
IDENTIFICATION OF WIENER MODELS USING 
OPTIMAL LOCAL LINEAR MODELS  

Martin Kozek1, Sabina Sinanović1 

1Vienna University of Technology,  
1040 Vienna, Gußhausstraße 27-29 / 325 A5, Austria 

kozek@impa.tuwien.ac.at (Martin Kozek) 

Abstract 

The Wiener model is a versatile nonlinear block oriented model structure for miscellaneous 
applications. In this paper a method for identifying the parameters of such a model using 
optimal local linear models is presented. The linear model part is represented by a discrete-
time transfer function and the non-linear characteristic is represented by piece-wise linear 
functions. Parameter estimation as well as partitioning of the local linear models is 
simultaneously accomplished by the identification procedure. The optimality of the proposed 
algorithm is threefold: First, each local model is linear in the parameters and therefore optimal 
parameter estimation methods like Recursive Least-Squares can be applied, thus leading to a 
robust solution. Second, the region of validity of each local model is adaptively optimized 
using the Chi-squared distribution of the estimated residual. This approach not only enables 
an automatic choice of the model size but it also incorporates the measurement noise level of 
the output variable into the result. And third, the resulting global model has a minimum of 
local models while guaranteeing optimal performance. A simulation of the pharmacological 
Propofol model is included, which documents the ability of the algorithm to balance the 
output noise with the systems nonlinearity. 
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1 Introduction 
The identification of Wiener models is of great 
importance for different types of applications. 
Acoustics, meteorology, and pharmacological models 
of drug interaction [1] are but a few examples of 
successful application areas. The model structure is 
versatile due to its serial combination of a linear 
dynamic transfer function G(z-1) and a nonlinear static 
characteristic (see fig.1). 

Fig. 1 Wiener model structure 

In a typical experimental modeling setup only the 
input to the system u(k) and the output y(k) are 
measured. The intermediate variable v(k) is not 
known, and moreover, the output y(k) is corrupted by 
measurement noise. The complexity of the 
identification procedure strongly depends on the 
parameterization of the nonlinear static characteristic. 

Several methods have been proposed for this purpose: 
Cubic splines [2], polynomials, linear static maps [3], 
and radial basis functions, e.g. [4]. Recently, local 
linear models have been successfully incorporated in a 
Recursive Least-Squares (RLS) estimation algorithm 
[5]. However, most of these structures require a proper 
a priori partitioning ci of the unknown nonlinearity 
together with a predefined number of local models for 
a satisfying performance, see fig. 2. 

Fig. 2 Local linear models with partitioning ci 

It is obvious that a poor choice of the partitioning ci 
will lead to a poor performance of the overall model, 
especially if the region of validity of the local models 
becomes too large and strong nonlinear effects lead to 
large local errors. 

In this paper an algorithm is presented which 
automatically chooses the number of models and 
develops an optimal partitioning ci. The algorithm 
utilizes a reconstruction of the intermediate variable 
v(k) to assess the hypothesis of a linear model. This is 
achieved by means of the Chi-squared (χ2) distribution 
of the residual for each local model. Using a ramp-like 
input signal with super-positioned noise for 
identification an optimal partitioning ci can be found 
by a recursive method: The region of validity of each 
local model is increased until the hypothesis of 

linearity tested by the variance of the local model 
fails. Only then a new local model is added. 

Based on the RLS-algorithm presented in [5], this 
method balances the local model size with respect to 
noise level and model fit. 

The remainder of the paper is structured as follows: In 
section 2 the parameterization together with the model 
structure and the RLS-algorithm are defined. In 
section 3 the criterion for optimal model size is 
explained in detail and the identification algorithm is 
presented. The statistical properties of the algorithm 
and their implications for practical implementations 
are discussed in section 4. Some simulation results for 
a pharmacological model are given and discussed in 
section 5, and a brief summary of the main contents 
concludes the paper. 

2 RLS Identification 
In this section the structure and parameterization of 
the Wiener model are defined such that each local 
model is linear in the parameters and therefore least 
squares methods for parameter estimation can be 
applied. 

