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Abstract  

This contribution describes the development of a mixed integer nonlinear programming 
(MINLP) model for a differential non-isothermal plug-flow (PFR) reactor network, based on 
experience gained when developing a nonlinear programming (NLP) model for batch 
reactors. Each PFR was modelled as an NLP train of differential segments (final elements) 
rather than an MINLP train. This model was then applied to a process synthesis example 
regarding the production of allyl chloride.  
In the first step of the NLP model’s development, simulation has to be performed in order to 
analyze the preliminary behaviour of a given kinetic system, and to provide a good initial 
point for optimization. PFR reactors in the allyl chloride example are currently modelled 
using mixed-integer nonlinear programming (MINLP) models, where differential-algebraic 
equations (DAE) are converted into an algebraic system of equations by the use of an 
Orthogonal Collocation on Finite Element (OCFE), which can be combinatorially very 
expensive, especially when the reactor network is part of an overall process scheme. The 
efficiency of MINLP process synthesis can be improved, using the NLP model for the train of 
differential segments. The length of each final element is then declared as variable, and 
optimal residence time is shifted to the end of the final element. In this way, some equations 
become linear and the combinatorics of the model is significantly reduced. This is especially 
emphasized when the reactor network model is a part of the entire process superstructure. 
Results show the considerable impact of the decrease in combinatorial burden, nonlinearity, 
and the effects of nonconvexities, on the efficiency and success of the optimization.  
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1 Introduction 
Recent research to in the optimization of batch and 
plug-flow reactors could be classified as modelling 
[1], dynamic optimization [2], [3]  and/or on-line 
optimization [4], [5]. Kinetics in batch and plug-flow 
(PFR) reactors is described using differential 
equations. These equations represent complex 
optimization problems, even in small and simple 
examples. The use of Orthogonal Collocation on 
Finite Elements (OCFE) in optimization models of 
batch or PFR reactors has become a well-established 
numerical method. The OCFE method with a fixed 
finite element is the most straightforward and easiest. 
However, when using fixed finite elements directly it 
is impossible to explicitly model the optimal length of 
PFR or neither the retention times of the batch 
reactors nor the optimal outlet concentrations and 
conditions. Consequently, the use of flexible finite 
elements is regarded as a conventional approach for 
overcoming these difficulties [6]. This model, 
however, seems to have become more nonlinear 
because the length of the final element is converted 
into a variable. 

A robust procedure for the dynamic off-line 
optimization of batch reactors was proposed [7]: in 
order to decrease nonlinearity a differential-algebraic 
optimization problem (DAOP) model was initially 
converted into a robust nonlinear programming (NLP) 
model by the use of Orthogonal Collocation on a 
fixed, rather than flexible, Finite Element. In addition, 
a mixed-integer nonlinear programming (MINLP) 
model and various strategies for the dynamic 
optimization of a batch reactor were developed [8] in 
order to obtain a robust model, suitable for NLP or 
MINLP synthesis problems. Different schemes for 
OCFE were studied to increase the robustness of the 
model.   

This paper describes the development of a NLP model 
for the train of PFR segments, and the application of 
this model to an allyl chloride example. A comparison 
between this model and the MINLP model of [9] is 
also given. 

2 NLP model for PFRs  
2.1 NLP vs. MINLP 
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When flexible finite elements were applied to the NLP 
model of the batch reactor [8] the nonlinearity of the 
model changed: some additional nonlinearities were 
introduced because the length of the final element was 
declared as variable. On the other hand, some 
nonlinearities vanished because optimal time was 
moved to the end of the final element and several 
equations became linear. On average, with flexible 
final elements, nonlinearities were reduced and CPU 
time also decreased. Therefore, it is promising that the 
NLP model would behave better during the process 

synthesis than the MINLP model, especially because 
the combinatorics of the model can be significantly 
reduced and the selection of the final element as in the 
MINLP model can be avoided. 

2.2 Batch reactor case 

A NLP model for the train of plug-flow reactor 
segments was developed based on the robust 
optimization procedure [7] for a batch reactor. The 
procedure consists of the following steps: 

a) Simulation is useful for the preliminary behavioural 
analysis of a given kinetic system and to provide a 
good initial point for NLP.  

b) Development of a robust NLP model: a differential-
algebraic optimization problem (DAOP) model is 
converted into a robust NLP model by the use of 
Orthogonal Collocation on fixed Finite Element 
(OCFE), where the inner optimal point is modelled 
continuously by the use of a parallel Legendre 
polynomial representation.  

c) NLP optimization of the batch reactor 

The OCFE method was applied to convert the DAOP 
model.  
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where cP, cBP, cR are concentrations of product, by-
product and raw material; V is reactor volume; 
Φpreheat/precool and ΦS are heat flows of 
preheating/precooling and steam, respectively; T0 is 
the temperature at the beginning of reaction, Tb is the 
temperature before preheating/precooling (i.e. 293 K); 
topt is the optimal termination time; ΔrH is the enthalpy 
of the reaction; ρ is mixture density, cP is heat 
capacity and from C1 to C5 are cost coefficients for 
product, raw material, by-product, utility and 
preheating/cooling, respectively. 

