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Abstract

A plate-gap model of a porous enzyme doped electrode coveredby a porous membrane has
been proposed and analyzed. The two-dimensional-in-spacemathematical model of the plate-
gap biosensor is based on the reaction-diffusion equationscontaining a nonlinear term related
to the Michaelis Menten kinetics of the enzymatic reaction.The developed model involves
four regions: the enzyme layer where the enzymatic reactionas well as the mass transport by
diffusion take place, the porous membrane as well as a diffusion limiting region where only
a mass transport by diffusion takes place, and a convective region, where the analyte concen-
tration is maintained constant. Assuming the porous membrane as the periodic media, the
homogenization process was applied to the domain of the membrane and it was modelled as
a homogeneous diffusion layer with an averaging diffusion coefficient. Using numerical sim-
ulation of the biosensor action, the influence of the geometry of the outer membrane on the
biosensor response was investigated at wide range of analyte concentrations as well as of the
reaction rates. The numerical simulation was carried out using the finite difference technique.
The mathematical model as well as numerical solution were validated using analytical solutions
existing for very specific cases of the model parameters. Thebehaviour of the plate-gap biosen-
sor was compared with that of a flat electrode deposited with alayer of enzyme and covered
with the same outer membrane.
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1 Introduction

Biosensors are sensing devices made up of a combi-
nation of a biological entity, usually an enzyme, that
recognizes a specific analyte and the transducer that
translates the biorecognition event into an electrical sig-
nal [1, 2]. The signal is proportional to the concentra-
tion of the analyte. The biosensors are classified ac-
cording to the nature of the physical transducer. The
amperometric biosensors measure the faradic current
that arises on a working indicator electrode by direct
electrochemical oxidation or reduction of the product
of the biochemical reaction [2, 3].

The amperometric biosensors are known to be reliable,
cheap and highly sensitive for environment, clinical
and industrial purposes [4]. However, amperometric
biosensors possess a number of serious drawbacks. One
of the main reasons restricting wider use of the biosen-
sors is a relatively short linear range of the calibration
curve. Another serious drawback is the instability of
bio-molecules. These problems can be partially solved
by an application of an additional outer membrane on
the surface of a biosensor [1, 2, 4]. Due to the tech-
nology of the biosensors preparation it is difficult to en-
sure the absolutely precise geometry of the electrodes
as well as of the membranes. The sensitivity of the
biosensor response to changes in the geometry of the
biosensor is a new drawback.

Very recently a plate-gap model of a porous electrode
was proposed and successfully applied to carbon paste
based biosensors [5, 6, 7]. The plate-gap biosensors
appear promising for detection of glucose, galactose,
ethanol, phenol and some other substrates [8], partic-
ularly for phenol detection in waste water [9]. The
purpose of this work was to enhance the mathematical
model of the plate-gap biosensor with the external dif-
fusion limiting region and to investigate the sensitivity
of the biosensor response to changes in the geometry
of the gaps as well as of the porous membrane. The
model is based on reaction-diffusion equations contain-
ing a non-linear term related to Michaelis-Menten ki-
netics of the enzymatic reaction. The developed model
involves four regions: the enzyme layer where enzyme
reaction as well as the mass transport by diffusion take
place, the porous membrane as well as a diffusion lim-
iting region where only the mass transport by diffusion
takes place, and a convective region, where the analyte
concentration is maintained constant.

The simulation of the biosensor response was carried
out using the finite difference technique [10]. The
mathematical model as well as the numerical solution
were validated using analytical solutions existing for
very specific cases of the model parameters. The sim-
ulation results were also compared with similar exper-
imental studies [5]. A satisfactory agreement between
the numerical solution and experimental data has been
obtained.

