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Abstract  

This paper presents the 3D and network principles and methods for graphical development in 
realistic naval simulation. 
The aim of this project is to achieve a good simulation quality in large networked 
environments using open source solution approach for educational purposes. Realistic 
rendering of maritime environments requires that the sunlight and skylight illumination are 
correct and the water surface is modeled accurately.  
For online simulators the problems that you have to deal with depend a lot on the type of 
network you are using. Whatever the platform is, you have to deal a multiprocessing situation. 
LANs make a very easy platform for writing networked simulators, but unfortunately it means 
that the participants have to have their computers connected to high speed network in order to 
be able to run the software. This limits the number of workstations in use. The Internet has 
one thing going for it: there are a lot of potential participants (students, instructors) on it at all 
times. TCP is a full duplex connection-based reliable transport protocol. It offers reliability at 
the cost of increased latency variance. Network errors cause automatic retransmissions from 
the TCP protocol, so at times connection latency can be several times higher than optimal. 
Obviously, the main advantage of networked simulators is that you get to participate with new 
people and possibly even make new teams. To achieve this goal, the simulator should be as 
accessible as possible. 
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1 Online simulators architecture 

Client-server approach are well known in networked 
environments. In a client-server architecture all the 
simulator participants, or "clients", are connected to a 
central machine, the server. The server is responsible 
for all important decisions, managing state and 
broadcasting this information to the individual clients. 
A single view of the world is maintained by the 
server, which obviously helps with keeping things 
consistent.  

As a result, the server becomes a key bottleneck for 
both bandwidth and computations. Instead of 
distributing the load among all the participants, the 
server must do all the work. And, of course, it has to 
send and receive N independent streams of data, so its 
network connection is similarly taxed.  

Sometimes the server will be running on a 
participant's machine as a "local server" or a "listen 
server". The rules still apply in this case, because the 
client and server are logically decoupled even if 
running on the same physical system.  

A peer-to-peer system spreads the computational load 
out among all the participants. If you have 8 
participants, each with a computer, then it's nice to 
leverage all the available computing power. The 
downside, of course, is that "computation" means 
"decision making", so cheating can become rampant 
(each client can be hacked to report results favorable 
to that specific participant). In addition, the system is 
more susceptible to consistency errors since each peer 
has to make sure that it broadcasts its "decisions" and 
it must base this on the data provided by the other 
peers. If a peer falls off the network or doesn't get 
correct information in a timely manner, 
synchronization failures can and will occur since it's 
analogous to a CPU failing in a multiprocessor 
computer.  

The advantage of a peer-to-peer server is that overall 
bandwidth and computational requirements for each 
system are reduced, and you don't need a single beefy 
server responsible for managing the entire simulator. 

 

2 The best network architecture 

In reality, most architectures are hybrid systems as 
going to an extreme in either direction can lead to 
significant problems.  

For example, in a true client-server system, the client 
would never move the participant until the server 
responded with a "based on your last input, here is 
your new position". This is fine, assuming you have 
client-side prediction (discussed later), but this means 
that the server is handling all collision detection. This 
excessively computationally expensive, to the point 
that it's not tenable for large worlds.  

A compromise would be to allow the clients to 
manage their own movement, and they in turn report 
their location to the server (which likely does some 
basic sanity checking on the reported movement). This 
leverages the computing power of each client and off 
loads a tremendous amount of work from the server. 

2.1 Online simulators paradigm 

This is a face-by-face approach between client-server 
and peer-to peer models. 
A set of problems may require most of the efforts: 

• networking topology: client-server vs. peer-
to-peer 

• computing model: distributed object vs. 
message passing 

• which protocol to use? tcp, udp, reliable udp 
• bandwidth limitation 
• latency limitation 

Simulation synchronization is the most important 
condition: order moves by their times of occurrence 
because out-of-synch worlds are inconsistent. Small 
inconsistencies not corrected can lead to large 
compounded errors later on. 
How long do you have to wait for the other participant 
moves before rendering them? 
Each participant receives all other moves before 
rendering next frame. Some problems may occur: 

• long Internet latency 
• variable latencies 
• speed determined by the slowest participant 

Every participant must see the EXACT same world 
and each participant simulates its own copy of the 
world. 
All the worlds must be in sync using bucket 
synchronization, each participant sends moves to all 
other players. 

