Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

FRAMEWORK FOR MODEL-BASED DESIGN OF
MULTI-AGENT SYSTEMS

FrantiSek Zbofril jr.

Brno University of Technology, Faculty of Informai Technology
zborilf@fit.vutbr.cz (FrantiSek Zl7o)

Abstract

Artificial agents and multi-agent systems are attv@ area which touches many other areas
of interest including non-informatics ones like imbagy or economy as well as many topics
relating to computers, for example artificial itigggnce or system design. When we have to
develop a multi-agent system we need, among oth@rsuild agent architectures together
with some decision algorithms and communicationtquols. Before such systems are
realized in a real world we should sufficientlyttaad verify them. Presented text describes a
new approach to building artificial agents and madfent systems using methodology of
model-based design. In this methodology some maalelsused during the design process.
The models are used for testing of particular elgmdehavior as well as for testing of
behavior of the system as whole — in both casdtdiy simulation. Environment surrounding
the elements is also simulated in the model antcp&ar systems are tested whether they
fulfills given objectives in proper way. When dilet system elements work well in the model
then they could be realized in some real environm@nr effort is to develop a tool that
would allow model-based design of systems withfieidli agents. For this reason we have
been building application called T-Mass (Tool foulitagent System Development) which is
aimed right on the model-based development of siyskems and provides some important
facilities for building rational agents. As a paftthe tool we developed language called t-
Sapi by which agents’ behavior is controlled. Als@ made two-phase synchronous
algorithms for control of the model run. This papgtows how some popular agent
architectures could be built with the t-Sapi larggiand how then they are used in the multi-
agent simulation model. We also present some resmaokut usage of the modeled agents
and their consequent realization in real multi-aggplications.

Keywords: Simulation models, Agent control language Reactive and BDI agents,
Model-based design

Presenting Author’s biography

FrantiSek Zbal jr. is assistant professor at Faculty of Infotioa

technology, Brno University of Technology. His majaterests comprise
several area related to artificial intelligence amwbdeling, mainly
artificial agent architectures, multi-agent systemsdeling as well as
computer vision and robotics. His actual researshaimed onto
realization of intelligent agent-based systemsrtortime risk analysis
and management.

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

called Agent-0 [9]. Also there are architecturesdah
1 Introduction on intentions (originally developed by Bratman [1])

.] extended later to today’'s popular Belief-Desire-
If we work with multi-agent systems (MAS) we |ntention agent architectures [4,7].

usually have to deal with some kind of distributed] O)
system with nodes that show some appearances !Bf the field of MAS system it is somehow quite
intelligence. Recent understanding of the MAS &t th difficult to distinguish between (multi)agent moitey
there exist a net of agent platforms interconnectd@0ls and tools for agent system development. For
with communication and transport channels. Such &@mple 3APL and its successor 2APL system, JADE
network consists of agent-friendly environment veherframework, CYBELE, and many others can be used

intelligent agents can reside and act, eventuedlyel When one develops systems with agents as welleas th
among particu|ar p|atf0rms' multl-agent model is built. Of course there are man

_ o .. other modeling techniques for the purposes of
Subject of artificial agents are not new. Artificia modeling discrete parallel systems, which are quite
intelligence as well as many other branches takgfose to the MAS. So first we describe some popular
artificial agent as a part of their systems for ethan tgols and then we outline our motivation for cregti

twenty years. However, different areas understaed tanother model-based framework for development of
term ‘agent slightly different. Here we will deal with systems with artificial agents.

artificial intelligent agent as it is understand in .)
computer society. Contribution of this text shoblel 2.1 Overview of current tools for MAS modeling
introduction of principles of a new tool called Tass and development

and demonstration that such approach to MASjist we introduce some widely known tools for agen
modeling could bring advances in MAS deve'°pme”tdevelopment_

First we explain some basics of artificial agemtsl a e start with the 2APL and JAM! tools. Both tools
MAS in chapter 2. We also discuss here some t00j§e phased on the BDI theory. 2APL allows making
for MAS development and we point out SOM&)ans in a form of production rules that could be
advantages and weak spots of these tools. Then Weplied for some goals or sub-goals. This tool is

introduce the T-Mass tools in chapte.r 3.1t wi.ld:l'm_de equipped with FIPA specification corresponding
agent control language called t-Sapi and principles platform [13].

multi-agent model simulations. Chapter 4 gives some .) o

examples of agents programmed in the t-SagAM! is a language with syntax similar to the Java
language and chapter 5 provides description of 1anguage and also allows to make agents based on
Mass usage for model based design. Then vRD! principles. These tools are suitable mainly whe
conclude with some remarks about our expectatibns 80me agents with intention-driven behavior showd b

the tool and outline our future work in this area. realized and their behavior verified in a multi-age
community.