2 Principal structure of a biosensor

Fig. 1 shows a principal structure of a biosensor, where
enzyme filled gaps are modelled by right quadrangular
prisms of base2a1 by c distributed uniformly so, that
the distance between adjacent prisms equals to2(a2 −
a1), a1 is the half width of the gaps,c is the gap depth
andd is the thickness of the porous membrane.
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Fig. 1 A principal structure of a plate-gap biosensor

We assume that the thickness of the outer membrane as
well as the depth of the gaps of the electrode are much
less than its length. The porous membrane is assumed
of a uniform thickness. Due to the uniform distribution
of the gaps, it is reasonable to consider only a unit con-
sisting of a single gap together with the region between
two adjacent gaps. Because of the symmetry and the
relatively great length of the gaps we consider only the
transverse section of a half of the unit.

Fig. 2 shows the profile of a unit cell to be considered in
mathematical modelling of the biochemical behaviour
of the plate-gap biosensor.
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Fig. 2 A profile of the unit cell of the plate-gap biosen-
sor

In Fig. 2,Ω1 represents the enzyme-filled gaps,Ω2 cor-
responds to the porous membrane andΩ3 stands for the
external diffusion layer.c = b1 is the depth of the gaps,
d = b2 − b1 is the thickness of the porous membrane
andδ = b3− b2 is the thickness of the external diffusion
layer. A very similar approach has been used in mod-
elling of partially blocked electrodes [11, 12] as well as
in modelling of biosensors with perforated and selective
membranes [13].
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3 Mathematical model
The mathematical model of a plate-gap biosensor with
an outer porous membrane (Figs. 1 and 2) may be for-
mulated in a two dimensional domain consisting mainly
of three regions: the enzyme regionΩ1, the regionΩ2

corresponding to the porous membrane and the region
Ω3 of the external diffusion,

Ω1 = (0, a1) × (0, b1),

Ω2 = (0, a2) × (b1, b2),

Ω3 = (0, a2) × (b2, b3).

(1)

In the enzyme regionΩ1 we consider the mass transport
by diffusion and the enzyme-catalysed reaction

S+ E � ES→ E + P (2)

In this scheme the substrate (S) combines reversibly
with an enzyme (E) to form a complex (ES). The com-
plex then dissociates into a product (P) and the enzyme
is regenerated. Assuming the quasi steady state approx-
imation, the concentration of the intermediate complex
(ES) do not change and may be neglected when simu-
lating the biochemical behaviour of biosensors [1, 2].

Assuming the porous membrane as the periodic media,
the homogenization process has been applied to the do-
mainΩ2 of the membrane [14]. After this, the porous
membrane was modelled as a diffusion layer with an
averaging diffusion coefficient.

In the homogeneous external regionΩ3 also only the
mass transport by diffusion of the substrate as well as
of the product takes place.

The thicknessδ of the diffusion layer depends upon the
nature and intensity of flowing or stirring of the buffer
solution [15]. δ is inversely proportional to the inten-
sity of the stirring (e.g. rotation speed of the electrode).
That diffusion layer is known as the Nernst layer. The
thickness of the Nernst diffusion layer practically does
not depend upon the outer membrane thickness. In
practice, the zero thickness of the Nernst layer can not
be achieved [16]. That thickness may be minimized
only up toδ = 2 µm by increasing the intensity of stir-
ring or flowing of the buffer solution [16].

3.1 Governing equations

The action of the biosensor, presented schematically
in Figs. 1 and 2, can be described by the following
reaction-diffusion system (t > 0) [17]:

∂S1

∂t
= D1∆S1 −

VmaxS1

KM + S1
,

∂P1

∂t
= D1∆P1 +

VmaxS1

KM + S1
, (x, y) ∈ Ω1,

(3)

∂Sj

∂t
= Dj∆Sj ,

∂Pj

∂t
= Dj∆Pj , (x, y) ∈ Ωj , j = 2, 3,

(4)

where∆ is the Laplacian,Si(x, y, t) is the concentra-
tion of the substrate inΩi, Pi(x, y, t) is the concentra-
tion of the reaction product inΩi, i = 1, 2, 3, Vmax is
the maximal enzymatic rate andKM is the Michaelis
constant.

3.2 Initial conditions

Let Ωi be the closure of the corresponding open region
Ωi, i = 1, 2, 3, Γ1 - the electrode surface andΓ2 - the
porous membrane/bulk solution boundary,

Γ1 = ([0, a1] × {0}) ∪ ({a1} × [0, b1])∪

([a1, a2] × {b1}) ,

Γ2 = [0, a2] × {b3}.

