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Abstract  

Artificial agents and multi-agent systems are attractive area which touches many other areas 
of interest including non-informatics ones like sociology or economy as well as many topics 
relating to computers, for example artificial intelligence or system design. When we have to 
develop a multi-agent system we need, among others, to build agent architectures together 
with some decision algorithms and communication protocols. Before such systems are 
realized in a real world we should sufficiently test and verify them. Presented text describes a 
new approach to building artificial agents and multi-agent systems using methodology of 
model-based design. In this methodology some models are used during the design process. 
The models are used for testing of particular elements behavior as well as for testing of 
behavior of the system as whole – in both cases by their simulation. Environment surrounding 
the elements is also simulated in the model and particular systems are tested whether they 
fulfills given objectives in proper way. When all the system elements work well in the model 
then they could be realized in some real environment. Our effort is to develop a tool that 
would allow model-based design of systems with artificial agents. For this reason we have 
been building application called T-Mass (Tool for Multi-agent System Development) which is 
aimed right on the model-based development of such systems and provides some important 
facilities for building rational agents. As a part of the tool we developed language called t-
Sapi by which agents’ behavior is controlled. Also we made two-phase synchronous 
algorithms for control of the model run. This paper shows how some popular agent 
architectures could be built with the t-Sapi language and how then they are used in the multi-
agent simulation model. We also present some remarks about usage of the modeled agents 
and their consequent realization in real multi-agent applications.  

Keywords: Simulation models, Agent control language, Reactive and BDI agents, 
Model-based design. 
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1 Introduction 

If we work with multi-agent systems (MAS) we 
usually have to deal with some kind of distributed 
system with nodes that show some appearances of 
intelligence. Recent understanding of the MAS is that 
there exist a net of agent platforms interconnected 
with communication and transport channels. Such a 
network consists of agent-friendly environment where 
intelligent agents can reside and act, eventually travel 
among particular platforms. 

Subject of artificial agents are not new. Artificial 
intelligence as well as many other branches takes 
artificial agent as a part of their systems for more than 
twenty years. However, different areas understand the 
term ‘agent’ slightly different. Here we will deal with 
artificial intelligent agent as it is understand in 
computer society. Contribution of this text should be 
introduction of principles of a new tool called T-Mass 
and demonstration that such approach to MAS 
modeling could bring advances in MAS development.  

First we explain some basics of artificial agents and 
MAS in chapter 2. We also discuss here some tools 
for MAS development and we point out some 
advantages and weak spots of these tools. Then we 
introduce the T-Mass tools in chapter 3. It will include 
agent control language called t-Sapi and principles of 
multi-agent model simulations. Chapter 4 gives some 
examples of agents programmed in the t-Sapi 
language and chapter 5 provides description of T-
Mass usage for model based design. Then we 
conclude with some remarks about our expectations of 
the tool and outline our future work in this area. 

2 Artificial agents, multi-agent systems 
and their models 

To describe artificial agents we use definition which 
says that agents are autonomous entities working in 
mostly unknown and highly dynamic environment for 
the reason of some objectives achievement. Agent 
senses environment through its sensors and acts in the 
environment rationally. It means that its doing has a 
motivation. On the other hand its architecture should 
not be very complex. In fact agent is rather simply 
structure that has full control of its behavior and has 
ability to act flexible, swiftly and rationally. 

To introduce today most popular agent architectures 
we distinguish between reactive and deliberative 
agents. Reactive agents in their pure form have been 
introduced by Brooks [2]. Brooks argued that there 
need not be symbolic reasoning process to make 
agents act with some intelligence. Such agents have 
only some models of their behaviors that are used 
when relevant situation appears in the environment. 
Other approaches to artificial agent realizations use 
so-called mental states. Reasoning based on agent’s 
beliefs and obligations is used for Shoham’s agent 

called Agent-0 [9]. Also there are architectures based 
on intentions (originally developed by Bratman [1]) 
extended later to today’s popular Belief-Desire-
Intention agent architectures [4,7]. 

In the field of MAS system it is somehow quite 
difficult to distinguish between (multi)agent modeling 
tools and tools for agent system development. For 
example 3APL and its successor 2APL system, JADE 
framework, CYBELE, and many others can be used 
when one develops systems with agents as well as the 
multi-agent model is built. Of course there are many 
other modeling techniques for the purposes of 
modeling discrete parallel systems, which are quite 
close to the MAS. So first we describe some popular 
tools and then we outline our motivation for creating 
another model-based framework for development of 
systems with artificial agents. 

2.1 Overview of current tools for MAS modeling 
and development  

First we introduce some widely known tools for agent 
development. 

We start with the 2APL and JAM! tools. Both tools 
are based on the BDI theory. 2APL allows making 
plans in a form of production rules that could be 
applied for some goals or sub-goals. This tool is 
equipped with FIPA specification corresponding 
platform [13]. 

