
REALISTIC ENVIRONMENTS FOR ONLINE
MARITIME SIMULATORS

Gabriel Raicu, Eugen Barsan, Arsenie Paul, Radu Hanzu, Laurentiu Chiotoroiu

Constanta Maritime University, Faculty of Navigation and Naval Transport,
90663, Mircea cel Batran Str. 104, Constanta, Romania

graicu@imc.ro (Gabriel Raicu)

Abstract

This paper presents the 3D and network principles and methods for graphical development in
realistic naval simulation.
The aim of this project is to achieve a good simulation quality in large networked
environments using open source solution approach for educational purposes. Realistic
rendering of maritime environments requires that the sunlight and skylight illumination are
correct and the water surface is modeled accurately.
For online simulators the problems that you have to deal with depend a lot on the type of
network you are using. Whatever the platform is, you have to deal a multiprocessing situation.
LANs make a very easy platform for writing networked simulators, but unfortunately it means
that the participants have to have their computers connected to high speed network in order to
be able to run the software. This limits the number of workstations in use. The Internet has
one thing going for it: there are a lot of potential participants (students, instructors) on it at all
times. TCP is a full duplex connection-based reliable transport protocol. It offers reliability at
the cost of increased latency variance. Network errors cause automatic retransmissions from
the TCP protocol, so at times connection latency can be several times higher than optimal.
Obviously, the main advantage of networked simulators is that you get to participate with new
people and possibly even make new teams. To achieve this goal, the simulator should be as
accessible as possible.

Keywords: realistic simulation, online participants, maritime environments, networked
environments.

Presenting Author’s biography

Gabriel Raicu. The main author activity as lecturer at Faculty of
Navigation and Naval Transport in Constanta Maritime University
consists in large scale online educational developing services and
electronic navigation aid teaching.
Also all the co-authors are maritime lecturers, associate professors or
assistant professors at Faculty of Navigation and Naval Transport in
Constanta Maritime University.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Online simulators architecture

Client-server approach are well known in networked
environments. In a client-server architecture all the
simulator participants, or "clients", are connected to a
central machine, the server. The server is responsible
for all important decisions, managing state and
broadcasting this information to the individual clients.
A single view of the world is maintained by the
server, which obviously helps with keeping things
consistent.

As a result, the server becomes a key bottleneck for
both bandwidth and computations. Instead of
distributing the load among all the participants, the
server must do all the work. And, of course, it has to
send and receive N independent streams of data, so its
network connection is similarly taxed.

Sometimes the server will be running on a
participant's machine as a "local server" or a "listen
server". The rules still apply in this case, because the
client and server are logically decoupled even if
running on the same physical system.

A peer-to-peer system spreads the computational load
out among all the participants. If you have 8
participants, each with a computer, then it's nice to
leverage all the available computing power. The
downside, of course, is that "computation" means
"decision making", so cheating can become rampant
(each client can be hacked to report results favorable
to that specific participant). In addition, the system is
more susceptible to consistency errors since each peer
has to make sure that it broadcasts its "decisions" and
it must base this on the data provided by the other
peers. If a peer falls off the network or doesn't get
correct information in a timely manner,
synchronization failures can and will occur since it's
analogous to a CPU failing in a multiprocessor
computer.

The advantage of a peer-to-peer server is that overall
bandwidth and computational requirements for each
system are reduced, and you don't need a single beefy
server responsible for managing the entire simulator.

2 The best network architecture

In reality, most architectures are hybrid systems as
going to an extreme in either direction can lead to
significant problems.

For example, in a true client-server system, the client
would never move the participant until the server
responded with a "based on your last input, here is
your new position". This is fine, assuming you have
client-side prediction (discussed later), but this means
that the server is handling all collision detection. This
excessively computationally expensive, to the point
that it's not tenable for large worlds.

A compromise would be to allow the clients to
manage their own movement, and they in turn report
their location to the server (which likely does some
basic sanity checking on the reported movement). This
leverages the computing power of each client and off
loads a tremendous amount of work from the server.