2.2 Physics and integration issue 

Simulation-based software generally calculate entity 
state in conjunction with some physics code. This may 
be as simple as calculating an object's new position 
based on its velocity, or may be as complex as a full 
vehicle representation in a specialized engine, such as 
Havok. In either case, the calculation can be viewed as 
a numerical integration method. For example, you 
may integrate an object's velocity over time to find it's 
new position, i.e., 

Unfortunately, the results of these kinds of methods 
may diverge depending on the granularity at which 
you run them. If you simulate two initially identical 
physics objects at 10 Hz and at 20 Hz, they will end 
up in different states. This is true for any object whose 
physics is of higher than order(1) with respect to 
simulation time. For example, if we added 
acceleration to the object that previously had a 
constant velocity, we will cause integration error. In 
generation, higher order physics leads to a greater 
amount of integration error. Integration error always 
exists in comparison to the hypothetical "real" state, 
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which would have to be calculated with infinitely 
small granularity. It is only problematic in simulators 
where the discrepancy may be noticed. Games and 
simulators in which different computers simulate at 
different rates (e.g., PC games) are an example. 

2.3 Latency 

Latency, sometimes called "lag" refers to the delay 
between a piece of data being sent on a network, and 
that piece of data being received. Latency may be 
affected by various algorithms that act on the data in 
order to get it to its destination. For example, if a 
piece of data is lost on the network, it will eventually 
be retransmitted after a certain amount of time. From 
the receiver's point of view, this amount of time 
increases the latency. From the point of view of a 
piece of code in a computer simulator, latency may 
also be increased by the rate at which the simulator 
loop runs. For example, if a simulator runs at 30 Hz, it 
can only send and receive data at intervals of one 
thirtieth of a second. This may add up to a total of an 
extra 60 milliseconds latency from the point of view 
of the sending and receiving code. 

2.4 Quantization Error 

This is sometimes called "sampling error". For 
bandwidth conservation purposes, it is common 
practice to reduce the precision with which you send 
data values. For example, you may represent the 
avatar's camera angles with 8-bit values instead of 
with 32-bit values. The quantization error present in a 
value is the difference between its original value and 
its value after it has been quantized to a lower 
precision value. 

The term "Quantization Error" is sometimes used to 
mean the same thing as integration error, which may 
be valid from the point of view of a hypothetically 
continuous simulation state being sampled at discrete 
intervals. 

2.5 Prediction - a corrections approach  

Sometimes just called "prediction", this technique 
allows a participant’s computer to predict simulation 
events in an attempt to minimize the effects of 
network latency. It is normally used in the context of 
client/server structure, in which it refers to clients that 
optimistically predict the server's response to user 
commands. This mostly eliminates latency that would 
otherwise be perceptible to the user. When predicting 
an object (such as the participant's own object) the 
client mimics the operations that the server performs 
when it receives client commands. This might include 
the application of user commands to the predicted 
objects, and stepping the simulation forward in time. 
When the participant eventually receives an update 
about its avatar from the server, it must merge the 
update with its own predicted view of the world. 
Under the best case scenario, the client and server 
predictions will always be subject to divergence, due 
at the very least to integration error, introduced by 

their differing simulation rates. Prediction is further 
complicated because the predicted entities are 
simulated into the future with respect to simulator 
time (i.e. server time), and that when updates are 
received from the server, they describe state with 
respect to some time in the past. Prediction is usually 
a necessary technique in a real-time simulator, 
however its implementation interacts with many other 
net code features, and a great deal of testing is 
generally necessary to verify that the implementation 
will work under real network conditions, and deliver 
the best results possible. Prediction can also be 
performed in peer-to-peer approaches, in which event 
each participant’s computer predicts their own avatar 
beyond the official agreed state of the simulation. 

2.6 Enhancement techniques 

This is sometimes referred to as "smoothing" or 
"blending". It is a technique that enables participants 
that are updated at discrete intervals about each other's 
state to render the transition smoothly. In simulations 
where participant movement is due mainly to a input 
as opposed to the passing of time (e.g., participant 
movement in an scene), interpolation is often used as 
the primary method by which to move avatars. In this 
case, the each avatar is interpolated towards a target 
state over the average update interval. This requires 
very regular updates, and results in interpolated 
entities being rendered one update cycle in the past. 
However, interpolation produces a correct (if slightly 
old) rendering of highly unpredictable entity 
movement. Interpolation also has an important role to 
play when applying updates to extrapolated entities. 
Small errors are inevitable (due to integration error), 
and interpolation algorithms can be re-used to perform 
a blending of the two states, avoiding perceptible state 
“snaps”.  