JAM! is a language with syntax similar to the Java 
language and also allows to make agents based on 
BDI principles. These tools are suitable mainly when 
some agents with intention-driven behavior should be 
realized and their behavior verified in a multi-agent 
community. 

JADE is a Java framework and platform for building 
multi-agent systems in accordance with FIPA 
specifications. Beside FIPA agent platform it provides 
tools for implementation of communication protocols, 
ontology, behavioral procedures etc.. It is quite nice 
and probably the most popular tool today but in its 
original version it does not support development of 
mature agent architectures. Some extensions as is 
JADEX solve such disadvantage and introduce 
mechanisms how to implement for example the 
intention driven agents. 

Finally we discuss the Petri nets. Along with original 
tools for agent development the Petri-nets could be 
mention here. At least we mention these nets for the 
reason that they represent major stream in distributed 
system modeling. Today there is some effort to use 
Petri nets in agent modeling and realization. For 
example they are used by Feber [5] to demonstrate 
distributed algorithms for distributed reasoning in 
multiagent community, communication protocols, 
coalition forming etc. There is also a Petr-net based 
system for MAS system realization called MULAN 
developed at University of Hamburg [3]. At last there 
is an effort to develop rational agents with object 
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oriented Petri nets at Brno University of Technology. 
But some disadvantages can be identified when Petri 
nets are brought into the world of rational agents. 
Mainly the expressivity of the Petri net model better 
suits to distributed systems than particular agent 
architecture realizations. Furthermore agent systems 
need to have strict interface between agents and their 
environment and also some symbolic reasoning 
mechanisms used often in the field of artificial agents 
are not native to the Petri nets. 

2.2 Motivation for another tool development 

There are many other tools which could be useful for 
agent systems development. The reason why we 
develop another modeling and development tool is 
that T-Mass is found at low-level of abstraction and it 
is aimed to provide possibility to create many kinds of 
agents. It is easily interpretable and has many features 
suitable for agent programming. Finally the language 
allows straightforward implementation of platform for 
such agents for devices varying from microcontrollers, 
intelligent sensors and embedded systems to classic 
computer implementation environments. 

3 A tool for multi-agent simulation  

The previous sections outlined that there are many 
tool for modeling and developing agents and that 
despite of this we made another one. Now we are 
going to introduce basics of our system. Because this 
is a modeling tool we start first with some formal 
definitions of the models for which the tool is being 
developed.  

3.1 T-Mass model 

As usual, the T-Mass model is a tuple M=(U,R) where 
U is an universe and R is a characteristic. Universe is 
a set of all elements within the system. In T-Mass the 
universe is a set of t-Sapi based agents. Characteristic 
is a set of all relations among the agents. Behavior of 
the system is determined by the system state changes 
during the simulation run. The state of the system is 
then given by state of all particular agents and the 
agent states are given by particular states of some 
parts of the agent architecture, which will be shown 
next.  

3.2 Architectures for t-Sapi based agents 

In general, behavior of the agent as a system element 
is driven by the t-Sapi language. Before we introduce 
t-Sapi language we need to discuss two issues 
important for the language semantic. From our point 
of view the agent is a program running at a computer-
based architecture. But that is not necessarily right 
because there are some pure hardware agents that have 
not programmable control unit, for example situated 
automata. Nevertheless, most of agents are controlled 
by some form of robot loop – from elementary 
reactive agents to complex intention driven 
architectures. Thus the modeling system will contain 

generic agent architecture and a language that would 
allow creation of various agents. For this reason we 
show architecture for t-Sapi based agents first and 
then we introduce platform in which such agent must 
be situated. 

The architecture is very similar to the Von Neumann 
computer architecture. In general the architecture 
comprises of data stored in database, language 
interpreter and a set of registers. Furthermore there is 
an input/output interface managing incoming and 
outgoing messages. There also can be some control 
signals that will be closely described in the section 
about T-Mass modeling principles. 

The database is logically divided into three main parts. 
Its first part is reserved for agent’s knowledge base. 
Agent’s knowledge base is a database of grounded 
predicates of first-order predicate logic (FOPL). We 
will denote language of grounded predicate Lgp as a 
subset of FOPL language. 

Second part of the agent architecture is agent’s plan 
base where some plans written in the t-Sapi language 
L tsapi can be stored. Finally there is another base for 
incoming messages and it is called input buffer.. The 
input buffer is a database of predicate lists which are 
members of language L list that is a set defined as 

∀f1…fn∈L gp (n≥1,(f1,…fn)∈L list)              (1) 

Register base is a vector of individual registers. Each 
register contains a set of predicates, it means that state 
of the register is similar to the state of knowledge 
base, or it could contain a plan, then its state is a plan. 
So the register has a value from the set  

(L list ∪ L tsapi)
 n                         (2) 

Although there could be several registers we will 
expect only one register for purposes of this text.  