2.1 Online simulators paradigm

This is a face-by-face approach between client-server
and peer-to peer models.
A set of problems may require most of the efforts:

• networking topology: client-server vs. peer-
to-peer

• computing model: distributed object vs.
message passing

• which protocol to use? tcp, udp, reliable udp
• bandwidth limitation
• latency limitation

Simulation synchronization is the most important
condition: order moves by their times of occurrence
because out-of-synch worlds are inconsistent. Small
inconsistencies not corrected can lead to large
compounded errors later on.
How long do you have to wait for the other participant
moves before rendering them?
Each participant receives all other moves before
rendering next frame. Some problems may occur:

• long Internet latency
• variable latencies
• speed determined by the slowest participant

Every participant must see the EXACT same world
and each participant simulates its own copy of the
world.
All the worlds must be in sync using bucket
synchronization, each participant sends moves to all
other players.

2.2 Physics and integration issue

Simulation-based software generally calculate entity
state in conjunction with some physics code. This may
be as simple as calculating an object's new position
based on its velocity, or may be as complex as a full
vehicle representation in a specialized engine, such as
Havok. In either case, the calculation can be viewed as
a numerical integration method. For example, you
may integrate an object's velocity over time to find it's
new position, i.e.,

Unfortunately, the results of these kinds of methods
may diverge depending on the granularity at which
you run them. If you simulate two initially identical
physics objects at 10 Hz and at 20 Hz, they will end
up in different states. This is true for any object whose
physics is of higher than order(1) with respect to
simulation time. For example, if we added
acceleration to the object that previously had a
constant velocity, we will cause integration error. In
generation, higher order physics leads to a greater
amount of integration error. Integration error always
exists in comparison to the hypothetical "real" state,

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

which would have to be calculated with infinitely
small granularity. It is only problematic in simulators
where the discrepancy may be noticed. Games and
simulators in which different computers simulate at
different rates (e.g., PC games) are an example.

2.3 Latency

Latency, sometimes called "lag" refers to the delay
between a piece of data being sent on a network, and
that piece of data being received. Latency may be
affected by various algorithms that act on the data in
order to get it to its destination. For example, if a
piece of data is lost on the network, it will eventually
be retransmitted after a certain amount of time. From
the receiver's point of view, this amount of time
increases the latency. From the point of view of a
piece of code in a computer simulator, latency may
also be increased by the rate at which the simulator
loop runs. For example, if a simulator runs at 30 Hz, it
can only send and receive data at intervals of one
thirtieth of a second. This may add up to a total of an
extra 60 milliseconds latency from the point of view
of the sending and receiving code.

2.4 Quantization Error

This is sometimes called "sampling error". For
bandwidth conservation purposes, it is common
practice to reduce the precision with which you send
data values. For example, you may represent the
avatar's camera angles with 8-bit values instead of
with 32-bit values. The quantization error present in a
value is the difference between its original value and
its value after it has been quantized to a lower
precision value.

The term "Quantization Error" is sometimes used to
mean the same thing as integration error, which may
be valid from the point of view of a hypothetically
continuous simulation state being sampled at discrete
intervals.

2.5 Prediction - a corrections approach

Sometimes just called "prediction", this technique
allows a participant’s computer to predict simulation
events in an attempt to minimize the effects of
network latency. It is normally used in the context of
client/server structure, in which it refers to clients that
optimistically predict the server's response to user
commands. This mostly eliminates latency that would
otherwise be perceptible to the user. When predicting
an object (such as the participant's own object) the
client mimics the operations that the server performs
when it receives client commands. This might include
the application of user commands to the predicted
objects, and stepping the simulation forward in time.
When the participant eventually receives an update
about its avatar from the server, it must merge the
update with its own predicted view of the world.
Under the best case scenario, the client and server
predictions will always be subject to divergence, due
at the very least to integration error, introduced by

their differing simulation rates. Prediction is further
complicated because the predicted entities are
simulated into the future with respect to simulator
time (i.e. server time), and that when updates are
received from the server, they describe state with
respect to some time in the past. Prediction is usually
a necessary technique in a real-time simulator,
however its implementation interacts with many other
net code features, and a great deal of testing is
generally necessary to verify that the implementation
will work under real network conditions, and deliver
the best results possible. Prediction can also be
performed in peer-to-peer approaches, in which event
each participant’s computer predicts their own avatar
beyond the official agreed state of the simulation.