2.1 Linear dynamic model 

The globally valid linear dynamic model is 
represented by a discrete-time transfer function G(z-1) 
with input u(k) and output v(k): 
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This representation can be easily transformed into a 
linear difference equation 
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where the ap and bq are the parameters of the 
denominator and numerator polynomials, respectively. 
The intermediate variable v(k) is therefore given by 
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2.2 Local model structure 

The i-th local linear static model is defined by (see 
fig. 2) 

  ii dkvKky += )()( , (4) 

with Ki being the gain and di being the intercept of the 
line. Rearranging (4) for v(k) yields 
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Inserting (5) into (3) to eliminate the intermediate 
variable v(·) and solving for the output y(k) gives 
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Equation (6) constitutes the local linear model 

 ikky θx )()( = , (7) 

where the regressor vector is defined as 
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and the parameter vector θi  is given by 

( )[ ]T
nimiini aadbKbKaa +++−−= KKK 111 1θ .(9) 

Eq. (7) defines a local linear dynamic model with an 
additional bias term. Obviously, the model is linear in 
the parameters θi and depending on the noise spectrum 
a suitable linear parameter estimation algorithm can be 
used for local optimal estimation. The RLS-algorithm 
in a formulation without the need of a matrix 
inversion is given by the set of coupled recursive 
equations 
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It is important to note that the parameters of the linear 
dynamic transfer functions are globally valid for all 
local models. Since the individual parameters θij in (9) 
contain the original parameters ap, bq, Ki, and di in a 
redundant way, the transfer function may be 
reconstructed assuming unity gain [5]. Therefore, the 
static gain between input u(k) and output y(k) is 
exclusively assigned to the local linear static model 
given by (4) and  
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holds. In the remainder of this paper it is assumed that 
the RLS-algorithm is applied for the estimation of the 
unknown local parameter vector θi. 

2.3 Global model structure 

The global model structure can be written as a 
superposition of the individual local models 

 ∑= ii kky θx )()( φ , (14) 

with φi being a validity function for each local model. 
The validity function can chosen to be discrete (e.g. 
zero or one) or continuously differentiable [5]. It 

should be noted that the validity functions are defined 
by the partitioning ci described earlier. This means 
that each local model is valid from a certain point on 
the v-axis ci up to the neighboring point ci+1. This 
partitioning also permits nonlinear characteristics 
where a unique inverse does not exist. 

The problem of an optimal global model can be stated 
as follows: How many local models should be chosen, 
and how to choose the partitioning of the nonlinearity 
(see fig.2)? These questions are addressed and 
answered in the following section. 

3 Criterion for local model size 
After introducing the basic idea for optimal model 
choice the algorithm will be presented in form of a 
flow-chart. 

3.1 Fundamental idea 

The fundamental idea of choosing the optimal local 
model size is to use the variance σei

2 of the residual ei 
of each local model. The residual σei

2 of each local 
model is composed of the error covariance 2

vσ  (due to 
measurement noise) and the bias covariance 2

bσ  (due 
to model mismatch): 

 222
bvei σσσ +=  (15) 

For a given confidence level α (e.g. α=95%) the 
variance of the residual for a linear model is χ2-
distributed with respect to the degrees of freedom 
(DOF) [6]. In this case the bias covariance 2

bσ  will be 
zero and only the measurement noise contributes to 
the residual. If there is a significant deviation from 
this distribution, the assumption of a linear model 
must be abandoned. In fig. 3 this optimal model size 
occurs at the sample denoted by c1 (at DOF=10). A 
larger model will certainly be worse due to a bias error 
(the nonlinear characteristic is significantly different 
from the local model) and a smaller model will be 
worse due to a variance error (less DOFs result in a 
larger covariance of parameters). 

Fig. 3 Left: Local linear model. Right: Variance of the 
residual σei

2 and χ2-distribution over model DOF. 

The variance error is acceptable for a local linear 
model since it is inside the respective χ2-distribution 
(see fig. 3, right). The hypothesis of a linear model is 
still valid. In this case the region of validity for that 
specific local linear model can be extended until the 
bias error becomes dominant and the residual will 
come to lie outside the χ2-distribution. 

v(k)

y(k)

c0 c1 DOF

χ2,σe
2

1 10
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If 2
vσ  is a priori known or estimated the respective χ2-

distribution can be utilized as an upper bound for 
testing the linearity of the local model. 

3.2 Algorithm for optimal model choice 

In the case of a ramp-like input signal with additional 
white noise the algorithm proceeds in two nested 
loops. 

In the inner loop the RLS-algorithm is employed for 
parameter estimation and recursive computation of the 
current residual. This residual is tested for linear 
model hypothesis using the χ2-distribution. If the 
hypothesis holds (meaning that a linear model is 
appropriate to explain the variation in the output), new 
measurement data are processed and the region of 
validity for the local model is automatically increased. 