General t-Sapi based agent architecture with all the 
components is shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Generic architecture for t-Sapi based agents 

Thus, the agent state is given by states of its particular 
parts. Thus the function of agent behavior could be 
defined as follows 

σ: U→ LGP×L list
*×L tsapi

*×(L list ∪ L tsapi)
        (3) 
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and it maps particular agents to their state, which is a 
relation among states of its knowledge base, input 
buffer, plan base and registers.  

For correct agent functionality it is considered that 
such agent would be situated in a platform. In general, 
the platform provides some services to all the agents 
residing in the platform. Among others the most 
important service is that the platform manages 
communication among agents. Moreover the platform 
provides some computational services to the agents. 
Formally, let there be a set FNC which is set of all 
functions that the platform provides to the agent, and 
then each function from the set f∈FNC is defined as  

f: L list
* ∪ L tsapi → L list

* ∪ L tsapi                       (4) 

It means that the functions’ input is either plan or a list 
of predicates and their output is again plan or a 
predicate list.  

Now all the basics constructions have been defined 
and we can introduce the t-Sapi language itself. 

3.3 t-Sapi language specification 

Instead of strict formal syntax and semantic 
specification of the language we provide some 
informal notation with intuitively semantic definition. 
Formal syntax and semantic of original language 
could be found in dissertation [11], but in Czech 
language only. Here the language syntax will be 
presented as some constructions with predefined sub-
languages. Semantic will be then illustrated by 
possible changes of the model and agent state.  

3.3.1 Identifiers and predicates 

Some of syntax construction was shown in the 
previous sections. The syntax of L tsapi language will 
be shown using languages L GP and L list. In addition 
we will need some other sets/languages. L ID will be 
language of identifier defined by regular expression  

L ID=[#]{[a..z][A..Z][0..9]} +                 (5) 

Now we define L GP as a language given by the 
following formula 

∀ps,f1…fn∈L ID(n≥0,(ps,f1…fn)∈L GP)           (6) 

Note that the predicate is written little bit different and 
that the predicate symbol is the first element of the 
sequence. General list with predicates can contain 
predicates or sub-lists.  

∀s1…sn∈L ID∪L GLIST (n≥1,(s1…sn)∈L GLIST )      (7) 

In similar way we will use another language L p - 
which is language of predicates with possible 
anonymous variables instead of terms.  

∀f1…fn∈L ID∪{_}(n ≥1,(f1,f2…fn)∈LP)          (8) 

The anonymous variable is those used in the Prolog 
language and is also denoted by underscore symbol 
“_”. Its usage will be explained in the sections dealing 
with language semantic.  

3.3.2 t-Sapi plan 

Plan is the basic structure expressible in the t-Sapi 
language. The plan is as usual a sequence of actions. 
In this case it is linear sequence in a form of a linear 
list enclosed in brackets. If there is a set of all possible 
actions (written as corresponding sentence of a 
language of actions denoted as LACT⊆L tsapi) then t-
Sapi plan is any string from the set given by the 
formula 

∀a1,a2…an∈LACT(n≥1,^(a1,a2,…an)∈L tsapi)        (9) 

Execution of the plan is performed action by action till 
the plan fails or it is successfully executed. It also gets 
us closer to the semantic of the language. In fact each 
action could either succeed or it could fail.  

If an action fails then agent’s register is set to a 
constant ‘fail’ and rest of the plan into which the 
failed action belonged is skipped. But not the upper-
level plan is skipped if the failed plan had been 
executed as a lower-level one.  

After action performance the model state can change 
in many ways which depends on the action type. In 
general, all parts of agent’s internal state could change 
as well as the universe of the model.  

Let us start with two special actions succeed and fail 
which immediately cause successful or unsuccessful 
termination of the plan. Naturally there could be more 
actions within the plan. In the following sections all 
the remaining action types will be shown and their 
functionality will be defined. 

3.3.3 Internal actions 

In general, internal actions are those that do not affect 
environment but only agent’s internal state. First two 
actions are those that manipulates with knowledge and 
plan base. If there is a grounded predicate d and a 
predicate q with possible anonymous variable, then 
the action has a form by the following definition. 

∀d∈L GP ∀q∈LP (+d ∈L ACT ∧ –q ∈LACT)    (10) 

are valid t-Sapi actions. Their semantic is then as 
follows. 

KB’  = KB∪d                                            (11) 
KB’  = KB - {d•∃σ(d=q σ)}                     (12) 

It means that if some data are added into the 
knowledge base the base is simply extended by the 
data. If there is action of deletion (which also always 
succeeds) all the predicates unifiable with the action 
parameter are deleted from the base. 