2.6 Enhancement techniques

This is sometimes referred to as "smoothing" or
"blending". It is a technique that enables participants
that are updated at discrete intervals about each other's
state to render the transition smoothly. In simulations
where participant movement is due mainly to a input
as opposed to the passing of time (e.g., participant
movement in an scene), interpolation is often used as
the primary method by which to move avatars. In this
case, the each avatar is interpolated towards a target
state over the average update interval. This requires
very regular updates, and results in interpolated
entities being rendered one update cycle in the past.
However, interpolation produces a correct (if slightly
old) rendering of highly unpredictable entity
movement. Interpolation also has an important role to
play when applying updates to extrapolated entities.
Small errors are inevitable (due to integration error),
and interpolation algorithms can be re-used to perform
a blending of the two states, avoiding perceptible state
“snaps”.

2.7 Implementations

Most 3D engines implement either Level-of-Detail or
BSP algorithm (or both) to improve the performance
of the renderer. Where possible, these algorithms
should be re-used to improve networking
performance. For example, a Level-of-Detail
algorithm could be used to reduce the frequency of
updates about distant entities, or entities that are not of
great interest. Similarly a space-partitioning algorithm
could be used to avoid sending update about entities
that are neither visible nor audible. Such algorithms
significantly increase network scalability and
efficiency, however they complicate the
implementation of delta compression, because they
result in different base-line states from which any
deltas must be calculated.

3 Quality of simulations

Realistic effects require a lot of computational power,
but modern dual-core CPU’s and SLI/Crossfire video
architecture can satisfy this requirements.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

Ordinary ocean waves are created by the wind in fetch
areas and can propagate far from these locations.
Several models

have been proposed to account for the amplitude,
frequency and direction spectrum according to the
wind strength and duration. A classical one is The
Pierson-Moskowitz filter giving the amplitude FPM in
function of the frequency f:

 (1)

where:

g is the gravity acceleration

a is the Phillips constant

 corresponds to the peak in the spectrum
(which has a Gaussian-like shape), depending on the
wind velocity at a 10m altitude.

The ocean environment, for our purposes, consists of
only four components: The water surface, the air, the
sun, and the water volume below the surface. In this
section we trace the flow of light through the
environment, both mathematically and schematically,
from the light source to the camera. In general, the
radiosity equations here are as coupled as any other
radiosity problem. To a reasonable degree, however,
the coupling can be truncated and the simplified
radiosity problem has a relatively fast solution.

The light seen by a camera is dependent on the flow of
light energy from the source(s) (i.e. the sun and sky)
to the surface and into the camera. In addition to
specular reflection of direct sunlight and skylight from
the surface, some fraction of the incident light is
transmitted through the surface. Ultimately, a fraction
of the transmitted light is scattered by the water
volume back up through the interface and into the air.
Some of the light that is reflected or refracted at the
surface may strike the surface a second time,
producing more reflection and refraction events.
Under some viewing conditions, multiple reflections
and refractions can have a noticeable impact on
images. For our part however, we will ignore more
than one reflection or refraction from the surface at a
time. This not only makes the algorithms and
computation easier and faster, but also is reasonably
accurate in most viewing conditions and produces
visually realistic imagery. At any point in the
environment above the surface, including at the
camera, the total light intensity (radiance) coming
from any direction has three contributions:

 (2)

where

r is the Fresnel reflectivity for reflection from a spot
on the surface

of the ocean to the camera

tU is the transmission coefficient for the light LU
coming up from the ocean volume, refracted at the
surface into the camera.

LS is the amount of light coming directly from the sun,
through the atmosphere, to the spot on the ocean
surface where it is reflected by the surface to the
camera.

LA is the (diffuse) atmospheric skylight

LU is the light just below the surface that is
transmitted through the surface into the air.

While equation 1 appears to have a relatively simple
structure, the terms LS, LA, and LU can in principle
have complex dependencies on each other, as well on
the reflectivity and transmissivity.

3.1 Wawes shape

Several models characterize the shape of waves by
studying eigenmodes of the Navier-Stokes equation at
the water-air interface. A convenient one is the
Gerstner swell model, which describes the trajectory
of water particles as circles of radius equal to the wave
amplitude A around

the location at rest. Two particles along the direction
of wave propagation having a distance at rest of l
follow their circular trajectories at angular velocity w
with a phase difference of kl:

 (3)

where t is the time, z the vertical axis and (x0; z0) the
particle location at rest. This generates a trochoid
wave shape, similar to a sinusoid only for very small
amplitudes. For high amplitudes the waves get
choppy, up to a value for which the curve crosses
itself, which is no longer physical since the wave
should break.

