
FRAMEWORK FOR MODEL-BASED DESIGN OF
MULTI-AGENT SYSTEMS

František Zbořil jr.

Brno University of Technology, Faculty of Information Technology

zborilf@fit.vutbr.cz (František Zbořil)

Abstract

Artificial agents and multi-agent systems are attractive area which touches many other areas
of interest including non-informatics ones like sociology or economy as well as many topics
relating to computers, for example artificial intelligence or system design. When we have to
develop a multi-agent system we need, among others, to build agent architectures together
with some decision algorithms and communication protocols. Before such systems are
realized in a real world we should sufficiently test and verify them. Presented text describes a
new approach to building artificial agents and multi-agent systems using methodology of
model-based design. In this methodology some models are used during the design process.
The models are used for testing of particular elements behavior as well as for testing of
behavior of the system as whole – in both cases by their simulation. Environment surrounding
the elements is also simulated in the model and particular systems are tested whether they
fulfills given objectives in proper way. When all the system elements work well in the model
then they could be realized in some real environment. Our effort is to develop a tool that
would allow model-based design of systems with artificial agents. For this reason we have
been building application called T-Mass (Tool for Multi-agent System Development) which is
aimed right on the model-based development of such systems and provides some important
facilities for building rational agents. As a part of the tool we developed language called t-
Sapi by which agents’ behavior is controlled. Also we made two-phase synchronous
algorithms for control of the model run. This paper shows how some popular agent
architectures could be built with the t-Sapi language and how then they are used in the multi-
agent simulation model. We also present some remarks about usage of the modeled agents
and their consequent realization in real multi-agent applications.

Keywords: Simulation models, Agent control language, Reactive and BDI agents,
Model-based design.

Presenting Author’s biography

František Zbořil jr. is assistant professor at Faculty of Information
technology, Brno University of Technology. His major interests comprise
several area related to artificial intelligence and modeling, mainly
artificial agent architectures, multi-agent systems modeling as well as
computer vision and robotics. His actual research is aimed onto
realization of intelligent agent-based systems for runtime risk analysis
and management.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

If we work with multi-agent systems (MAS) we
usually have to deal with some kind of distributed
system with nodes that show some appearances of
intelligence. Recent understanding of the MAS is that
there exist a net of agent platforms interconnected
with communication and transport channels. Such a
network consists of agent-friendly environment where
intelligent agents can reside and act, eventually travel
among particular platforms.

Subject of artificial agents are not new. Artificial
intelligence as well as many other branches takes
artificial agent as a part of their systems for more than
twenty years. However, different areas understand the
term ‘agent’ slightly different. Here we will deal with
artificial intelligent agent as it is understand in
computer society. Contribution of this text should be
introduction of principles of a new tool called T-Mass
and demonstration that such approach to MAS
modeling could bring advances in MAS development.

First we explain some basics of artificial agents and
MAS in chapter 2. We also discuss here some tools
for MAS development and we point out some
advantages and weak spots of these tools. Then we
introduce the T-Mass tools in chapter 3. It will include
agent control language called t-Sapi and principles of
multi-agent model simulations. Chapter 4 gives some
examples of agents programmed in the t-Sapi
language and chapter 5 provides description of T-
Mass usage for model based design. Then we
conclude with some remarks about our expectations of
the tool and outline our future work in this area.

2 Artificial agents, multi-agent systems
and their models

To describe artificial agents we use definition which
says that agents are autonomous entities working in
mostly unknown and highly dynamic environment for
the reason of some objectives achievement. Agent
senses environment through its sensors and acts in the
environment rationally. It means that its doing has a
motivation. On the other hand its architecture should
not be very complex. In fact agent is rather simply
structure that has full control of its behavior and has
ability to act flexible, swiftly and rationally.

To introduce today most popular agent architectures
we distinguish between reactive and deliberative
agents. Reactive agents in their pure form have been
introduced by Brooks [2]. Brooks argued that there
need not be symbolic reasoning process to make
agents act with some intelligence. Such agents have
only some models of their behaviors that are used
when relevant situation appears in the environment.
Other approaches to artificial agent realizations use
so-called mental states. Reasoning based on agent’s
beliefs and obligations is used for Shoham’s agent

called Agent-0 [9]. Also there are architectures based
on intentions (originally developed by Bratman [1])
extended later to today’s popular Belief-Desire-
Intention agent architectures [4,7].

In the field of MAS system it is somehow quite
difficult to distinguish between (multi)agent modeling
tools and tools for agent system development. For
example 3APL and its successor 2APL system, JADE
framework, CYBELE, and many others can be used
when one develops systems with agents as well as the
multi-agent model is built. Of course there are many
other modeling techniques for the purposes of
modeling discrete parallel systems, which are quite
close to the MAS. So first we describe some popular
tools and then we outline our motivation for creating
another model-based framework for development of
systems with artificial agents.