In very similar manner there are actions of addition 
and deletion into/from the plan base. If there is a plan 
written in t-Sapi then addition of such a plan has 
syntax  

∀plan∈L tsapi (+^plan ∈LACT)              (13) 
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Deletion of a plan is performed when plan’s name is 
mentioned as action parameter. Then action form the 
set given by formula 

∀name∈LID (-^(name) ∈LACT)            (14) 

with the name parameter deletes a plan with 
corresponding name if such plan exists in the plan 
base. 

PB’ = PB-^plan • plan=(name,(Body))        (15) 

If there is not plan with given name the action 
succeeds anyway. 

3.3.4 Communication 

On the other hand, communication is considered to be 
only possible external action that t-Sapi based agent 
can make. In fact, real agent has some effectors which 
use to affect surrounding environment. But we omit 
such acting in our model.  

Now we provide syntax and semantic of the agent’s 
act actions. Agent (let it be named ‘agent1’) makes 
communication act toward another agent if it performs 
action with syntax defined by the formula 

∀rcv∈L ID msg∈L list(!(rcv,msg)∈LACT)       (16) 

where rcv is identifier and msg is a list. This action 
succeeds if there is an agent with corresponding name, 
else it fails. In the successful case receiver’s input 
buffer is extended with tuple containing sender’s 
name and the sent message. 

IB receiver‘= IB receiver∪(‘agent1’,msg)        (17) 

Analogously, action that which withdraw messages 
from agent’s input buffer uses identifier snd and has 
syntax constructed as 

∀snd∈L ID(?(snd)∈LACT ∨ ?(_)∈LACT)           (18) 

with semantic 

τ’=n•(snd,n)∈IB  or τ’=n• (_,n)∈IB      (19) 
IB’=IB -n                             (20) 

It means that the register will contain a message from 
specified sender or a messages from any sender stored 
in the input buffer. The message is subsequently 
deleted from the input buffer. 

There are two other internal action types. First one is 
for belief base testing and has a form of predicate 
(with possible anonymous variable). Such action 
succeeds if there is at least one unifiable predicate, 
else it fails. Result of the action is then a list of all 
unifiable predicates in the knowledge base. So if there 
is for example a testing action with predicate quer∈LP 
y, then the registers wallue would change as follows 

τ’={data•∃σ(data=query σ)}               (21) 

Last action type which is considered to be internal is 
‘function call’ action type. It has the same syntax as 
the testing action. To distinguish it from testing the 

interpreter checks whether the agent platform provide 
a function with the same name as is the predicate 
symbol of the predicate. If there exists such function 
then it is executed with predicate terms as its 
parameter. Then after the execution the result is stored 
in the register. For example if there is action 
‘(factorial,2)’ and agent platform provides function 
named factorial, then the result of such action is value 
2 in the register τ. 

3.3.5 Sub-plan execution 

Sub-plan execution and some other actions should be 
also considered to be internal actions. Although they 
can produce only internal changes we describe them in 
separate sections. In principle, this section as well as 
the following two sections is about expansion of the 
plan base.  

First we focus on sub-plan executions. By the term 
‘sub-plan execution’ we mean that we expand 
currently running plan by inserting another plan. 
There are two ways how to execute sub-plan – direct 
way and indirect way. If the direct execution is used 
then the sub-plan is written inline in the execution 
action. The syntax of direct execution action type is as 
follows 

∀act1,…actn∈LACT(n≥1,@(act1…actn)∈LACT)   (22) 

Here the act1 and act2 and so on are some other 
actions constituting of the plans. Semantic of this kind 
of action is shown in Fig. 2a.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Direct and indirect sub-plan execution 
 

After action execution that always succeeds the 
agent’s plan is expanded with given sub-plan. 
Advantages of such construction is that even the sub-
plan fails the original plan does not fail but continues 
with action following the sub-plan execution action. 

Indirect plan execution is similar to the direct 
execution, but the plan is not written inside the action. 
Instead of the plan script there is mentioned a plan 
name as action parameter. 

∀plan_name∈L ID(@^(plan_name)∈LACT)    (23) 

@(a11,a 12,…a1n)  

#PLAN: 

A
#PLAN

  a11  a12         a1n 

 ..... 

 ..... 

@^ (plan_name) 

#PLAN: 

A
#PLAN: 

PLAN BASE 

 ..... 

 ..... 

A
…. 

a, 

b, 

 Plan_name 
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Then a plan from agent’s plan base is included into the 
original plan if there is a plan with corresponding plan 
name. Process of indirect plan execution is shown in 
Fig. 2b. 

