh 
and t is the number of tetrahedra, the amount of t 
tetrahedra is around 6n. The connectivity cost requires 
store 4t indices (one for each vertex), 4t indices 
corresponding to the adjacent tetrahedra and 3n vertex 
coordinates. Since the cost of a scalar attribute is t, if 
we consider that we have only one scalar attribute, the 
storage cost is: 

TotalCost = 8t + 3n + t = 48n + 3n + 6n. 

Assuming 4 bytes for the indices, 2 bytes for each 
coordinate and 2 bytes for a scalar attribute, the 
storage cost in bytes is 210n bytes. From this, it is 
clear that the connectivity information dominates the 
storage cost and it must be compressed.  

The storage cost of our model is:  

TotalCost = BaseMesh Cost + ForestCost. 

The storage cost of the base mesh is the storage cost 
of a winged edge data structure. So,  

BaseMesh Cost = 210nbm bytes, 

being nbm  (nbm << n) the amount of vertices of the 
base mesh. Then: 

TotalCost= 210nbm bytes + ForestCost. 

Each tetrahedron of the base mesh has a forest 
associated to it and any other node describes a detail 
tetrahedron. The eight corresponding sons are the 
tetrahedra obtained from Bey’s subdivision method 
[17][17]. 

Each one of the seven trees of the forest is a complete 
octree that we can implicitly codify; i.e. we do not 
need to store the connectivity and the structural 
information; since we have regular tetrahedra, the 
vertex coordinates are implicit. As a consequence, in 
order to encode the details we only need to encode the 
field or the attribute values. 

We have supposed that each attribute is stored using 2 
bytes. These attributes are stored for each tetrahedron 
of the base mesh and these values have been taken 
into account in the required storage space for the base 
mesh. The number of detail tetrahedra plus the 
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tetrahedra of the base mesh is the number of tetrahedra 
of the reference mesh. However, for each of them we 
only store the detail corresponding to the attribute. 
Then we have t − tbm detail tetrahedra and the storage 
cost becomes:  

TotalCost = 204nbm bytes + t − tbm 

= 210nbm bytes + (6n − 6nbm)byte. 

The storage cost is significantly reduced compared to 
the total cost of the reference mesh (nbm << n). Instead 
of the winged edge data structure, for a manifold 
tetrahedral base mesh can be used the Half–Face 
(CHF) Data Structure [18]. If large datasets would be 
represented with the base mesh this could not be 
appropiate and we should use a LOD Data Structure 
[19]. 

3.5 How the model allows compression 

This model allows lossless and lossy compression. We 
will apply the compression to a scalar function defined 
on the tetrahedra and we will show how the cell based 
scheme allows to achieving a high compression level. 
We can have two different alternatives to compress 
the volume: one is to reduce the number of 
coefficients to approximate the volumetric data and 
the other is to encode and to store the necessary 
information using a small number of bits. We have 
implemented the first option and have left the second 
one for future work. 

3.5.1 Two models for compression 

After applying the WT on the given data, the 
multiresolution model is obtained. Then, the attribute 
values associated to the tetrahedra are uncorrelated 
and the energy of the original data is concentrated in a 
relative small number of coefficients.  

The key behind wavelet lossy compression scheme is 
to select the coefficients with smallest norm and 
replace them by zero. This criterion minimizes the L2 
norm of the resulting approximation error. No matter 
which criterion is selected to set the detail coefficients 
to zero, the original signal will be approximated with a 
very small number of nonzero coefficients. Then, we 
can obtain compression in two different ways: 

All coefficients that remain in the representation are 
encoded with a lower amount of bits per coefficient 
using run-length encoding, vectorial quantization or 
differential encoding.  

A very small portion of coefficients (between 10% 
and 15%, for example) are kept without modification 
and the rest of them are set to zero. Hence, it would be 
reasonable to keep only the non-zero coefficients. In 
order to do this, we can take advantage of the spatial 
localization property of the wavelets: the behavior of 
the detail coefficients of a father in a given forest tree 
allows predict the behavior of its descendents.  

3.5.2 Error control 

In the previously described models we have supposed 
that we could control the level of compression by 
specifying a given percentage of coefficients that are 
not set to zero (surviving coefficients). In both cases, 
we can control the number of surviving coefficients by 
specifying an adequate threshold and set to zero all 
coefficients whose magnitudes are smaller than it. 
This threshold can be automatically determined taking 
into account the maximum allowed approximation 
error. The ideal way to compute the threshold is by 
sorting all the coefficients in decreasing order of 
significance. However, when the amount of data is 
huge, this is impractical (O(n log n)). Then, if we want 
to control the error, we should find the threshold 
without sorting the data. 