Illustrative example: 

The model (B-NLP), shown, was obtained for the 
simple example of a batch reactor (Fig. 1), with the 
following kinetics for the consecutive reaction           
A → B → C.  
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Fig. 1: Batch reactor 

A system of differential equations is transformed into 
an algebraic system of equations. Residuals are 
included directly into the NLP model as constraints 
with coefficients, which become decision variables. 
Collocation points correspond to the shifted roots of 
an orthogonal Legendre polynomial, and residuals are 
enforced at the collocation points. Initial and 
collocation coefficients cAi, cBi, cCi are then used in 
parallel Legendre polynomials with topt as a degree of 
freedom, in order to define optimal terminal 
concentrations cB

opt, cC
opt which define revenue in the 

objective function. Gaussian integration formula 
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of heat consumption integral in the objective function. 
Note that initial and collocation coefficients for heat 
flow ΦS are used in the Gaussian integration. 
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Residual equations and component balances: 
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Energy balance:  
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Optimal outlet point by Legendre polynomials: 
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Initial conditions: 
0
C1,0C

0
B1,0B

0
A1,0A       ,     , cccccc l,il,il,i === ======  

The point at the interior knot is defined as the optimal 
interior point from the previous finite element defined 
by Legendre polynomials: 

opt
1,A,0A, −= = lli cc       opt

1,0 −= = lli TT

opt
1,B,0B, −= = lli cc     opt

1,S,0S, −= = lli ΦΦ

opt
1,C,0C, −= = lli cc   (B-NLP) 

2.3 Development of a NLP model for PFR train 

A NLP model for the train of differential non-
isothermal segments was developed based on the 
model (B-NLP) for batch reactors. Both models are 
very similar except that the batch reactor is integrated 
over time and PFR over the length of the reactor. 
Therefore, development of a model for PFR train from 
the model for a batch reactor was quite 
straightforward. In the use of the above-illustrative 
example, a NLP model with flexible final elements for 
PFR train (P-NLP) is given:  
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Residual equations and component balances: 
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Energy balance:  
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Optimal outlet point by Legendre polynomials: 
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Initial conditions: 
0
C1,0C

0
B1,0B

0
A1,0A       ,     , cccccc l,il,il,i === ======  

The point at the interior knot is defined as the optimal 
point from the previous finite element defined by 
Legendre polynomials at the end point of the final 
element: 

opt
1,A,0A, −= = lli cc      T  opt

1,0 −= = lli T
NEl ,...3,2=∀
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1,B,0B, −= = lli cc    Φ  opt

1,S,0S, −= = lli Φ

opt
1,C,0C, −= = lli cc  (P-NLP) 

It should be noted that the MINLP model is similar to 
the NLP with the exception of some additional 
constraints. These are applied in order to select the 
optimal number of finite elements: 

1−≤ ll yy    (1) NE∈∀l

lll ytt ⋅≤ UPopt,opt  (2) 

( ) ( 1
maxmaxUPopt,opt 11 +−⋅+−⋅+≤ llll ytyttt )
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 (3) 

( ) ( 1
maxmaxUPopt,opt 11 +−⋅−−⋅−≥ llll ytyttt  (4) 

Eq. (1) is applied to ensure that all finite elements up 
to the last selected one are selected. If the 
corresponding finite element is rejected, Eq. (2) forces 
optimal time or the length of the segment to zero. 
When the finite element is not the last one, Eqs. (3)-
(4) are applied to force the  or  of each finite 
element into the upper bound. Hence, all the selected 
finite elements are fully exploited for integration, 

except the last one where the optimal time is 
continuously defined by the Legendre polynomial 
between the bounds. Note that, in contrast to the NLP 
model where the integration is distributed equally and 
continuously within all the finite elements, here 
integration is applied only to the selected finite 
elements. 

opt
lt

opt
ll

The final step was to apply this model to the process 
synthesis example of allyl chloride which was solved 
using a mixed integer process synthesizer MIPSYN 
(Mixed-Integer Process SYNthesizer), the successor 
of PROSYN-MINLP [10]. MIPSYN enables 
automated execution of simultaneous topology, and 
parameter optimization of the processes. 

Optimization of each NLP subproblem is performed 
only on the existing units rather than on the entire 
superstructure, which substantially reduces the size of 
the NLP subproblems. The effects of nonconvexities 
that arise in nonlinear process models are handled by 
the use of several strategies, which represent an 
extension of the modeling/decomposition strategy and 
the AP/OA/ER algorithm. An NLP initializer, model 
generator and a comprehensive library of models for 
basic process units and interconnection nodes, 
together with a comprehensive library of basic 
physical properties for the most common chemical 
components were developed in order to facilitate 
different types of computation (for example 
initialization, optimizing fixed structures). 