2.1 Overview of current tools for MAS modeling
and development

First we introduce some widely known tools for agent
development.

We start with the 2APL and JAM! tools. Both tools
are based on the BDI theory. 2APL allows making
plans in a form of production rules that could be
applied for some goals or sub-goals. This tool is
equipped with FIPA specification corresponding
platform [13].

JAM! is a language with syntax similar to the Java
language and also allows to make agents based on
BDI principles. These tools are suitable mainly when
some agents with intention-driven behavior should be
realized and their behavior verified in a multi-agent
community.

JADE is a Java framework and platform for building
multi-agent systems in accordance with FIPA
specifications. Beside FIPA agent platform it provides
tools for implementation of communication protocols,
ontology, behavioral procedures etc.. It is quite nice
and probably the most popular tool today but in its
original version it does not support development of
mature agent architectures. Some extensions as is
JADEX solve such disadvantage and introduce
mechanisms how to implement for example the
intention driven agents.

Finally we discuss the Petri nets. Along with original
tools for agent development the Petri-nets could be
mention here. At least we mention these nets for the
reason that they represent major stream in distributed
system modeling. Today there is some effort to use
Petri nets in agent modeling and realization. For
example they are used by Feber [5] to demonstrate
distributed algorithms for distributed reasoning in
multiagent community, communication protocols,
coalition forming etc. There is also a Petr-net based
system for MAS system realization called MULAN
developed at University of Hamburg [3]. At last there
is an effort to develop rational agents with object

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

oriented Petri nets at Brno University of Technology.
But some disadvantages can be identified when Petri
nets are brought into the world of rational agents.
Mainly the expressivity of the Petri net model better
suits to distributed systems than particular agent
architecture realizations. Furthermore agent systems
need to have strict interface between agents and their
environment and also some symbolic reasoning
mechanisms used often in the field of artificial agents
are not native to the Petri nets.

2.2 Motivation for another tool development

There are many other tools which could be useful for
agent systems development. The reason why we
develop another modeling and development tool is
that T-Mass is found at low-level of abstraction and it
is aimed to provide possibility to create many kinds of
agents. It is easily interpretable and has many features
suitable for agent programming. Finally the language
allows straightforward implementation of platform for
such agents for devices varying from microcontrollers,
intelligent sensors and embedded systems to classic
computer implementation environments.

3 A tool for multi-agent simulation

The previous sections outlined that there are many
tool for modeling and developing agents and that
despite of this we made another one. Now we are
going to introduce basics of our system. Because this
is a modeling tool we start first with some formal
definitions of the models for which the tool is being
developed.

3.1 T-Mass model

As usual, the T-Mass model is a tuple M=(U,R) where
U is an universe and R is a characteristic. Universe is
a set of all elements within the system. In T-Mass the
universe is a set of t-Sapi based agents. Characteristic
is a set of all relations among the agents. Behavior of
the system is determined by the system state changes
during the simulation run. The state of the system is
then given by state of all particular agents and the
agent states are given by particular states of some
parts of the agent architecture, which will be shown
next.

3.2 Architectures for t-Sapi based agents

In general, behavior of the agent as a system element
is driven by the t-Sapi language. Before we introduce
t-Sapi language we need to discuss two issues
important for the language semantic. From our point
of view the agent is a program running at a computer-
based architecture. But that is not necessarily right
because there are some pure hardware agents that have
not programmable control unit, for example situated
automata. Nevertheless, most of agents are controlled
by some form of robot loop – from elementary
reactive agents to complex intention driven
architectures. Thus the modeling system will contain

generic agent architecture and a language that would
allow creation of various agents. For this reason we
show architecture for t-Sapi based agents first and
then we introduce platform in which such agent must
be situated.

The architecture is very similar to the Von Neumann
computer architecture. In general the architecture
comprises of data stored in database, language
interpreter and a set of registers. Furthermore there is
an input/output interface managing incoming and
outgoing messages. There also can be some control
signals that will be closely described in the section
about T-Mass modeling principles.

The database is logically divided into three main parts.
Its first part is reserved for agent’s knowledge base.
Agent’s knowledge base is a database of grounded
predicates of first-order predicate logic (FOPL). We
will denote language of grounded predicate Lgp as a
subset of FOPL language.

Second part of the agent architecture is agent’s plan
base where some plans written in the t-Sapi language
L tsapi can be stored. Finally there is another base for
incoming messages and it is called input buffer.. The
input buffer is a database of predicate lists which are
members of language L list that is a set defined as

∀f1…fn∈L gp (n≥1,(f1,…fn)∈L list) (1)

Register base is a vector of individual registers. Each
register contains a set of predicates, it means that state
of the register is similar to the state of knowledge
base, or it could contain a plan, then its state is a plan.
So the register has a value from the set

(L list ∪ L tsapi)
 n (2)

Although there could be several registers we will
expect only one register for purposes of this text.