3.3.6 Plan instance execution 

This section as well as the next section is extension of 
the original language as it was proposed in dissertation 
[11]. Experiments and practical usage of the original 
language leaded to a need for upgrade of the language 
in some aspects. One of these aspects was a need of 
meta-reasoning capability provided by the language. 
Original language then was upgraded with actions that 
allow executing a plan for given number of steps. 
Such executions have syntax 

∀act1…actn∈LACT,m∈ℵ,name∈L ID,iname∈L ID  
      (n≥1, m≥0 

@((act1…actn),m)∈LACT                      
∨@((act1,act2…),#iname,m)∈LACT              
∨@^(name,m)∈LACT                                     
∨@^(name,#iname,m)∈LACT)                  (24) 

Strings name and iname stand for some identifiers. 
First two actions are for direct execution and the rest 
is for indirect execution. Plan is executed for n steps. 
If it does not finish the rest of it is stored in the plan 
base. But there are two ways how the plan is named. If 
there is mentioned a name with preposition # and the 
name is original in the plan base then such name is 
used. If there is already stored a plan with the same 
name then some implicit name generated by 
interpreter is used. The implicit name is also used 
when there is not mentioned a name in the action. 
Principle of plan instance execution is shown in the 
following Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3  Plan instance execution principle 

Plans that arise by such execution are treated as some 
instances of the original plan. They could be executed 
again. But as they are processed the corresponding 
plan instance in the plan base is modified 
immediately. When execution of the plan instance 
finishes, it is deleted from the plan base. 

3.3.7 Cloning 

Last but not least feature of the language is that it 
allows runtime cloning of the agents. It means that 
agent can make its copy or it can create an agent and 

supply it with a subset of its plan- and belief-base. 
Because the cloning will not be used further in this 
text we introduce it just briefly. Syntax of the cloning 
action type  can be for example is as follows 

@@^(clonecore,(newbase,_),^(!(a,b))) 

Double ‘at’ symbol is followed by plan name (in this 
case clone_core) that will be the top-level plan of the 
new agent. Then list of predicates or plans (in the 
same form as the plan base and knowledge base 
testing actions types have) are used for creation of the 
agent’s knowledge and plan base. This action is that 
one that changes universe of the model. 

4 Agent implementation in t-Sapi 

Here we show some implementation examples. In the 
following examples we will work with some functions 
that should be provided by agent platform. These 
function are well known from the LISP language, 
concretely we need functions car, cdr for reaching 
head (first element) and tail (rest of the list without the 
first element) 

4.1 Reactive agent implementation 

First we demonstrate how pure reactive agents can be 
implemented. Main plan named ‘#CORE’ represents 
general robotic loop that executes two sub-plans – one 
for event selection and another for selected event 
processing. Executed sub-plans may but need not fail, 
however even if one of them fails, the main agent loop 
does not fail. 

π(#CORE,(@( 
         @^(select_event), 

 @^(process_event), 
) 

            @^(#CORE) 
          ) 

) 

Implementation of the sub-plans depends on event 
representation and representation of relevant processes 
for given events. Agent expects the incoming events 
to be in its input buffer and the event itself has a form 
of a grounded predicate. For our purposes the events 
will be sent by agent named GODI (we will discuss 
role of the GODI agent later in this text) and the 
predicate symbol will be ‘event’. So if there is a tuple  

(GODI,(event,term1,term2…)) 

in the input buffer, then the agent tries to start a plan 
which is relevant to the event predicate. Let there be 
some lists stored in the knowledge base with the 
following form 

((event,terms…),(plan_name)) 

and for each such list there should be also a plan with 
corresponding name stored in the plan base 

π(plan_name,(actions…)) 

@( (a 11,a 12,…a1n) ,2)  

#PLAN: 

A
#PLAN

  a11  a12          

   a2   a3                an 

   a2   a3   …          

   a2   a3   …          

PLAN BASE 

A
….     a13         a1n          

#pi_01 
#PLAN
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Now the processes for event selection and event 
processing can be shown. 

First we implement the plan named ‘select_event’. Its 
structure can be for example like this 

π(select_event,(?(GODI),(cdr,τ),  
                @((τ,_),succeed),                               
                  @(select_event)) 

The action withdraws an event from agent’s input 
buffer. If the action succeeds, the register τ contains 
an event list. Then the event list presence in agent’s 
knowledge base is tested. The script contains a 
register symbol which is substituted with actual event 
list. In runtime the testing action will appear there. If 
the testing succeeds the plan finishes with success and 
the event with corresponding plan name is appears in 
the register. If the testing action fails the plan is 
executed again until it finds a suitable event or the 
input buffer is empty. 

π(process_event,((car, τ),@ τ̂)) 

Plan for processing event is even simpler. It reaches 
plan name using the car function and then executes 
the plan. After plan execution, no matter if successful 
or not, the control is returned back to main control 
loop and another event can be processed. 