One can also specify a threshold and encode all the 
coefficients of magnitude greater than it and eliminate 
all the other ones (O(n)). In this case, even if the 
approximation error can be computed, it can not be 
controlled since a fixed number of coefficients are 
eliminated, depending on their value respect to the 
threshold.  

Finally, the compression scheme developed so far 
allows compression of non structured volumes 
decomposed in atomic tetrahedral elements and that 
have scalar or vectorial values defined on them. It is 
then necessary to consider the appropriate metric 
depending on the nature of data, e.g. geometric, color, 
texture data, etc. In general, the L2-norm is considered. 

3.5.3 Decompression 

The decompression allows to reconstructing the 
received information of the progressive transmission. 
The base mesh will be received first and will be 
decoded according to the encoding method. Once the 
reconstruction of the base mesh is completed, the 
inverse WT will be applied to the detail coefficients 
received afterwards. 

3.6 How the model allows progressive 
transmission 

For the mesh transmission we the so-called mesh 
transfer protocol (MTP) defined by Staadt [20], which 
is a modification of the protocol for the transmission 
of semi-regular meshes. In order to guarantee a 
reliable and ordered delivery of the base mesh to 
destination, we use TCP for the transmission. To do 
this, the protocol must use a lot of overhead 
communication; fortunately the base mesh is small 
compared to the finest resolution level.  

After the transmission of the base mesh has been 
completed, the details must be sent. Since the position 
information of the details is implicitly given by the 
order in the chain, they are sent using the TCP 
protocol. 
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4 Compression pipeline 
The pipeline describes all the necessary steps to 
generate a compressed data representation beginning 
with a high resolution volume, the transmission of the 
data and the decompression of the compressed data to 
finally obtain the reconstructed volume. In this 
pipeline, described in Fig. 5, the compression and the 
decompression stages can be clearly identified. 

 

 
Fig. 5. Compression Pipeline 

 

The proposed wavelet-based coding algorithms 
produce embedded data streams that can be decoded 
up to a lossless level. 

The decompression pipeline inverts the process to 
obtain the reconstructed data. 

4.1 Compression 

A typical wavelet compression algorithm has three 
basic components: transformation, quantization and 
encoding.  

Because of the order of magnitude of the attribute 
data, the transformation process might vary from 
dataset to dataset and from application to application. 
Previous to the application of the WT, we normalize 
the data between 0 and 1. The transform generates the 
described multiresolution data representation, i.e. the 
octree forest. The attribute values associated to the 
tetrahedra are then uncorrelated and the energy of the 
original data is concentrated on a relative small 
number of coefficients. 

Before sending the coefficients, we send the encoded 
base mesh. Afterwards, all the wavelet coefficients are 
sent. 

At the quantization step, different procedures can be 
applied depending on the lossy or lossless used 
scheme. 

In the lossless compression case, the coefficients are 
not quantized and must be coded only before 
transmission; the data will be coded with the ∆-
encoding. 

In the lossy case, the wavelet coefficients are 
quantized. After this, and before encoding them, the 
coefficients less than a thresholdµ, must be set to zero 
and encoded afterwards. As we can assume that many 
coefficients will be equal to zero, we can take into 
account the proposal presented in [20]. Then all non-
zero coefficients are represented by two-tuples, where 
the first element represents the number of bits required 
to encode the second one while the second element 
contains the data value itself. All negative numbers are 
replaced by their absolute values and the first bit 
indicates the sign. The zero coefficients are encoded 
with the run-length encoding because we relative long 
runs of zeros is expected. 

In order to transmit the data, they should be merged 
from the octree into a bitstream; i.e. the coefficients in 
the octree forest must be mapped into a 1D array. This 
step must traverse the data representation taking into 
account that the most significant coefficients should 
be sent first. Then the order to convert the data from 
the octree into the bitstream must be established.  

Considering the usual spatial coherence in the data, it 
is quite possible that the zero or insignificant 
coefficients exist in clusters. Then we must take this 
into account to establish the order to merge all the 
coefficients in streams.  

 

Fig. 2 illustrates how the base mesh and the wavelet 
coefficients are stored. In this figure we have 
considered a decomposed unit block (an octree), at 
level-three of the multiresolution representation of the 
corresponding original unit block. 

To generate the bitstream, we traverse the forest by 
level and from left to right in each level. In Fig. 6 we 
see how we generate the bitstream from the data 
representation.  