General t-Sapi based agent architecture with all the
components is shown in Fig. 1.

Fig. 1 Generic architecture for t-Sapi based agents

Thus, the agent state is given by states of its particular
parts. Thus the function of agent behavior could be
defined as follows

σ: U→ LGP×L list
*×L tsapi

*×(L list ∪ L tsapi)
 (3)

INT

FNC

IB

KB/PB

 ττττn

In

Out

Cnt. in
Cnt. out

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

and it maps particular agents to their state, which is a
relation among states of its knowledge base, input
buffer, plan base and registers.

For correct agent functionality it is considered that
such agent would be situated in a platform. In general,
the platform provides some services to all the agents
residing in the platform. Among others the most
important service is that the platform manages
communication among agents. Moreover the platform
provides some computational services to the agents.
Formally, let there be a set FNC which is set of all
functions that the platform provides to the agent, and
then each function from the set f∈FNC is defined as

f: L list
* ∪ L tsapi → L list

* ∪ L tsapi (4)

It means that the functions’ input is either plan or a list
of predicates and their output is again plan or a
predicate list.

Now all the basics constructions have been defined
and we can introduce the t-Sapi language itself.

3.3 t-Sapi language specification

Instead of strict formal syntax and semantic
specification of the language we provide some
informal notation with intuitively semantic definition.
Formal syntax and semantic of original language
could be found in dissertation [11], but in Czech
language only. Here the language syntax will be
presented as some constructions with predefined sub-
languages. Semantic will be then illustrated by
possible changes of the model and agent state.

3.3.1 Identifiers and predicates

Some of syntax construction was shown in the
previous sections. The syntax of L tsapi language will
be shown using languages L GP and L list. In addition
we will need some other sets/languages. L ID will be
language of identifier defined by regular expression

L ID=[#]{[a..z][A..Z][0..9]} + (5)

Now we define L GP as a language given by the
following formula

∀ps,f1…fn∈L ID(n≥0,(ps,f1…fn)∈L GP) (6)

Note that the predicate is written little bit different and
that the predicate symbol is the first element of the
sequence. General list with predicates can contain
predicates or sub-lists.

∀s1…sn∈L ID∪L GLIST (n≥1,(s1…sn)∈L GLIST) (7)

In similar way we will use another language L p -
which is language of predicates with possible
anonymous variables instead of terms.

∀f1…fn∈L ID∪{_}(n ≥1,(f1,f2…fn)∈LP) (8)

The anonymous variable is those used in the Prolog
language and is also denoted by underscore symbol
“_”. Its usage will be explained in the sections dealing
with language semantic.

3.3.2 t-Sapi plan

Plan is the basic structure expressible in the t-Sapi
language. The plan is as usual a sequence of actions.
In this case it is linear sequence in a form of a linear
list enclosed in brackets. If there is a set of all possible
actions (written as corresponding sentence of a
language of actions denoted as LACT⊆L tsapi) then t-
Sapi plan is any string from the set given by the
formula

∀a1,a2…an∈LACT(n≥1,^(a1,a2,…an)∈L tsapi) (9)

Execution of the plan is performed action by action till
the plan fails or it is successfully executed. It also gets
us closer to the semantic of the language. In fact each
action could either succeed or it could fail.

If an action fails then agent’s register is set to a
constant ‘fail’ and rest of the plan into which the
failed action belonged is skipped. But not the upper-
level plan is skipped if the failed plan had been
executed as a lower-level one.

After action performance the model state can change
in many ways which depends on the action type. In
general, all parts of agent’s internal state could change
as well as the universe of the model.

Let us start with two special actions succeed and fail
which immediately cause successful or unsuccessful
termination of the plan. Naturally there could be more
actions within the plan. In the following sections all
the remaining action types will be shown and their
functionality will be defined.

3.3.3 Internal actions

In general, internal actions are those that do not affect
environment but only agent’s internal state. First two
actions are those that manipulates with knowledge and
plan base. If there is a grounded predicate d and a
predicate q with possible anonymous variable, then
the action has a form by the following definition.

∀d∈L GP ∀q∈LP (+d ∈L ACT ∧ –q ∈LACT) (10)

are valid t-Sapi actions. Their semantic is then as
follows.

KB’ = KB∪d (11)
KB’ = KB - {d•∃σ(d=q σ)} (12)

It means that if some data are added into the
knowledge base the base is simply extended by the
data. If there is action of deletion (which also always
succeeds) all the predicates unifiable with the action
parameter are deleted from the base.

In very similar manner there are actions of addition
and deletion into/from the plan base. If there is a plan
written in t-Sapi then addition of such a plan has
syntax

∀plan∈L tsapi (+^plan ∈LACT) (13)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

Deletion of a plan is performed when plan’s name is
mentioned as action parameter. Then action form the
set given by formula

∀name∈LID (-^(name) ∈LACT) (14)

with the name parameter deletes a plan with
corresponding name if such plan exists in the plan
base.