In the outer loop the RLS-algorithm is initialized and 
in the case of a rejected linear model hypothesis the 
parameters of the local model are stored together with 
the information on the region of validity (see fig.4). 

Fig. 4 Algorithm for optimal choice of local linear 
models using the χ2-criterion. 

It should be noted that this criterion automatically 
adapts to the measurement noise level of the output. 
Since the bias of the linear model due to the 
nonlinearity 2

bσ  is masked by the covariance of the 
output noise 2

vσ , small output noise levels will lead to 
more localized and accurate models while large output 
noise levels will yield more extended and less accurate 
models as depicted in fig.5. For a given nonlinearity 
the model size depends on the noise and confidence 
levels only. 

Fig. 5 Comparison of model size depending on noise 
level. Left: Small output noise leads to small and 

accurate models. Right: Large output noise leads to 
more extended less accurate models. 

One of the main advantages of the proposed algorithm 
is the fully adaptive choice of model size regarding 
output noise level. There is only one scalar parameter 
for tuning of the models left to the user: The 
confidence level α for hypothesis testing. For a small 
α smaller and more accurate local models will result, 
while for a large α larger models with a smaller 
overall model complexity emerge. 

3.3 Recursive formulation of ARX residual 

For the ARX model with a transfer function of 
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the residual e(k) can be conveniently defined by 
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Using the elements of the parameter vector defined in 
eq. (9) and allowing for the constant term )1( ++mniθ  the 
residual of the individual local models ei(k) results in 
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Based on the definition of the covariance of the 
residual 
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the recursive formulation for the covariance of the 
residual σei

2 in the i-th model is finally 
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Eqs. (18) and (20) can be easily integrated in existing 
recursive identification schemes (e.g. RLS) with a 
minimum of computational effort. It should be noted 
that for other than ARX models only eq. (18) has to be 
adjusted accordingly while eq. (20) is valid regardless 
of the noise model structure. 

3.4 Input signals 

The most favorable input signal u(k) for applying the 
proposed criterion is a ramp with superimposed white 
noise (in order to guarantee persistent excitation). In 
that case the local models will almost always increase 
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from small to large values on the v(k)-axis and each 
local model is optimized in a sequential procedure. 

Nevertheless, algorithms have been proposed where 
arbitrary input signals can be applied [4]. These 
approaches require the additional incorporation of on-
line adjustment of already existing model boundaries. 
Although the main idea of such an approach is already 
available it is beyond the scope of this paper to discuss 
such an algorithm here. 

4 Statistical properties 
The statistical properties of the Wiener model and the 
estimated parameters are important not only from a 
theoretical point of view, but they also give to the user 
additional information on the reliability of the 
identified model. One important feature is the 
prediction interval of the non-linear characteristic 
since it contains the output uncertainty of the 
identified model in the most relevant way. 

4.1 Parameter covariance from RLS 

The parameter covariance of the RLS-algorithm is 
automatically delivered by  

 ( ) )()(cov 2 kPk eii σ=θ , (21) 

where P(k) is the matrix defined in eq.(12). Therefore, 
the RLS-algorithm includes an on-line estimate of the 
parameter uncertainties. A problem associated with 
eq.(21) is that the parameter vector θi contains the 
original system parameters in a lumped formulation. 
Only the covariance of the numerator coefficients ap is 
explicitely contained. It is therefore not possible to 
compute prediction intervals for the non-linear 
characteristic from the parameter covariance alone. 

4.2 Estimation of the intermediate variable 

Using an estimate of the unknown intermediate 
variable v(k) the above outlined problem can be 
overcome. If an estimate of v(k) is available the 
prediction interval for each local model may be simply 
computed by a statistic based on the estimated data. 

In principle, two possibilities for estimating v(k) exist: 
Filtering the input u(k) through the identified model of 
the transfer function (using eq.(3)) or using the 
measured output y(k) as an input to the inverse local 
static model (utilizing eq.(5)). For two reasons the first 
mentioned approach is favorable. First, the input is 
assumed to be exactly known whereas the output is 
corrupted by measurement noise. This output noise 
will certainly corrupt the reconstructed intermediate 
variable v(k) as well. This will be especially 
problematic in the case of a small gain Ki, since the 
inverse will amplify the noise level. Second, the 
transfer function model is globally valid. By means of 
eq.(21) the parameter set with the smallest error 
covariance can be utilized for estimation of v(k). 