2.7 Implementations 

Most 3D engines implement either Level-of-Detail or 
BSP algorithm (or both) to improve the performance 
of the renderer. Where possible, these algorithms 
should be re-used to improve networking 
performance. For example, a Level-of-Detail 
algorithm could be used to reduce the frequency of 
updates about distant entities, or entities that are not of 
great interest. Similarly a space-partitioning algorithm 
could be used to avoid sending update about entities 
that are neither visible nor audible. Such algorithms 
significantly increase network scalability and 
efficiency, however they complicate the 
implementation of delta compression, because they 
result in different base-line states from which any 
deltas must be calculated. 

3 Quality of simulations 

Realistic effects require a lot of computational power, 
but modern dual-core CPU’s and SLI/Crossfire video 
architecture can satisfy this requirements. 
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Ordinary ocean waves are created by the wind in fetch 
areas and can propagate far from these locations. 
Several models 

have been proposed to account for the amplitude, 
frequency and direction spectrum according to the 
wind strength and duration. A classical one is The 
Pierson-Moskowitz filter giving the amplitude FPM in 
function of the frequency f: 

 (1) 

where: 

g is the gravity acceleration 

a is the Phillips constant 

  corresponds to the peak in the spectrum 
(which has a Gaussian-like shape), depending on the 
wind velocity at a 10m altitude. 

The ocean environment, for our purposes, consists of 
only four components: The water surface, the air, the 
sun, and the water volume below the surface. In this 
section we trace the flow of light through the 
environment, both mathematically and schematically, 
from the light source to the camera. In general, the 
radiosity equations here are as coupled as any other 
radiosity problem. To a reasonable degree, however, 
the coupling can be truncated and the simplified 
radiosity problem has a relatively fast solution. 

The light seen by a camera is dependent on the flow of 
light energy from the source(s) (i.e. the sun and sky) 
to the surface and into the camera. In addition to 
specular reflection of direct sunlight and skylight from 
the surface, some fraction of the incident light is 
transmitted through the surface. Ultimately, a fraction 
of the transmitted light is scattered by the water 
volume back up through the interface and into the air. 
Some of the light that is reflected or refracted at the 
surface may strike the surface a second time, 
producing more reflection and refraction events. 
Under some viewing conditions, multiple reflections 
and refractions can have a noticeable impact on 
images. For our part however, we will ignore more 
than one reflection or refraction from the surface at a 
time. This not only makes the algorithms and 
computation easier and faster, but also is reasonably 
accurate in most viewing conditions and produces 
visually realistic imagery. At any point in the 
environment above the surface, including at the 
camera, the total light intensity (radiance) coming 
from any direction has three contributions: 

 (2) 

where 

r is the Fresnel reflectivity for reflection from a spot 
on the surface 

of the ocean to the camera 

tU is the transmission coefficient for the light LU 
coming up from the ocean volume, refracted at the 
surface into the camera. 

LS is the amount of light coming directly from the sun, 
through the atmosphere, to the spot on the ocean 
surface where it is reflected by the surface to the 
camera. 

LA is the (diffuse) atmospheric skylight 

LU is the light just below the surface that is 
transmitted through the surface into the air. 

While equation 1 appears to have a relatively simple 
structure, the terms LS, LA, and LU can in principle 
have complex dependencies on each other, as well on 
the reflectivity and transmissivity. 

3.1 Wawes shape 

Several models characterize the shape of waves by 
studying eigenmodes of the Navier-Stokes equation at 
the water-air interface. A convenient one is the 
Gerstner swell model, which describes the trajectory 
of water particles as circles of radius equal to the wave 
amplitude A around 

the location at rest. Two particles along the direction 
of wave propagation having a distance at rest of l 
follow their circular trajectories at angular velocity w 
with a phase difference of kl: 

 (3) 

where t is the time, z the vertical axis and (x0; z0) the 
particle location at rest. This generates a trochoid 
wave shape, similar to a sinusoid only for very small 
amplitudes. For high amplitudes the waves get 
choppy, up to a value for which the curve crosses 
itself, which is no longer physical since the wave 
should break. 

Other models, like Stokes and Biesel’s ones, take into 
account the shallow water case, for which the circles 
turn into ellipses, at the price of more complicated 
formulas. Since the depth variation changes the wave 
velocity, the phases are no longer linear with the 
distance. Biesel’s model thus evaluates the phases as 

. This change is responsible for the 
refraction of wave trains1close to the shore. 