PB’ = PB-^plan • plan=(name,(Body)) (15)

If there is not plan with given name the action
succeeds anyway.

3.3.4 Communication

On the other hand, communication is considered to be
only possible external action that t-Sapi based agent
can make. In fact, real agent has some effectors which
use to affect surrounding environment. But we omit
such acting in our model.

Now we provide syntax and semantic of the agent’s
act actions. Agent (let it be named ‘agent1’) makes
communication act toward another agent if it performs
action with syntax defined by the formula

∀rcv∈L ID msg∈L list(!(rcv,msg)∈LACT) (16)

where rcv is identifier and msg is a list. This action
succeeds if there is an agent with corresponding name,
else it fails. In the successful case receiver’s input
buffer is extended with tuple containing sender’s
name and the sent message.

IB receiver‘= IB receiver∪(‘agent1’,msg) (17)

Analogously, action that which withdraw messages
from agent’s input buffer uses identifier snd and has
syntax constructed as

∀snd∈L ID(?(snd)∈LACT ∨ ?(_)∈LACT) (18)

with semantic

τ’=n•(snd,n)∈IB or τ’=n• (_,n)∈IB (19)
IB’=IB -n (20)

It means that the register will contain a message from
specified sender or a messages from any sender stored
in the input buffer. The message is subsequently
deleted from the input buffer.

There are two other internal action types. First one is
for belief base testing and has a form of predicate
(with possible anonymous variable). Such action
succeeds if there is at least one unifiable predicate,
else it fails. Result of the action is then a list of all
unifiable predicates in the knowledge base. So if there
is for example a testing action with predicate quer∈LP
y, then the registers wallue would change as follows

τ’={data•∃σ(data=query σ)} (21)

Last action type which is considered to be internal is
‘function call’ action type. It has the same syntax as
the testing action. To distinguish it from testing the

interpreter checks whether the agent platform provide
a function with the same name as is the predicate
symbol of the predicate. If there exists such function
then it is executed with predicate terms as its
parameter. Then after the execution the result is stored
in the register. For example if there is action
‘(factorial,2)’ and agent platform provides function
named factorial, then the result of such action is value
2 in the register τ.

3.3.5 Sub-plan execution

Sub-plan execution and some other actions should be
also considered to be internal actions. Although they
can produce only internal changes we describe them in
separate sections. In principle, this section as well as
the following two sections is about expansion of the
plan base.

First we focus on sub-plan executions. By the term
‘sub-plan execution’ we mean that we expand
currently running plan by inserting another plan.
There are two ways how to execute sub-plan – direct
way and indirect way. If the direct execution is used
then the sub-plan is written inline in the execution
action. The syntax of direct execution action type is as
follows

∀act1,…actn∈LACT(n≥1,@(act1…actn)∈LACT) (22)

Here the act1 and act2 and so on are some other
actions constituting of the plans. Semantic of this kind
of action is shown in Fig. 2a.

Fig. 2 Direct and indirect sub-plan execution

After action execution that always succeeds the
agent’s plan is expanded with given sub-plan.
Advantages of such construction is that even the sub-
plan fails the original plan does not fail but continues
with action following the sub-plan execution action.

Indirect plan execution is similar to the direct
execution, but the plan is not written inside the action.
Instead of the plan script there is mentioned a plan
name as action parameter.

∀plan_name∈L ID(@^(plan_name)∈LACT) (23)

@(a11,a 12,…a1n)

#PLAN:

A
#PLAN

 a11 a12 a1n

@^ (plan_name)

#PLAN:

A
#PLAN:

PLAN BASE

A
….

a,

b,

 Plan_name

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

Then a plan from agent’s plan base is included into the
original plan if there is a plan with corresponding plan
name. Process of indirect plan execution is shown in
Fig. 2b.

3.3.6 Plan instance execution

This section as well as the next section is extension of
the original language as it was proposed in dissertation
[11]. Experiments and practical usage of the original
language leaded to a need for upgrade of the language
in some aspects. One of these aspects was a need of
meta-reasoning capability provided by the language.
Original language then was upgraded with actions that
allow executing a plan for given number of steps.
Such executions have syntax

∀act1…actn∈LACT,m∈ℵ,name∈L ID,iname∈L ID
 (n≥1, m≥0

@((act1…actn),m)∈LACT
∨@((act1,act2…),#iname,m)∈LACT
∨@^(name,m)∈LACT
∨@^(name,#iname,m)∈LACT) (24)

Strings name and iname stand for some identifiers.
First two actions are for direct execution and the rest
is for indirect execution. Plan is executed for n steps.
If it does not finish the rest of it is stored in the plan
base. But there are two ways how the plan is named. If
there is mentioned a name with preposition # and the
name is original in the plan base then such name is
used. If there is already stored a plan with the same
name then some implicit name generated by
interpreter is used. The implicit name is also used
when there is not mentioned a name in the action.
Principle of plan instance execution is shown in the
following Fig. 3.