4.2 Intention-driven agents implementation 

Second agent architecture that will be shown in this 
text is based upon today popular idea of intention-
driven behavior. In brief, these systems adopt some 
goal as its intention when they find that this goal could 
be achieved. Then they make plans in a form of so 
called intention structures that are built with some 
predefined plans (sometime also called to be ‘acts’) 
from agent’s plan library. When there is an intention 
structure, its plans can be executed until the intention 
is fulfilled or all possible attempts to make intention 
structure for given intention fails. 

To make such system with t-Sapi language we exploit 
its meta-reasoning abilities. In fact there will be two-
levels of processes. At the upper level there will be 
process of goal and sub-goal processing and intention 
structure fabrications. This process senses for 
incoming events and would tries to make proper 
intention structure for these events. At the lower level 
will be the processes for intention achievements 
themselves. In Fig. 4 an example of BDI agent 
reasoning is shown. 

At the beginning one goal is in agent’s desire set and 
belief set is a state pictured with rectangle (a,). There 
is a plan library with one plan suitable for (yellow) 
goal and applicable in given environment state. Such 
plan is added into the intention set (b,). During 
execution of the plan the belief state changed and two 
new desires aroused. First desire (green) is a sub-goal 
of the only intention and second (brown) is another 
top-level goal (c,). Then there are two goals but only 

one relevant and applicable plan (for the green sub-
goal) which is consequently added to the intention 
structure (d,). 

Now we try to implement such system in t-Sapi. 
However the implementation of complete BDI agent 
is quite complex to fit it into this text we focus only at 
the most important implementation parts. In following 
paragraphs some basic constructions for intention 
forming and execution will be shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Example of BDI based reasoning 

The intention structure itself will be a structure of t-
Sapi plans. At the lower level some plans stored in an 
intention structure would be executed. First we show 
how plans and some metadata could be stored in belief 
and plan bases. Each plan has defined purposes and 
condition of its usage. So in belief base there are a set 
of tuples in the form. 

((event,terms…),condition,plan_name) 

Event and condition are predicates and plan_name is a 
string. This triple is used when relevant (for an event) 
and applicable (in actual state of belief base) plan is 
searched. It is supposed that for each plan_name 
appearing in any such triple there is a plan with the 
same plan_name stored in the plan base. 

BDI agent control loop will be similar to that of 
reactive agent. 

π(#CORE,( @( 
        @^(select_event), 

@^(process_event), 
) 
@^(execute_is), 
@^(#CORE) 

         ) 
) 

c,                              d, 

Desires 

Beliefs 

Intentions 

Desires 

Beliefs 

Intentions 

Desires 

Beliefs 

Intentions 

Desires 

Beliefs 

Intentions 

a,                              b, 
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Selection of an event is quite the same as before. The 
only change is that the sender is followed with an 
intention which raised the event. We will discuss this 
later in this section. So the event in general looks as 
follows 

(sender,PID,(event,term1,term2…)) 

The event selection plan deletes the sender 
information and finishes with a list 

(PID,(event,term1,term2…)) 

Now we aim our sights at event processing. We 
consider that there is an event in the register in the 
mentioned form and the agent needs to find out a plan 
which is relevant and applicable. The agent first 
withdraws all the triples relevant to the event and then 
it tests the condition of usage. It does this until it finds 
a plan that is applicable or it finds that such a plan 
does not exist. Implementation of this is little bit 
difficult in t-Sapi but still possible. 

 π(process_event ,( 
1,  -(pint,_),+(pint,τ),  
2,  (cdr, τ),(car, τ),  
3,  (τ,_,_),…  
 
First the register is stored in the knowledge base for 
further use. All predicates with the same predicate 
symbol are deleted and the current event is stored (viz. 
line 1). Subsequently the event is reached as the 
second element of the register list (line 2). Following 
line tests for presence of triple beginning with the 
event stored in the register. If this action succeeds the 
process continues with these actions: 

4, (cdr, τ),-(pplan,_),+(pplan,τ), 
5, (car, τ), τ, 

Three actions in line 4 stores the tuple (condition,plan) 
into the knowledge base. Then the condition itself is 
reached and test action with the condition is executed. 
If the plan does not fail so far then we have a plan that 
is relevant for the event and applicable in given belief 
base state. 

Now the plan does the following: executes founded 
plan and possibly executes plan instance that raised 
the event. Rest of the “process_event” plan then 
continues with 

6, (pplan,_),(cdr, τ),(car, τ), 
7, @ τ̂, 
8, (pint,_),(cdr, τ),(car, τ), 
9, @ τ̂ 
10, )) 

Actions in lines 6 and 8 reach plans stored during the 
process and they execute event-related plan in line 7 
and possibly executes plan instance which produced 
the event in line 9. 