3.2 Water wawes model 

We are looking for a wave model that does not 
constrain us to simulate a predetermined and regularly 
sampled surface region. Moreover, we are not willing 
to compute a high field, which would not cover the 
case of stormy seas. We keep using a mesh (since we 
cannot afford pixel size elements), but its location in 
world space will change dynamically and its density 
varies in space. 

Our model is based on the Gerstner swell model and 
simulates trochoids. However, we want to take into 
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account the combination of many different waves. To 
do so, we generate wave trains in a way that 
approaches a known wave spectrum. 

Although our method can be applied to various kinds 
of waves this paper only focuses on the main ones, i.e. 
gravity waves. We simulate gravity waves using a 
series of wave trains that homogeneously cover the 
simulated world. 

Let us consider the mesh that represents the ocean 
surface at a given animation step. The mesh vertices 
are considered as particles, and thus follow the circle 
trajectory corresponding to the model: 

 (4) 

where X0 = (x0; y0) is the location of the particle at 
rest on the surface and z0 its altitude at rest. Note that 
the only information that needs to be stored in 
memory is the specification of the wave trains: 
particles are evaluated on the fly, and can be at 
different locations from one frame to the other. 
Surface displacement is thus evaluated much like a 
procedural function. 

3.3 Water Waves simulations - an alternative 
consideration 

The mechanism behind this effect is remarkably 
simple. It was invented long time ago by observation 
while experimenting with area sampling. 

Area sampling is a very common algorithm in 
computer graphics. Considering a two-dimensional 
map, the value at (x, y) is affected by values 
surrounding position (x, y), such as (x+1,y), (x-1,y), 
(x,y+1) and (x,y-1). Our wave simulation actually 
works in three dimensions, but the principles is show 
here for 2D. Blurring a map is very simple. You'll 
need two maps: one containing the data you want to 
blur, and one for the resulting map. The algorithm 
(using five sample values) looks like this:  

 
ResultMap[x, y] := (SourceMap[x, y] + 
                    SourceMap[x+1, y] + 
                    SourceMap[x-1, y] + 
                    SourceMap[x, y+1] + 
                    SourceMap[x, y-1] ) DIV 5 

For 3D waves while calculating our wave simulation, 
we have to know how the waves looked like one 
moment earlier. The resulting map becomes the source 
map for the next frame.  

This is the actual wave simulation algorithm: 

 
ResultMap[x, y] := (( CurrentSourceMap[x+1, 
y] + 
                   CurrentSourceMap[x-1, y] + 
                   CurrentSourceMap[x, y+1] + 
         CurrentSourceMap[x, y-1] ) DIV 2 ) -  
                      PreviousResultMap[x, y] 

As presented so far, Gerstner waves are rather limited 
because they are a single sine wave horizontally and 
vertically. However, this can be generalized to a more 
complex profile by summing a set of sine waves. One 
picks a set of wavevectors ki, amplitudes Ai, 
frequencies ωi, and phases φi, for i = 1, . . . ,N, to get 
the expressions: 

 

 

Fig. 1 Profiles of two single-mode Gerstner waves, 
with different relative amplitudes and wavelengths 

 

Fig. 2 Profile of a 3-mode Gerstner wave 

4 Conclusions 

One of the benefits of our approach is its flexibility: 
the use of trochoids enables to model a wide range of 
ocean surfaces, from calm to stormy seas. Since the 
displacement of a sample point is computed as a sum 
of wave contributions, adding extra effect such as ship 
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waves is easy. The camera position can be arbitrarily 
chosen without changing the amount of computation 
nor the image quality (no cyclicity will appear). As a 
consequence, the user can interactively fly over an 
unbounded ocean surface, which makes the method 
promising for video simulator applications. Lastly, the 
quality/cost ratio is tunable, so higher-quality images 
can be computed using the same model. All 
computations are exclusively concentrated onto the 
visible part of the ocean, which yields real-time 
performance with a relatively good image quality, 
even in our non-optimized implementation. 

Concerning future work, we plan to implement the 
optimizations, to include other kinds of waves such as 
ripples or ship waves, and to study how waves 
reflection and refraction could be introduced. We also 
plan to simulate the glittering of the ocean waves near 
the horizon due to the multiplicity of normals. 
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