Fig. 3 Plan instance execution principle

Plans that arise by such execution are treated as some
instances of the original plan. They could be executed
again. But as they are processed the corresponding
plan instance in the plan base is modified
immediately. When execution of the plan instance
finishes, it is deleted from the plan base.

3.3.7 Cloning

Last but not least feature of the language is that it
allows runtime cloning of the agents. It means that
agent can make its copy or it can create an agent and

supply it with a subset of its plan- and belief-base.
Because the cloning will not be used further in this
text we introduce it just briefly. Syntax of the cloning
action type can be for example is as follows

@@^(clonecore,(newbase,_),^(!(a,b)))

Double ‘at’ symbol is followed by plan name (in this
case clone_core) that will be the top-level plan of the
new agent. Then list of predicates or plans (in the
same form as the plan base and knowledge base
testing actions types have) are used for creation of the
agent’s knowledge and plan base. This action is that
one that changes universe of the model.

4 Agent implementation in t-Sapi

Here we show some implementation examples. In the
following examples we will work with some functions
that should be provided by agent platform. These
function are well known from the LISP language,
concretely we need functions car, cdr for reaching
head (first element) and tail (rest of the list without the
first element)

4.1 Reactive agent implementation

First we demonstrate how pure reactive agents can be
implemented. Main plan named ‘#CORE’ represents
general robotic loop that executes two sub-plans – one
for event selection and another for selected event
processing. Executed sub-plans may but need not fail,
however even if one of them fails, the main agent loop
does not fail.

π(#CORE,(@(
 @^(select_event),

 @^(process_event),
)

 @^(#CORE)
)

)

Implementation of the sub-plans depends on event
representation and representation of relevant processes
for given events. Agent expects the incoming events
to be in its input buffer and the event itself has a form
of a grounded predicate. For our purposes the events
will be sent by agent named GODI (we will discuss
role of the GODI agent later in this text) and the
predicate symbol will be ‘event’. So if there is a tuple

(GODI,(event,term1,term2…))

in the input buffer, then the agent tries to start a plan
which is relevant to the event predicate. Let there be
some lists stored in the knowledge base with the
following form

((event,terms…),(plan_name))

and for each such list there should be also a plan with
corresponding name stored in the plan base

π(plan_name,(actions…))

@((a 11,a 12,…a1n) ,2)

#PLAN:

A
#PLAN

 a11 a12

 a2 a3 an

 a2 a3 …

 a2 a3 …

PLAN BASE

A
…. a13 a1n

#pi_01
#PLAN

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

Now the processes for event selection and event
processing can be shown.

First we implement the plan named ‘select_event’. Its
structure can be for example like this

π(select_event,(?(GODI),(cdr,τ),
 @((τ,_),succeed),
 @(select_event))

The action withdraws an event from agent’s input
buffer. If the action succeeds, the register τ contains
an event list. Then the event list presence in agent’s
knowledge base is tested. The script contains a
register symbol which is substituted with actual event
list. In runtime the testing action will appear there. If
the testing succeeds the plan finishes with success and
the event with corresponding plan name is appears in
the register. If the testing action fails the plan is
executed again until it finds a suitable event or the
input buffer is empty.

π(process_event,((car, τ),@ τ̂))

Plan for processing event is even simpler. It reaches
plan name using the car function and then executes
the plan. After plan execution, no matter if successful
or not, the control is returned back to main control
loop and another event can be processed.

4.2 Intention-driven agents implementation

Second agent architecture that will be shown in this
text is based upon today popular idea of intention-
driven behavior. In brief, these systems adopt some
goal as its intention when they find that this goal could
be achieved. Then they make plans in a form of so
called intention structures that are built with some
predefined plans (sometime also called to be ‘acts’)
from agent’s plan library. When there is an intention
structure, its plans can be executed until the intention
is fulfilled or all possible attempts to make intention
structure for given intention fails.

To make such system with t-Sapi language we exploit
its meta-reasoning abilities. In fact there will be two-
levels of processes. At the upper level there will be
process of goal and sub-goal processing and intention
structure fabrications. This process senses for
incoming events and would tries to make proper
intention structure for these events. At the lower level
will be the processes for intention achievements
themselves. In Fig. 4 an example of BDI agent
reasoning is shown.

At the beginning one goal is in agent’s desire set and
belief set is a state pictured with rectangle (a,). There
is a plan library with one plan suitable for (yellow)
goal and applicable in given environment state. Such
plan is added into the intention set (b,). During
execution of the plan the belief state changed and two
new desires aroused. First desire (green) is a sub-goal
of the only intention and second (brown) is another
top-level goal (c,). Then there are two goals but only

one relevant and applicable plan (for the green sub-
goal) which is consequently added to the intention
structure (d,).