(5)

The biosensor operation starts when the substrate of
concentrationS0 appears in the bulk solution. This is
used in the initial conditions (t = 0) [17]:

Sk(x, y, 0) = 0, (x, y) ∈ Ωk, k = 1, 2,

S3(x, y, 0) = 0, (x, y) ∈ Ω3 \ Γ2,

S3(x, y, 0) = S0, (x, y) ∈ Γ2,

Pi(x, y, 0) = 0, (x, y) ∈ Ωi, i = 1, 2, 3.

(6)

3.3 Boundary and matching conditions

Assumingb0 = 0, the following boundary conditions
express the symmetry of the biosensor:

∂Pi

∂x

∣

∣

∣

x=0
=

∂Si

∂x

∣

∣

∣

x=0
= 0, y ∈ [bi−1, bi],

∂Pj

∂x

∣

∣

∣

x=a2

=
∂Sj

∂x

∣

∣

∣

x=a2

= 0, y ∈ [bj−1, bj ],

t > 0, i = 1, 2, 3, j = 2, 3.

(7)

The following boundary condition on the electrode bor-
derΓ1 defines the electrochemical process (k = 1, 2):

∂Sk

∂n

∣

∣

∣

Γ1

= 0, Pk = 0,

(x, y) ∈ Γ1, k = 1, 2,

(8)

wheren stands for the normal direction.

If the bulk solution is well-stirred and in powerful mo-
tion then the diffusion layer (b2 < y < b3) may be
treated as the Nernst diffusion layer [11, 15]. Ac-
cording to the Nernst approach, a layer of thickness
δ = b3 − b2 remains unchanged with time. Away from
it, the solution is in motion and is uniform in concen-
tration (t > 0),

S3(x, b3, 0) = S0,

P3(x, b3, 0) = 0, x ∈ [0, a2].
(9)

On the boundary between adjacent regionsΩk and
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Ωk+1 we define the matching conditions,

Dk

∂Sk

∂y

∣

∣

∣

y=bk

= Dk+1
∂Sk+1

∂y

∣

∣

∣

y=bk

,

Sk(x, bk, t) = Sk+1(x, bk, t),

Dk

∂Pk

∂y

∣

∣

∣

y=bk

= Dk+1
∂Pk+1

∂y

∣

∣

∣

y=bk

,

Pk(x, bk, t) = Pk+1(x, bk, t),

(x, y) ∈ Ωk ∩ Ωk+1, t > 0, k = 1, 2.

(10)

The governing Eqs. (3), (4) together with the initial (6),
boundary (7)-(9) and matching (10) conditions form to-
gether a boundary value problem.

3.4 Characteristics of the biosensor response

The measured current is accepted as a response of a
biosensor in an actual experiment. The current depends
upon the flux of the reaction product at the electrode
surface, i.e. on the borderΓ1. The densityi(t) of the
current at timet can be obtained explicitly from the
Faraday’s and Fick’s laws

i(t) =
neF

a2

(

D1

∫ a1

0

∂P1

∂y

∣

∣

∣

∣

y=0

dx+

D1

∫ b1

0

∂P1

∂x

∣

∣

∣

∣

x=a1

dy+

D2

∫ a2

a1

∂P2

∂y

∣

∣

∣

∣

y=b1

dx
)

,

(11)

wherene is a number of electrons involved in a charge
transfer andF is the Faraday constant. We assume, that
the system (3)-(10) approaches steady state whent →
∞,

I = lim
t→∞

i(t), (12)

where I is the steady state current of the plate-gap
biosensor.

4 Numerical simulation
Analytical solutions are not usually possible when an-
alytically solving multi-dimensional nonlinear partial
differential equations in a domain of the complex ge-
ometry [15, 18]. Therefore, the problem was solved
numerically using the finite difference technique [10].
To find a numerical solution of the problem we intro-
duced a bilinear discrete grid in all the directions:x, y
and t [7, 13, 19]. Using alternating direction method
a semi-implicit linear finite difference scheme has been
built as a result of the difference approximation [10].
The resulting system of linear algebraic equations was
solved rather efficiently because of the tridiagonality of
the matrix of the system.