Another important issue of the BDI agent is how the 
plans for event processing are designed. In short there 

are several classes of actions distinguished to internal 
actions, external actions and goal statements. 
Although internal actions and external actions are 
similar to the knowledge base manipulation and 
communication actions provided by the t-Sapi 
language, we only show here how goal statements can 
be realized.  

First we show goal achievement statement. It means 
that agent should actively behave to reach declared 
goal. Goal statement is in fact event processing. If a 
plan needs to set a sub-goal it simply send an event to 
its input buffer. But there must be also mention an 
instance of the event producer. For this reason some 
mechanisms introduced in the section about plan 
instances execution will be used. For example there is 
a plan with actions (a1,a2,…an) and the first action 
should be a sub-goal statement. This can be 
implemented in the t-Sapi language with respect to the 
event-processing plan like this 

π(plan1, 
@^((a2,…an),#plan1_i1,0), 
!(agent1,#plan1_i1, 

(event,terms…)) 
) 

Please note that symbols a2 … an are again just some 
abstractions for some t-Sapi actions. But the principle 
is clear. Rest of the plan is executed for 0 steps. It 
means that just an instance called #plan1_i1 is created 
and stored in the plan base. Then a message is sent to 
itself (here we consider agent’s name to be ‘agent1’) 
and if the specified event is processed by a sub-plan, 
the rest of the plan is executed as the instance.  

Second possible goal declaration is called goal testing. 
In this case the agent waits whether declared goal is 
valid or not (the goal may occur for example by 
environment change - as an example let us mention 
goal ‘is it night?’). In this case the test goal action 
could be implemented as 

   π(plan2, 
    (@( 
       @( 

       (test_predicate) 
       -(waitning_inst,#plan2_i1)) 
  @(a2,…an)      
  @plan2), 

                       #plan2_i1,0) 
     +(waiting_inst, #plan2_i1) 
   ) 

Based on similar principles like the achievement goal 
action the plan instance is used here. First a plan 
instance is made. Then a predicate is written into the 
knowledge base meaning that there is an instance 
waiting with test goal. The instance consists of 
predicate testing itself, execution of the rest of the 
plan and deletion of instance predicate from the 
knowledge base. Each time the main loop cycle 
reaches execution of the plan “execute_is” the plan 
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should execute one waiting plan instance if there is 
any. When the test predicate passes successfully then 
rest of the plan instance is executed and the waiting 
predicate need not be tested anymore. If it fails the 
instance is renewed by calling itself again.  

We will not describe the “execute_is” plan here 
because it is similar to the “process_event” plan. 
Better after showing how some agent types can be 
implemented with t-Sapi we move forward and 
introduce T-Mass simulation principles. 

5 Multiagent system development and 
simulation with T-Mass 

In this section we show how the process of model 
based design can be realized with T-Mass. First we 
introduce main stages of the model-based design and 
then we focus on the simulation process. 

5.1 Model-based design of MAS 

Model based development of MAS has three main 
phases – creation of the model, design by simulation 
and realization of the system. In following points we 
extend each phase for closer insight into the process. 

Creation of the model 
1. Definition of agent roles necessary for the model. 
2. Definition of agents’ behavior (decision 

procedures, protocols, etc.) 
3. Development or adoption of suitable agent 

architecture. 
4. Implementation of particular agents. 
5. Development of environment model. 

Model-based design 
6. Loop: 

6.1. Simulation of system run and checking of 
agent behavior. 

6.2. Identification of possible design mistakes.  
6.3. Handling problems and redevelopment of the 
multi-agent model. 

Realization of the system 
7. Realization of the agents with identical behavior 

as their models had. 
8. Situating agents into the real environment. 

The whole process of model-based design also 
includes stages that are out of the scope of the T-Mass 
toll. Especially the first three points are related rather 
to software engineering where methodology like 
GAIA [10] could help. To propose agent roles and 
agent one need to delimitate responsibilities, 
competences and protocols and for those find which 
kind of agent and which algorithms would be suitable. 

The point 4 we have already discussed the in the 
previous sections. Environment modeling is of current 
interest in the researchers’ community. Thus we only 
remarks that the model needs to be relevant and all 
important aspects for agent behavior must be present 
in the model. So we move on to the process of 

simulation that allows us checking whole system 
behavior and tuning particular agents’ facilities. 

5.2 Simulation with T-Mass 

Current version of T-Mass allows making two-step 
synchronous si1mulation. In general there are two 
phases, first one of agents’ acting and second one of 
environment evaluation.  

5.2.1 The GODI agent 

There is still the problem how to include agents’ 
environment into the system model. As we outlined 
already the multi-agent community is in principal an 
open system influenced by a surrounding environment 
that can be affected by the agents. But the 
environment has not been introduced till now however 
it is important part of MAS. 