Now we try to implement such system in t-Sapi.
However the implementation of complete BDI agent
is quite complex to fit it into this text we focus only at
the most important implementation parts. In following
paragraphs some basic constructions for intention
forming and execution will be shown.

Fig. 4 Example of BDI based reasoning

The intention structure itself will be a structure of t-
Sapi plans. At the lower level some plans stored in an
intention structure would be executed. First we show
how plans and some metadata could be stored in belief
and plan bases. Each plan has defined purposes and
condition of its usage. So in belief base there are a set
of tuples in the form.

((event,terms…),condition,plan_name)

Event and condition are predicates and plan_name is a
string. This triple is used when relevant (for an event)
and applicable (in actual state of belief base) plan is
searched. It is supposed that for each plan_name
appearing in any such triple there is a plan with the
same plan_name stored in the plan base.

BDI agent control loop will be similar to that of
reactive agent.

π(#CORE,(@(
 @^(select_event),

@^(process_event),
)
@^(execute_is),
@^(#CORE)

)
)

c, d,

Desires

Beliefs

Intentions

Desires

Beliefs

Intentions

Desires

Beliefs

Intentions

Desires

Beliefs

Intentions

a, b,

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

Selection of an event is quite the same as before. The
only change is that the sender is followed with an
intention which raised the event. We will discuss this
later in this section. So the event in general looks as
follows

(sender,PID,(event,term1,term2…))

The event selection plan deletes the sender
information and finishes with a list

(PID,(event,term1,term2…))

Now we aim our sights at event processing. We
consider that there is an event in the register in the
mentioned form and the agent needs to find out a plan
which is relevant and applicable. The agent first
withdraws all the triples relevant to the event and then
it tests the condition of usage. It does this until it finds
a plan that is applicable or it finds that such a plan
does not exist. Implementation of this is little bit
difficult in t-Sapi but still possible.

 π(process_event ,(
1, -(pint,_),+(pint,τ),
2, (cdr, τ),(car, τ),
3, (τ,_,_),…

First the register is stored in the knowledge base for
further use. All predicates with the same predicate
symbol are deleted and the current event is stored (viz.
line 1). Subsequently the event is reached as the
second element of the register list (line 2). Following
line tests for presence of triple beginning with the
event stored in the register. If this action succeeds the
process continues with these actions:

4, (cdr, τ),-(pplan,_),+(pplan,τ),
5, (car, τ), τ,

Three actions in line 4 stores the tuple (condition,plan)
into the knowledge base. Then the condition itself is
reached and test action with the condition is executed.
If the plan does not fail so far then we have a plan that
is relevant for the event and applicable in given belief
base state.

Now the plan does the following: executes founded
plan and possibly executes plan instance that raised
the event. Rest of the “process_event” plan then
continues with

6, (pplan,_),(cdr, τ),(car, τ),
7, @ τ̂,
8, (pint,_),(cdr, τ),(car, τ),
9, @ τ̂
10,))

Actions in lines 6 and 8 reach plans stored during the
process and they execute event-related plan in line 7
and possibly executes plan instance which produced
the event in line 9.

Another important issue of the BDI agent is how the
plans for event processing are designed. In short there

are several classes of actions distinguished to internal
actions, external actions and goal statements.
Although internal actions and external actions are
similar to the knowledge base manipulation and
communication actions provided by the t-Sapi
language, we only show here how goal statements can
be realized.

First we show goal achievement statement. It means
that agent should actively behave to reach declared
goal. Goal statement is in fact event processing. If a
plan needs to set a sub-goal it simply send an event to
its input buffer. But there must be also mention an
instance of the event producer. For this reason some
mechanisms introduced in the section about plan
instances execution will be used. For example there is
a plan with actions (a1,a2,…an) and the first action
should be a sub-goal statement. This can be
implemented in the t-Sapi language with respect to the
event-processing plan like this

π(plan1,
@^((a2,…an),#plan1_i1,0),
!(agent1,#plan1_i1,

(event,terms…))
)

Please note that symbols a2 … an are again just some
abstractions for some t-Sapi actions. But the principle
is clear. Rest of the plan is executed for 0 steps. It
means that just an instance called #plan1_i1 is created
and stored in the plan base. Then a message is sent to
itself (here we consider agent’s name to be ‘agent1’)
and if the specified event is processed by a sub-plan,
the rest of the plan is executed as the instance.

Second possible goal declaration is called goal testing.
In this case the agent waits whether declared goal is
valid or not (the goal may occur for example by
environment change - as an example let us mention
goal ‘is it night?’). In this case the test goal action
could be implemented as

 π(plan2,
 (@(
 @(

 (test_predicate)
 -(waitning_inst,#plan2_i1))
 @(a2,…an)
 @plan2),

 #plan2_i1,0)
 +(waiting_inst, #plan2_i1)
)

Based on similar principles like the achievement goal
action the plan instance is used here. First a plan
instance is made. Then a predicate is written into the
knowledge base meaning that there is an instance
waiting with test goal. The instance consists of
predicate testing itself, execution of the rest of the
plan and deletion of instance predicate from the
knowledge base. Each time the main loop cycle
reaches execution of the plan “execute_is” the plan

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

should execute one waiting plan instance if there is
any. When the test predicate passes successfully then
rest of the plan instance is executed and the waiting
predicate need not be tested anymore. If it fails the
instance is renewed by calling itself again.