4.1.1 Error control 

In the lossy compression case, once all the 
insignificant values are set to zero, how to control the 
error must be considered. Given a threshold µ >0, the 
detail coefficients dij such that |dij|<µ are set to zero, 
the L2 -error is given by: 

.2∑
<

=
µ

ε
ijd

ijd  
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As well as in the lossless case, the higher coefficients 
are the most important ones. In addition, the 
insignificant coefficients must be replaced by zero in 
order to have an approximation with a smaller amount 
of bits. We can do this in two different ways. 

We can specify a threshold µ >0 and set to zero all the 
coefficients smaller than this threshold. In this case, 
the error will be determined by all the coefficients that 
are put to zero with respect to the total number of non-
zero coefficients. 

+
d0,j j=1,2,…,7

d0,2

d\0,2

…d211  … d218 d221 … d228    d231 …  d238 d241 … d248 d251 …  d258 d261 …  d268 d271 …  d278 d281 …  d288 …

… d121 d122 d123 d124 d125 d126 d128 d127 d128 …

+
d0,j j=1,2,…,7

d0,2

d\0,2

…d211  … d218 d221 … d228    d231 …  d238 d241 … d248 d251 …  d258 d261 …  d268 d271 …  d278 d281 …  d288 …

… d121 d122 d123 d124 d125 d126 d128 d127 d128 …

+
d0,j j=1,2,…,7

d0,2

d\0,2

…d211  … d218 d221 … d228    d231 …  d238 d241 … d248 d251 …  d258 d261 …  d268 d271 …  d278 d281 …  d288 …

… d121 d122 d123 d124 d125 d126 d128 d127 d128 …

Fig. 6. Transmission of the Details

 

Another way to do this, consist on specifying a 
percentage of coefficients that must be set to zero; in 
this case, the threshold must be calculated and in order 
to obtain a good reconstruction the biggest wavelets 
coefficients must be kept. That is, if we specify the 
percentage p of coefficients that must survive, we can 
calculate the threshold sorting the absolute value of 
the coefficients in decreasing order, then find the 
coefficient at its position p x #total of coefficients and 
discard the rest. Since this method is not practical for 
large volumetric datasets, we only consider the ther 
way. 

We use each octree group as a block and use this 
distribution in order to calculate a good threshold.  We 
calculate, for each block i that contain at least one 
non-zero coefficient, the quotient  

tscoefficienallof
tscoefficienof

i   #
0  # ≠=η , 

that gives a measure of how quickly the tetrahedron 
value changes in the block. It is reasonable that more 
non-zero coefficients are taken from blocks with 
higher ηi.  

If the maximum level of decomposition is J, each 
block has 8J tetrahedra and each block has 8J 

coefficients. Then, if the volume has 
η̂8 ×× J

rbt coefficients, these must be distributed in 

∑×≠××
j

ji
J

rb coeffoft ηη0   #8  per block. For the 

block i, we assign to the block threshold the value of  

 

the coefficient 0#8 ≠×××= ∑ coefft J
rb

j
jii ηηµ , where 

the weight ∑
j

ji ηη  is a relative measure of the data 

complexity. Then, the µi-th biggest coefficient is the 
block threshold value and all the coefficients lower 
than this threshold will be set to zero. Then, if we 
choose to keep a given percentage of coefficients, we 
will not take the same number of coefficients for each 
block. This allows to keeping more coefficients on the 
regions with greatest changes. 

4.2 Decompression 

The reconstruction can be described in four stages. In 
the first stage, the base mesh must be completely 
decompressed. At this time, the base mesh can be 
reconstructed and rendered as well. 

After that, the wavelet coefficients will arrive and can 
be decoded as long as they come. As soon as the 
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details arrive, they are stored using the data 
representation. This allows the mesh to be rendered 
progressively; this can be updated at given intervals of 
time. 

5 Conclusions and future work 
In this paper we show how to use a wavelet based 
model in order to have compression and progressive 
transmission. We present the complete compression 
scheme for tetrahedral meshes. For the compression 
stage we have also shown how to reduce the number 
of coefficients needed for approximating the 
volumetric data and how to encode the information 
according to the proposed model. In the case of 
transmission, we analyzed a protocol that allows 
progressive transmission of the mesh. 

Some topics deserve further investigation. We have 
decided to encode all the wavelets coefficients; 
another possibility consists on removing the 
insignificant coefficients and the approximation of the 
original data will be reconstructed only with the 
significant ones. In this case, we also need the 
positional information. Some approaches exists but 
the compression scheme is for Regular Volume Data  

Our framework is also an important initial work to 
construct multiresolution representations of irregular 
meshes. Future work includes the extension of our 
results to functions defined on unstructured tetrahedral 
domains and also the representation of the geometry 
of the underlying domain. These extensions would 
allow obtaining a wavelet-based method to model 
irregular tetrahedral meshes without the subdivision 
connectivity property.  
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