Due to high gradients of the concentrations of both
species: substrate and product, an accurate and stable
numerical solution was achieved only at very small step
size iny direction at the boundariesy = 0 andy = b3.
Because of the concavity of an angle at point(a1, b1) it
was necessary to use very small step size in both space

directions: x and y also at the boundariesx = a1, y
= b1. Due to the matching conditions between adja-
cent regions with different diffusivities, we used also
small step size at the boundaryy = b2. We assumed,
that farther from all these peculiar boundaries, step size
may increase in both space directions:x andy. Conse-
quently, in the directionx, an exponentially increasing
step size was used to both sides froma1: to a2 and
down to 0. In the directiony, an exponentially increas-
ing step size was used form 0 tob1/2, from b3 down to
(b2 + b3)/2, from bj down to(bj + bj−1)/2 and from
bj to (bj + bj+1)/2, j = 1, 2, whereb0 = 0.

The step size in the direction of time was restricted due
to the nonlinear reaction term in Eq. (3), boundary con-
ditions and the geometry of the domain. In order to
achieve accurate and stable solution of the problem, at
the beginning of the reaction-diffusion process we em-
ployed the restrictive condition, which is usually used
for fully explicit schemes. Since the biosensor action
obeys the steady state assumption whent → ∞, it was
reasonable to apply an increasing step size in the time
direction. The final step size was in a few orders of
magnitude higher than the first one. The digital simula-
tor has been programmed in JAVA language [20].

In digital simulation, the biosensor response (steady
state) time was assumed as the time when the absolute
current slope value falls below a given small value nor-
malized with the current value [13, 17]. In other words,
the timeTR needed to achieve a given dimensionless
decay rateε was used

TR = min
i(t)>0

{

t :
1

i(t)

|d i(t)|

d t

}

, i(TR) ≈ I. (13)

In calculations, we usedε = 10−5.

Assuminga1 = a2 � b1 and the zero thickness ei-
ther of the porous membrane or of the external diffu-
sion layer (d = 0 or δ = 0), the mathematical model
(3)-(10) approaches to a two-compartment mathemat-
ical model of a flat two-layer amperometric biosensor
[17]. At relatively low (S0 � KM ) as well as at
very high (S0 � KM ) concentrations of the substrate
S0, the two-compartment mathematical model can be
solved analytically [17].

The adequacy of the mathematical model (3)-(10) of
the plate-gap biosensor as well as of the numerical so-
lution of that problem were evaluated using known ana-
lytical solutions of the two-compartment mathematical
model [17]. Acceptinga1 = a2 = 20b1, the steady state
biosensor current was calculated at different values of
the model parameters: maximal enzymatic rateVmax,
the substrate concentrationS0 (S0 � KM as well as
S0 � KM ), the gap depthc = b1, the thicknessd of
the outer membrane (acceptingδ = 0) and the thickness
δ of the external diffusion layer (acceptingd = 0). In
all the cases the relative difference between the numer-
ical and analytical solutions was less than 1%.

Results of the numerical simulation obtained for the
plate-gap biosensor were also compared with similar
experimental studies [5]. A satisfactory agreement be-
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tween the numerical solution and experimental data has
been obtained.

Fig. 3 shows the simulated dynamics of the biosen-
sor current at different values of the maximal enzymatic
rateVmax and the substrate concentrationS0.
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Fig. 3 The dynamics of the biosensor currenti(t), S0:
0.01 (1-3), 1 (4-6) (mM),Vmax: 0.1 (1, 4), 1 (2, 5), 10
(3, 6) (mM/s),a1 = 1,a2 = a1 + 1,b1 = 4,b2 = b1 + 2,b3

= b2 + 2 (µm), D1 = 100,D2 = 10,D3 = 2D1 (µm2/s),
KM = 1 (mM)

As one can see in Fig. 3 that the biosensor current is
very sensitive to changes ofVmax andS0. Changing
values of these two parameters, the steady state current
varies even in orders of magnitude. This is a rather or-
dinary feature of amperometric biosensors [1, 7].