We will not describe the “execute_is” plan here
because it is similar to the “process_event” plan.
Better after showing how some agent types can be
implemented with t-Sapi we move forward and
introduce T-Mass simulation principles.

5 Multiagent system development and
simulation with T-Mass

In this section we show how the process of model
based design can be realized with T-Mass. First we
introduce main stages of the model-based design and
then we focus on the simulation process.

5.1 Model-based design of MAS

Model based development of MAS has three main
phases – creation of the model, design by simulation
and realization of the system. In following points we
extend each phase for closer insight into the process.

Creation of the model
1. Definition of agent roles necessary for the model.
2. Definition of agents’ behavior (decision

procedures, protocols, etc.)
3. Development or adoption of suitable agent

architecture.
4. Implementation of particular agents.
5. Development of environment model.

Model-based design
6. Loop:

6.1. Simulation of system run and checking of
agent behavior.

6.2. Identification of possible design mistakes.
6.3. Handling problems and redevelopment of the
multi-agent model.

Realization of the system
7. Realization of the agents with identical behavior

as their models had.
8. Situating agents into the real environment.

The whole process of model-based design also
includes stages that are out of the scope of the T-Mass
toll. Especially the first three points are related rather
to software engineering where methodology like
GAIA [10] could help. To propose agent roles and
agent one need to delimitate responsibilities,
competences and protocols and for those find which
kind of agent and which algorithms would be suitable.

The point 4 we have already discussed the in the
previous sections. Environment modeling is of current
interest in the researchers’ community. Thus we only
remarks that the model needs to be relevant and all
important aspects for agent behavior must be present
in the model. So we move on to the process of

simulation that allows us checking whole system
behavior and tuning particular agents’ facilities.

5.2 Simulation with T-Mass

Current version of T-Mass allows making two-step
synchronous si1mulation. In general there are two
phases, first one of agents’ acting and second one of
environment evaluation.

5.2.1 The GODI agent

There is still the problem how to include agents’
environment into the system model. As we outlined
already the multi-agent community is in principal an
open system influenced by a surrounding environment
that can be affected by the agents. But the
environment has not been introduced till now however
it is important part of MAS.

In fact the environment is encapsulated in one of the
agent’s knowledge base and its evolution is under
control of this agent. Such an agent is called GODI
(General Object Design Interpreter). GODI is
responsible for projection of other agents’ actions to
the environment, evolution of the environment due to
the actions and exposition of the environment state to
the other agents input buffers. The GODI maintains
whole multi-agent model in its knowledge base that
means that it has a model of environment as well as a
model agent population. In each step the GODI can
evolve the model and to send relevant messages to the
agents. Furthermore also the communication among
the agent is driven by the GODI and for this reason
there are not direct interconnections among the
particular agents. The only communication is between
agents and the GODI and vice versa.

5.2.2 T-Mass Simulation loop

In recent realization of the T-Mass tool the simulation
process runs in accordance with two phase’s
synchronous algorithm. In the first stage each agent
runs their code until an external action in the form of
communication act toward the GODI is performed.
When every MAS agent has sent its external action to
the GODI the second phase starts. GODI makes an
evaluation of the MAS model then finds particular
stimuli for every agent in the model and sends them
their stimuli in a form of message.

The whole simulation process is driven by some
signals which are sent to particular agent (recall Fig.
1). The signals used in the system are Ready,
ClearBuffer (request for deleting the content of
receivers input buffer), Evolve (continue process run),
Execute (start process run) and Terminate (cancel
process run). The behaviour of the simulator works by
the following algorithm:

1. System Initialization, the agent population
constitutes universe U = (GODI, Agent1, Agent2
… Agentn)

2. T-Mass sends the ClearBuffer signal to every agent
in the model

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

3. T-Mass sends the Execute signal to the GODI
4. GODI evolves the system model and sends the

proper stimuli to the model agents
5. GODI sends the Ready signal to the T-Mass
6. T-Mass sends the ClearBuffer signal to the GODI
7. T-Mass sends the Execute signal to the model

agents
8. Agents run their plans until they execute an

external action
9. Agents send the Ready signal to the T-Mass.
10. T-Mass either

10.1. sends the Terminate signal to the model
agents and terminates the simulation.