Other models, like Stokes and Biesel’s ones, take into
account the shallow water case, for which the circles
turn into ellipses, at the price of more complicated
formulas. Since the depth variation changes the wave
velocity, the phases are no longer linear with the
distance. Biesel’s model thus evaluates the phases as

. This change is responsible for the
refraction of wave trains1close to the shore.

3.2 Water wawes model

We are looking for a wave model that does not
constrain us to simulate a predetermined and regularly
sampled surface region. Moreover, we are not willing
to compute a high field, which would not cover the
case of stormy seas. We keep using a mesh (since we
cannot afford pixel size elements), but its location in
world space will change dynamically and its density
varies in space.

Our model is based on the Gerstner swell model and
simulates trochoids. However, we want to take into

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

account the combination of many different waves. To
do so, we generate wave trains in a way that
approaches a known wave spectrum.

Although our method can be applied to various kinds
of waves this paper only focuses on the main ones, i.e.
gravity waves. We simulate gravity waves using a
series of wave trains that homogeneously cover the
simulated world.

Let us consider the mesh that represents the ocean
surface at a given animation step. The mesh vertices
are considered as particles, and thus follow the circle
trajectory corresponding to the model:

 (4)

where X0 = (x0; y0) is the location of the particle at
rest on the surface and z0 its altitude at rest. Note that
the only information that needs to be stored in
memory is the specification of the wave trains:
particles are evaluated on the fly, and can be at
different locations from one frame to the other.
Surface displacement is thus evaluated much like a
procedural function.

3.3 Water Waves simulations - an alternative
consideration

The mechanism behind this effect is remarkably
simple. It was invented long time ago by observation
while experimenting with area sampling.

Area sampling is a very common algorithm in
computer graphics. Considering a two-dimensional
map, the value at (x, y) is affected by values
surrounding position (x, y), such as (x+1,y), (x-1,y),
(x,y+1) and (x,y-1). Our wave simulation actually
works in three dimensions, but the principles is show
here for 2D. Blurring a map is very simple. You'll
need two maps: one containing the data you want to
blur, and one for the resulting map. The algorithm
(using five sample values) looks like this:

ResultMap[x, y] := (SourceMap[x, y] +
 SourceMap[x+1, y] +
 SourceMap[x-1, y] +
 SourceMap[x, y+1] +
 SourceMap[x, y-1]) DIV 5

For 3D waves while calculating our wave simulation,
we have to know how the waves looked like one
moment earlier. The resulting map becomes the source
map for the next frame.

This is the actual wave simulation algorithm:

ResultMap[x, y] := ((CurrentSourceMap[x+1,
y] +
 CurrentSourceMap[x-1, y] +
 CurrentSourceMap[x, y+1] +
 CurrentSourceMap[x, y-1]) DIV 2) -
 PreviousResultMap[x, y]

As presented so far, Gerstner waves are rather limited
because they are a single sine wave horizontally and
vertically. However, this can be generalized to a more
complex profile by summing a set of sine waves. One
picks a set of wavevectors ki, amplitudes Ai,
frequencies ωi, and phases φi, for i = 1, . . . ,N, to get
the expressions:

Fig. 1 Profiles of two single-mode Gerstner waves,
with different relative amplitudes and wavelengths

Fig. 2 Profile of a 3-mode Gerstner wave

4 Conclusions

One of the benefits of our approach is its flexibility:
the use of trochoids enables to model a wide range of
ocean surfaces, from calm to stormy seas. Since the
displacement of a sample point is computed as a sum
of wave contributions, adding extra effect such as ship

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

waves is easy. The camera position can be arbitrarily
chosen without changing the amount of computation
nor the image quality (no cyclicity will appear). As a
consequence, the user can interactively fly over an
unbounded ocean surface, which makes the method
promising for video simulator applications. Lastly, the
quality/cost ratio is tunable, so higher-quality images
can be computed using the same model. All
computations are exclusively concentrated onto the
visible part of the ocean, which yields real-time
performance with a relatively good image quality,
even in our non-optimized implementation.

Concerning future work, we plan to implement the
optimizations, to include other kinds of waves such as
ripples or ship waves, and to study how waves
reflection and refraction could be introduced. We also
plan to simulate the glittering of the ocean waves near
the horizon due to the multiplicity of normals.