3 Allyl chloride example 
Process systems where reactors are part of the overall 
process scheme are numerically difficult to solve. The 
MINLP model formulation for PFR trains was 
recently used in an allyl chloride example, as 
described in [9]. The reactor/separator superstructure 
(Fig. 2a) comprises a sequence of PFR/CSTRs with 
side streams and intermediate separators at different 
locations. Each PFR consists of a train (Fig. 2b) of 
several differential non-isothermal elements. The 
optimal number of elements is selected during MINLP 
optimization.  

 
a) 

 

 

 

b) 

Fig. 2: a) Superstructure of allyl chloride problem. b) 
Train of differential segments in PFR. 
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The corresponding DAE system is modelled by 
orthogonal collocation on flexible finite elements. 
Simultaneous heat integration is performed by a Yee’s 
model [11]. The overall model is highly nonlinear and 
nonconvex. Based on experiences gained by solving 
the simple example of a batch reactor [8], 
nonlinearities could be significantly reduced if an 
NLP model with flexible final elements is applied, 
rather than the MINLP model. Hence, the MINLP 
model for PFR trains was converted to an NLP model 
with flexible final elements.  

Since the optimal length is now located at the end of 
the final element, some equations became linear and, 
since the selection of optimal final element is 
overridden, the combinatorial burden is significantly 
reduced.    

3.1 Results and comparison 

Optimization of allyl chloride production was first 
performed with the MINLP model for PFR trains and 
then with the NLP model. Tab. 1 shows CPU times for 
NLP and MILP steps until the 15th major MINLP 
iteration for MINLP, and for the NLP model of PFR 
trains. 

Tab. 1 Solution statistics of allyl chloride problem. 

It.      PRF model   
phase 

CPU for 
MINLP, s 

CPU for 
NLP, s 

NLP 36,903 24,7821 
MILP 1,280 2,140
NLP 0,094 2,8132 

MILP 1,484 4,531
NLP 1,844 4,0783 

MILP 3,171 5,421
NLP 2,313 2,5314 

MILP 5,842 4,812
NLP 1,512 2,1135 

MILP 5,217 8,171
NLP 1,031 0,5476 

MILP 4,639 7,187
NLP 0,594 0,6887 

MILP 5,514 7,484
NLP 0,516 0,6258 

MILP 13,013 5,906
NLP 1,391 0,2349 

MILP 8,482 7,468
NLP 0,422 0,43810 

MILP 22,714 5,734
NLP 1,813 1,51611 

MILP 12,778 4,640
NLP 2,625 0,42212 

MILP 166,217 6,546
NLP 0,359 0,51613 

MILP 350,305 7,703
NLP 2,063 0,32814 

MILP 258,214 4,765
NLP 1,016 1,25015 

MILP 455,690 5,625
NLP 54,496 42,881∑ 

MILP 1314,560 86,207

As expected from previous experiences [8], the CPU 
time needed to solve the NLP model with flexible 
final elements for PFR trains is significantly lower 
than the one for the MINLP model. However, as can 
be seen from Tab. 1, the difference is now 
unexpectedly large – up to two orders of magnitude. It 
is interesting to note that, in the case of the NLP 
model for PFR trains, the CPU times of the MILP 
phase not increase from iteration to iteration, as in the 
case of the MILP model. Moreover, a better solution 
was found (82.253 vs. 81.924), and it was noted that 
the unpleasant effects of nonconvexities are reduced 
for an order of magnitude.       

4 Conclusions 
The main goal of the research described in this 
contribution is to improve the efficiency of the 
MINLP synthesis of systems which, besides the 
algebraic system of equations, contains a differential 
system of equations. 

Former research indicates that declaring final elements 
flexible and, hence, shifting optimal time or length to 
the end of the final element, actually increases the 
efficiency of the search because the combinatorial 
burden, by the use of the NLP model, is significantly 
reduced. In this way, Big-M MINLP formulation (Eqs. 
(1)-(4)) of the optimal finite element selection within 
the PFR train is now avoided.   

Based on the experiences gained with the batch 
reactor, we have developed an NLP model for PFR 
train, in order to improve the efficiency of the MINLP 
synthesis of process flowsheet performed by the use of 
the process synthesizer MIPSYN. The NLP model of 
PFR trains was tested on the process synthesis 
example of allyl chloride production.    

The results show a surprising increase in efficiency – 
for an order of magnitude or even more. A 
supplementary research is under way in order to 
further improve the efficiency of the search and to 
decrease the approximation error of OCFE.   
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