10.2. or sends nothing to them now
11. T-Mass sends the Evolve signal to the GODI.
12. GODI evolves the system model and sends the

proper stimuli to the model agents.
13. GODI sends the Ready signal to the T-Mass.
14. T-Mass sends the ClearBuffer signal to the GODI.
15. T-Mass sends Evolve signal to every model agent.
16. GOTO 8

In each step the system allows to check particular
agent’s bases states as well as all the messages that
had been sent between agents and the GODI. So the
simulation is done when all the agents work well and
they satisfy the reasons for which they had been made.

5.3 Realization of t-Sapi agent

Finally, if we are satisfied with the agents behavior in
the model we would like to use them in a real
environment. Our approach how to do it is to make
platforms with t-Sapi interpret for each device in
which the agent(s) should reside (computer operating
systems, microcontrollers, etc.). Such platform should
also provide basic algorithms which the agents use
and furthermore it should be able to interpret agent
actions in the real environment. As we showed before,
the actions in the model are in the form of
communication acts. But now the platform should
execute some real actions when agent makes some
communication acts. So however there are some
actions in the form of communication and some of
real acting the agents does not distinguish among them
in this sense.

Realized agents then are faced with real environment
and their success depends on how we managed to
model the environment. For some reasons we can find
that there is something wrong in the systems. Then we
need to check if the environment does not behave in
different way than we had expected or if we have not
omitted something to verify via simulation. If such
situation appears the agent and their capabilities
should be redeveloped again.

6 Acknowledgement

This work was supported by the Czech Grant Agency
under the contracts GP102/07/P431, and Ministry of
Education, Youth and Sports under the contract MSM
0021630528.

7 Conclusion and future work

We presented a new way how the systems with agents
can be developed. As main advances of the language
we consider that it is easily interpretable, allows
implementation systems based on behavior like
intelligent agents are and is suitable for usage in
systems for MAS modeling and simulating. Finally
the language allows their mobility among platforms
where interpreter of the language and some basic
functions are present. Because this is language based
at low level of abstraction and it is sometime
uncomfortable to write codes directly in this language
our next effort is to develop higher-level language.
Such language would allow easier implementation of
agents and t-Sapi is then used as destination language
into which the agent code will be compiled.

In this time the tool is implemented in Java language
for the Eclipse system. Also some experiments with
agent models and models of multi-agent systems have
been done. Now we are about to make some real
applications in which artificial agents will be used.
Concretely we intend to make sensor network for
runtime risk analysis and management. In this
application such principles described in this paper will
be used for checking of argumentation protocols and
distributed reasoning algorithms. We believe that this
process approves usefulness of T-Mass usage and
possibly inspire us for further extension of this
modeling tool.

8 References

[1] M. E. Bratman: Intention, Plans and Practical
Reason, Harvard University Press, Cambridge, MA,
1987

[2] R. Brooks: “Intelligence Without Reason”,
Proceedings of the 12th International Joint
Conference on Artificial Intelligence (IJCAI-91), pp.
569-595, 1991

[3] L. Cabac, T. Dörges: “Tools for Testing,
Debugging and Monitoring Multi-Agent
Applications” Proceedings of the Workshop on
PNSE’07, Siedlce, Poland, 2007

[4] M. d’Iverno, M. Luck and M. Georgeff.: “The
dMARS Architecture: A Specification of the
Distributed Multi-Agent Reasoning System”,
Autonomous Agents and Multi-Agent Systems 9, pp.5-
53, Kluwer Academs Publisher, Netherland, 2004

[5] J. Ferber: Multi-Agent Systems, Addison-Wesley,
Great Britain, 1999

[6] M. Huber: “JAM Agents in a Nutshell”, Intelligent
Reasoning Systems, Oceanside, CA, USA, 2001

[7] A. Rao: “AgentSpeak(L): BDI Agents speak out in
a logical computable language”, Agents Breaking
Away, Lecture Notes in Artificial Intelligence, Vol
1038, Springer-Verlag, Amsterdam, 1996

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

[8] A. S. Rao and M. P. Georgeff,: “BDI Agents:
From Theory to Practice”, Proceedings of the First
International Conference on Multi-Agent Systems
(ICMAS-95), San Francisco, USA, 1995

[9] Y. Shoham: “Agent-oriented programming”,
Technical Report STAN-CS-1335-90, Computer
Science Department, Stanford University, Stanford,
CA 94305, 1990.

[10] M.Wooldridge, N. Jennings, D.Kinny: “The Gaia
Methodology for Agent-Oriented Analysis and
Design”, Autonomous Agents and Multi-Agent
Systems, 3, pp. 285-312, Kluwer, The Netherlands,
2000

[11] F. Zbořil: Plánování a komunikace
v multiagentních systémech, Brno, Czech Republic,
2004

[12] F. Zbořil, R. Kočí: “Intention structures modeling
using object-oriented Petri nets”, accepted for
conference ISDA’07

[13] Foundation for Intelligent Physical Agents,
http://www.fipa.org

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 11 Copyright © 2007 EUROSIM / SLOSIM