The best choice for computing an estimate of the 
intermediate variable is given by 
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which constitutes a simulated output using the 
identified transfer function with the most reliable 
parameter set. 

4.3 Computation of the prediction intervals 

The prediction intervals pi(v) are readily computed 
using a standard formulation for a data set with a 
linear regression model: 
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Here, Ki and di are the parameters of the linear local 
model, 

2,2 −ntα  is the 2
α  percentile of Student's t-

distribution with n−2 degrees of freedom, si is the 
sample covariance, and vμ  is the sample mean of the 
intermediate variable. Extensive Monte-Carlo 
simulations have shown that the prediction intervals 
defined by eq.(23) do contain the expected percentage 
of data regardless of data amount or model 
parameters. 

5 Simulation results 
5.1 Pharmacological model 

The Wiener model of the pharmacological Propofol 
model is studied [1]. The linear dynamic part 
represents a multi-compartment model for the 
distribution, elimination, and metabolism of the drug 
inside the body tissue (pharmacokinetics) and is given 
by the transfer function 
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The nonlinear static part represents the effect of the 
drug concentration at the central nervous system 
(pharmacodynamics) and is defined by the Hill-
equation 
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The Hill-Equation poses a strong nonlinear (sigmoid) 
relation between the drug concentration at the effect 
compartment (effect concentration) and the patient’s 
reaction (BIS – bi-spectral index, a measure derived 
from EEG signals). 

The input signal u(k) consists of 200 data points and is 
defined by a ramp with superimposed white noise of 
variance σu

2=152. The output y(k) is corrupted by 
measurement noise (an ARX noise model is assumed). 
Two cases are studied: 1) The variance of the 
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measurement noise is σm
2=1.2 resulting in 5 small and 

accurate local models. 2) σm
2=48 resulting in 3 larger 

and less accurate models. The nonlinearities for both 
cases are depicted in figs. 6 and 7. 

The black dots represent the data from simulation 
(observe that the actual v-coordinates are not available 
for identification), the red crosses are the 
reconstructed data from the simulation, and local 
linear models together with prediction intervals for a 
confidence level of 90% are plotted in blue. The true 
nonlinearity is given by the red line. 

0 200 400 600 800 1000
-20

0

20

40

60

80

100

120

v: effect concentration

y:
 B

IS

 
Fig. 6 Static nonlinearity with σm

2=48 resulting in 3 
local models. 
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Fig. 7 Static nonlinearity with σm

2=1.2 resulting in 5 
local models. 

5.2 Identification results 

From figs. 6 and 7 the performance of the proposed 
criterion is apparent: Using the χ2-distribution the 
information contained in the data is extracted in an 
optimal way. When a small output noise level is 
present (fig. 7) the nonlinearity can be detected earlier 
by the criterion and the models are automatically 
chosen smaller. In the presence of large output noise 
(fig. 6) nonlinearities are masked by the variance in 
the output variable y(k) resulting in local models with 
a much larger region of validity. These models are 
obviously less accurate, however, they fully exploit 
the information in the data and the overall global 
model is significantly smaller. 

Another important fact is the dependence of the 
parameter covariance on the slope of the local model. 
As can be seen in fig. 6, the first model with a region 
of validity in the variable v(k) from approximately -70 

to 400 obviously gives a poor estimation of the v-
variable. Nevertheless, this does not affect the overall 
model performance, since both slope and gain are 
estimated correctly. In order to extract a partitioning ci 
out of the local models the intersections of the local 
linear models can be easily computed. 

6 Conclusion 
In this paper a parameter estimation method for the 
identification of a Wiener model based on local linear 
models has been proposed. The model structure 
consists of a linear dynamic transfer function followed 
by a static map which is parameterized by piece-wise 
linear models. The region of validity of these models 
is simultaneously optimized with the parameter 
estimation utilizing the χ2-distribution of the 
covariance of the residual for a given confidence level. 
The local model is allowed to grow until the 
covariance of the residual is significantly exceeding 
the expected value for a linear model. A simulation of 
the pharmacological Propofol model clearly 
demonstrates the performance of the new criterion. It 
enables an automatic and optimal determination of the 
number of models, their respective region of validity, 
and guarantees optimal performance of the overall 
global model. 
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