5 Results of calculations
Using numerical simulation, the influence of changes
in the geometry of the gaps as well as of the porous
membrane on the biosensor response was investigated.

The steady state biosensor current was calculated at dif-
ferent values of the maximal enzymatic rateVmax and
substrate concentrationS0 . Because of the high sensi-
tivity of the biosensor current to changes ofVmax and
S0 (Fig. 3) we normalized the biosensor current.

5.1 The effect of the geometry of gaps

In the model of the plate-gap biosensor (Figs. 1 and
2), the parameterc (c = b1) stands for the depth of the
gaps in the electrode. Fig. 4 shows the dependence of
the steady state biosensor current on the depthc. The
biosensor responses were calculated at constant thick-
nessd = 2µm of the porous membrane, constant thick-
nessδ = 2µm of the external diffusion layer changingc
from 2 to 6µm. In this case the steady state current was
normalized with respect to the minimal valuec0 of c to
be analyzed,

Ic(c) =
I(c)

I(c0)
, (14)

whereIc(c) is the steady state biosensor current calcu-
lated at given depthc of the gaps,c0 = 2µm.

As it is possible to notice in Fig. 4, the steady state cur-
rent of the plate-gap biosensor is a monotonous increas-
ing functions ofc. However,Ic is practically constant
functions ofc at high maximal enzymatic rateVmax (10
mM/s, curves 3 and 6).

2 3 4 5 6
1.0

1.5

2.0

2.5

3.0

 1
 2
 3
 4
 5
 6I c

c, µm

Fig. 4 The normalized steady state currentIc versus the
gap depthc = b1, other parameters and notations are
the same as in Fig. 3

To investigate the dependence of the biosensor response
on the width of the gaps we calculated the biosensor re-
sponse at a constant distance2(a2 − a1) between two
adjacent gaps changing the half widtha1 from 0.5 to
5.5µm. As it was mentioned above, increasing the half
width a1 of the gaps the current of the plate-gap biosen-
sor approaches the current of the correspondingflat one.
Because of this the steady state current of the plate-gap
biosensor was normalized with the steady state current
of the corresponding flat biosensor,

Ia(a) =
I(a)

I(∞)
, (15)

whereI(a) is the steady state current calculated assum-
ing the half widtha of the gaps,I(∞) is the steady state
of the corresponding flat biosensor.

Fig. 5 shows the dependence of the steady state current
of the plat-gap biosensor on the width of the gaps at
different values ofVmax andS0. At very high maximal
enzymatic rateVmax (10 mM/s) (curves 3 and 6)I(a)
approachesI(∞) notable faster than at other values of
Vmax. The effect of the substrate concentrationS0 is
fairly low.

1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1
 2
 3
 4
 5
 6

I a

a
1
, µm

Fig. 5 The normalized steady state currentIa versus the
width a1 of gaps, other parameters and notations are the
same as in Fig. 3

An increase in the width as well as in the depth of the
gaps increases the total volume of the enzyme used in
plate gap biosensors. Fig. 6 shows the dependence
of the steady state current on the distance between the
gaps. The total volume of the enzyme decreases with
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increase in the distancea2. Summarizing the results
presented in Figs. 4, 5 and 6, we can conclude, that the
plate-gap biosensor is more resistant to changes in vol-
ume of the enzyme at higher values ofVmax rather than
at lower ones.

2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1
 2
 3
 4
 5
 6

I a

a
2
, µm

Fig. 6 The normalized steady state currentIa versus the
half distancea2 between centers of adjacent gaps, other
parameters and notations are the same as in Fig. 3

5.2 The effect of the porous membrane

Using numerical simulation, the influence of the thick-
ness and of the permeability (porosity) of the outer
porous membrane on the biosensor current was inves-
tigated. In terms of the mathematical model (3)-(10),
the permeability as well as the porosity is expressed by
the diffusion coefficientD2.