In fact the environment is encapsulated in one of the 
agent’s knowledge base and its evolution is under 
control of this agent. Such an agent is called GODI 
(General Object Design Interpreter). GODI is 
responsible for projection of other agents’ actions to 
the environment, evolution of the environment due to 
the actions and exposition of the environment state to 
the other agents input buffers. The GODI maintains 
whole multi-agent model in its knowledge base that 
means that it has a model of environment as well as a 
model agent population. In each step the GODI can 
evolve the model and to send relevant messages to the 
agents. Furthermore also the communication among 
the agent is driven by the GODI and for this reason 
there are not direct interconnections among the 
particular agents. The only communication is between 
agents and the GODI and vice versa. 

5.2.2 T-Mass Simulation loop 

In recent realization of the T-Mass tool the simulation 
process runs in accordance with two phase’s 
synchronous algorithm. In the first stage each agent 
runs their code until an external action in the form of 
communication act toward the GODI is performed. 
When every MAS agent has sent its external action to 
the GODI the second phase starts. GODI makes an 
evaluation of the MAS model then finds particular 
stimuli for every agent in the model and sends them 
their stimuli in a form of message.  

The whole simulation process is driven by some 
signals which are sent to particular agent (recall Fig. 
1). The signals used in the system are Ready, 
ClearBuffer (request for deleting the content of 
receivers input buffer), Evolve (continue process run), 
Execute (start process run) and Terminate (cancel 
process run). The behaviour of the simulator works by 
the following algorithm: 

1. System Initialization, the agent population 
constitutes universe U = (GODI, Agent1, Agent2 
… Agentn) 

2. T-Mass sends the ClearBuffer signal to every agent 
in the model 
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3. T-Mass sends the Execute signal to the GODI 
4. GODI evolves the system model and sends the 

proper stimuli to the model agents 
5. GODI sends the Ready signal to the T-Mass 
6. T-Mass sends the ClearBuffer signal to the GODI  
7. T-Mass sends the Execute signal to the model 

agents 
8. Agents run their plans until they execute an 

external action 
9. Agents send the Ready signal to the T-Mass. 
10. T-Mass either 

10.1. sends the Terminate signal to the model 
agents and terminates the simulation. 

10.2. or sends nothing to them now 
11. T-Mass sends the Evolve signal to the GODI.  
12. GODI evolves the system model and sends the 

proper stimuli to the model agents. 
13. GODI sends the Ready signal to the T-Mass. 
14. T-Mass sends the ClearBuffer signal to the GODI. 
15. T-Mass sends Evolve signal to every model agent. 
16. GOTO 8 

In each step the system allows to check particular 
agent’s bases states as well as all the messages that 
had been sent between agents and the GODI. So the 
simulation is done when all the agents work well and 
they satisfy the reasons for which they had been made.  

5.3 Realization of t-Sapi agent 

Finally, if we are satisfied with the agents behavior in 
the model we would like to use them in a real 
environment. Our approach how to do it is to make 
platforms with t-Sapi interpret for each device in 
which the agent(s) should reside (computer operating 
systems, microcontrollers, etc.). Such platform should 
also provide basic algorithms which the agents use 
and furthermore it should be able to interpret agent 
actions in the real environment. As we showed before, 
the actions in the model are in the form of 
communication acts. But now the platform should 
execute some real actions when agent makes some 
communication acts. So however there are some 
actions in the form of communication and some of 
real acting the agents does not distinguish among them 
in this sense.  

Realized agents then are faced with real environment 
and their success depends on how we managed to 
model the environment. For some reasons we can find 
that there is something wrong in the systems. Then we 
need to check if the environment does not behave in 
different way than we had expected or if we have not 
omitted something to verify via simulation. If such 
situation appears the agent and their capabilities 
should be redeveloped again. 
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7 Conclusion and future work 

We presented a new way how the systems with agents 
can be developed. As main advances of the language 
we consider that it is easily interpretable, allows 
implementation systems based on behavior like 
intelligent agents are and is suitable for usage in 
systems for MAS modeling and simulating. Finally 
the language allows their mobility among platforms 
where interpreter of the language and some basic 
functions are present. Because this is language based 
at low level of abstraction and it is sometime 
uncomfortable to write codes directly in this language 
our next effort is to develop higher-level language. 
Such language would allow easier implementation of 
agents and t-Sapi is then used as destination language 
into which the agent code will be compiled. 

In this time the tool is implemented in Java language 
for the Eclipse system. Also some experiments with 
agent models and models of multi-agent systems have 
been done. Now we are about to make some real 
applications in which artificial agents will be used. 
Concretely we intend to make sensor network for 
runtime risk analysis and management. In this 
application such principles described in this paper will 
be used for checking of argumentation protocols and 
distributed reasoning algorithms. We believe that this 
process approves usefulness of T-Mass usage and 
possibly inspire us for further extension of this 
modeling tool. 
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