5 References

[1] CRAWFORD, JR, F. 1977. Waves. McGraw-Hill.

[2] DEBUNNE, G., DESBRUN, M., CANI, M.-P.,
AND BARR, A. 2001. Dynamic realtime
deformations unsing space and time adaptive
sampling. In SIGGRAPH’01 Conference
Proceedings, Addison Wesley, Annual
Conference Series, ACM SIGGRAPH, Los
Angeles, CA.

[3] EBERT, D., MUSGRAVE, K., PEACHEY, D.,
PERLIN, K., AND WORLEY, S. 1994. Texturing
and Modeling: A Procedural Approach. Academic
Press, Oct.

[4] FOSTER, N., AND FEDKIW, R. 2001. Practical
animation of liquids. Proceedings of SIGGRAPH
2001 (August), 23–30.

[5] FOSTER, N., AND METAXAS, D. 1996.
Realistic animation of liquids. In Graphics
Interface ’96, W. A. Davis and R. Bartels, Eds.,
204–212.

[6] FOURNIER, A., AND REEVES, W. T. 1986. A
simple model of ocean waves. In

[7] GAMITO, M., AND MUSGRAVE, K. 2000. An
accurate model of wave refraction over shallow
water. In Eurographics Workshop on Computer
Animation and Simulation, 155–171.

[8] GONZATO, J.-C., AND SAËC, B. L. 2000. On
modelling and rendering ocean scenes. The
Journal of Visualization and Computer Animation
11, 1, 27–37.

[9] HASSELMANN, D. E., M.DUNCKEL, AND
EWING, J. A. 1980. Directional wave spectra
observed during jonswap 1973. J. Phys.
Oceanogr. 10 (August), 1264–1280.

[10] KASS, M., AND MILLER, G. 1990. Rapid,
stable fluid dynamics for computer graphics. In
Computer Graphics (SIGGRAPH ’90
Proceedings), F. Baskett, Ed., vol. 24, 49–57.

[11] KINSMAN, B. 1984. Wind Waves, Their
Generation and Propagation on the Ocean
Surface. Dover Publication.

[12] MASTIN, G. A., WATTERBERG, P. A., AND
MAREDA, J. F. 1987. Fourier synthesis of ocean
scenes. IEEE Computer Graphics and
Applications 7, 3 (Mar.), 16–23.

[13] NEYRET, F., AND PRAIZELIN, N. 2001.
Phenomenological simulation of brooks. In
Eurographics Workshop on Computer Animation
and Simulation, Springer, Eurographics, 53–64.

[14] HINSINGER, D. NEYRET, F., CANI, M.P.,
Animation of Ocean Waves, iMAGIS-GRAVIR,
joint research project of CNRS, INPG,INRIA,
UJFInteractive

[15] PERLIN, K. 1985. An image synthesizer. In
Computer Graphics (SIGGRAPH ’85
Proceedings), B. A. Barsky, Ed., vol. 19(3), 287–
296.

[16] PFISTER, H., ZWICKER, M., VAN BAAR, J.,
AND GROSS, M. 2000. Surfels: Surface elements
as rendering primitives. Proceedings of
SIGGRAPH 2000 (July), 335–342.

[17] STAMMINGER, M., AND DRETTAKIS, G.
2001. Interactive sampling and rendering for
complex and procedural geometry. In Rendering
Techniques 2001 (Proceedings of the
Eurographics Workshop on Rendering 01),
Springer Verlag, K. Myskowski and S. Gortler,
Eds., 12th Eurographics workshop on Rendering,
Eurographics, 151–162.

[18] TESSENDORF, J. 2004. Simulating ocean water.
In Siggraph Course Notes, Addison-Wesley.

[19] THON, S., AND GHAZANFARPOUR, D. 2001.
A semi-physical model of running waters. In
Eurographics UK.

[20] LIGHTHILL, J. 1978. Waves in fluids.
Cambridge University Press.

[21] B. ECKEL, Thinking in C++ 2nd Edition, Free
Electronic Book Volume 1 & Volume 2, 2003.

[22] http://www.ogre3d.org.

[23] http://www.gamedev.net.

[24] TANENBAUM, A., S., Computer Networks,
Fourth Edition, Vrije Universiteit, Prentice Hall,
Amsterdam, 2002.

[25] FOSNER, R., Real-Time Shader Programming,
Elsevier, Morgan Kaufmann

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