To investigate the effect of the thicknessd of the mem-
brane on the biosensor response, the steady state cur-
rent of the biosensor having the outer membrane was
normalized with the steady state current of the corre-
sponding biosensor having no outer membrane,

Id(d) =
I(d)

I(0)
, (16)

whereI(d) is the steady state biosensor current calcu-
lated at given thicknessd of the outer membrane.

Fig. 7 shows the dependence of the steady state biosen-
sor current on the thicknessd of the outer porous mem-
brane.

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1
 2
 3

 4
 5
 6

I d

d, µm

Fig. 7 The normalized steady state currentId versus the
the thicknessd of the porous membrane, other parame-
ters and notations are the same as in Fig. 3

One can see in Fig. 7, that the normalized steady
state currentI (as well as the non-normalized oneId)

is a monotonous decreasing function of the thickness
d at relatively high values of the enzymatic activity
(Vmax ≥ 1 mM/s). Id is a slightly non-monotonous
function of d at low value ofVmax (0.1 mM/s, curves
1 and 4). Fig. 7 shows, that the plate-gap biosensor is
more resistant to changes in the thickness of the outer
membrane at lower values ofVmax rather than at higher
ones.

The maximal enzymatic rateVmax actually is a prod-
uct of two parameters: the catalytical constantKcat

and the total concentrationEt of the enzyme [1, 2]. In
real applications of biosensors it usually is impossible
to modify theKcat part. The maximal rateVmax might
be modified by changing the concentrationEt of the
enzyme in the enzyme layer.Vmax is relative to total
enzyme used in a biosensor.

To investigate the dependence of the biosensor response
on the diffusivityD2 of the outer porous membrane, the
current was normalized with respect to the diffusivity
D1 of the species in the enzyme,

ID(D) =
I(D)

I(D1)
, (17)

whereI(D) is the steady state biosensor current calcu-
lated at given diffusivityD of the species in the outer
membrane. Results of the calculations are depicted in
Fig. 8, where one can see, that the effect of the diffusiv-
ity D2 notably depends on the maximal enzymatic rate
Vmax.

10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1
 2
 3
 4
 5
 6

I D

D
2
, µm2

Fig. 8 The normalized steady state currentID versus
the diffusivity D2 of the porous membrane, other pa-
rameters and notations are the same as in Fig. 3

Although the shapes of curves in Fig. 8 notable differ
from those in Fig. 7, the effect of the diffusivityD2 of
the membrane is very similar to that of the membrane
thicknessd. A decrease in diffusivityD2 influences the
steady state current similarly to the increase in thick-
nessd of the membrane. To show the similarities more
apparent, the normalized steady state currentId (Fig.
7) was replotted in Fig. 9 as a function of the inverse
thickness1/d of the outer membrane. The shapes of
curves in Fig. 9 are approximately the same as in Fig.
8.

6 Concluding remarks
The mathematical model (3)-(10) of the operation of the
amperometric plate-gap biosensor with an outer porous
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Fig. 9 The normalized steady state currentId versus
the the inverse thicknessd−1 of the porous membrane,
other parameters and notations are the same as in Fig. 3

membrane can be used to investigate peculiarities of the
biosensor response in stirred and non stirred analytes.

At high maximal enzymatic ratesVmax the response of
the plate-gap biosensor is more resistant to changes in
the geometry of the enzyme-filled gaps rather than at
lower values ofVmax (Figs. 4, 5 and 6). This feature of
the biosensor response can be applied in design of novel
highly sensitive biosensors when the minimization of
the enzyme volume is of crucial importance. Selecting
the geometry of gaps allows minimizing the volume of
enzyme without loosing the sensitivity.

The response of the plate-gap biosensor is more resis-
tant to changes in the thicknessd as well as in the dif-
fusivity D2 of the outer membrane at lower values of
Vmax rather than at higher ones (Figs. 7, 8 and 9).
It is very important to take this feature into account
when designing long-term operating analytical systems
in which the activity of the enzyme (Vmax) permanently
decreases.
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