2 Artificial agents, multi-agent systems JADE is a Java framework and platform for building

and their models multi-agent systems in accordance with FIPA

. i . . specifications. Beside FIPA agent platform it po®s
To describe artificial agents we use d?f'n't'on w,h' tools for implementation of communication protogols
says that agents are autonomous entities working dhtology, behavioral procedures etc.. It is quiteen
mostly unknown and highly dynamic environment for,, 4 probably the most popular tool today but in its

the reason of some objectives achievement. Agefiginal version it does not support development of
senses environment through its sensors and att® in 5416 agent architectures. Some extensions as is

environment rationally. It means that its doing Bas jaopEx solve such disadvantage and introduce
motivation. On the other hand its architecture $hou mechanisms how to implement for example the

not be very complex. In fact ag'ent is rther Simplyhtention driven agents.
structure that has full control of its behavior dmas . _ . o
ability to act flexible, swiftly and rationally. Finally we discuss the Petri nets. Along with anagi

)) tools for agent development the Petri-nets could be
To introduce today most popular agent architecturegantion here. At least we mention these nets fer th

we distinguish between reactive and deliberativpeason that they represent major stream in disaibu
agents. Reactive agents in their pure form have begystem modeling. Today there is some effort to use
introduced by Brooks [2]. Brooks argued that ther@eyi nets in agent modeling and realization. For
need not be symbolic reasoning process to makg,mple they are used by Feber [5] to demonstrate
agents act with some intelligence. Such agents haegftributed algorithms for distributed reasoning in
only some models of their behaviors that are useditiagent community, communication protocols,
when relevant situation appears in the environmentyjition forming etc. There is also a Petr-netedas
Other approaches to artificial agent realizatios® U g\ stem for MAS system realization called MULAN
so-called mental states. Reasoning based on agenge|oped at University of Hamburg [3]. At last e
beliefs and obligations is used for Shoham’'s ageft .. effort to develop rational agents with object

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

oriented Petri nets at Brno University of Technglog generic agent architecture and a language thatdwoul
But some disadvantages can be identified when Pe#tilow creation of various agents. For this rease w
nets are brought into the world of rational agentshow architecture for t-Sapi based agents first and
Mainly the expressivity of the Petri net model bett then we introduce platform in which such agent must
suits to distributed systems than particular ageie situated.

architecture realizations. Furthermore agent systerq,
need to have strict interface between agents agid th
environment and also some symbolic reasonin
mechanisms used often in the field of artificiabats
are not native to the Petri nets.

he architecture is very similar to the Von Neumann
omputer architecture. In general the architecture
omprises of data stored in database, language
interpreter and a set of registers. Furthermoreetise

an input/output interface managing incoming and
2.2 Motivation for another tool development outgoing messages. There also can be some control
. signals that will be closely described in the swtti
There are many other tools which could be useful fq, "0 ¢ 1o o modeling principles.
agent systems development. The reason why we
develop another modeling and development tool ihe database is logically divided into three maintf
that T-Mass is found at low-level of abstractioman Its first part is reserved for agent's knowledgeseha

is aimed to provide possibility to create many kimd Agent's knowledge base is a database of grounded
agents. It is easily interpretable and has mantufea predicates of first-order predicate logic (FOPL)eW
suitable for agent programming. Finally the languagwill denote language of grounded predicaig as a
allows straightforward implementation of platforor f subset of FOPL language.

such agents for devices varying from microcontrsile

intelligent sensors and embedded systems to clasggscgwhgfertsgf”fge ;%in\tvr?trtcer:t?ncil;\ree t[s,saagielgas upa|1
computer implementation environments. pian . pI anguag
Lisapi Can be stored. Finally there is another base for

. . . incoming messages and it is called input buffehe T
3 Atool for multi-agent simulation input buffer is a database of predicate lists widoh

The previous sections outlined that there are masyembers of languade;y that is a set defined as

tool for modgling and developing agents and that Of ... FaOL gp (N1, (F .. Fa) OL) 1)

despite of this we made another one. Now we are

going to introduce basics of our system. Becauise tHRegister base is a vector of individual regist&ach

is a modeling tool we start first with some formalregister contains a set of predicates, it meartsstage

definitions of the models for which the tool is hgi Of the register is similar to the state of knowledg

developed. base, or it could contain a plan, then its stat jpan.
So the register has a value from the set

3.1 T-Mass model

. Liist O Lisap) " 2
As usual, the T-Mass model is a tuple=(U,R) where (L U Lisap) 2)
U is an universe anR is a characteristic. Universe is Although there could be several registers we will
a set of all elements within the system. In T-Mtigs expect only one register for purposes of this text.
universe Is a set O.f t-Sapi based agents. Charsiter General t-Sapi based agent architecture with &l th
is a set of all relations among the agents. Bemadfio . L

. ; components is shown in Fig. 1.

the system is determined by the system state change
during the simulation run. The state of the system

then given by state of all particular agents ang th l In
agent states are given by particular states of some Out

parts of the agent architecture, which will be show IB
next. Qg;;t'_%h > INT .
3.2 Architectures for t-Sapi based agents <-------1 T

In general, behavior of the agent as a system eieme
is driven by the t-Sapi language. Before we intamdu KB/PB FNC
t-Sapi language we need to discuss two issues
important for the language semantic. From our point
of view the agent is a program running at a compute
based architecture. But that is not necessariliatrig
because there are some pure hardware agents tleat HBhus, the agent state is given by states of itSqoder

not programmable control unit, for example situategarts. Thus the function of agent behavior could be
automata. Nevertheless, most of agents are cadrolldefined as follows

by some form of robot loop — from elementary) . .

reactive agents to complex intention driven G- U~ LopxList XLtsapi X(Liist 1 Lisap) ®)
architectures. Thus the modeling system will contai

Fig. 1 Generic architecture for t-Sapi based agent

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

and it maps particular agents to their state, wiich 3.3.2 t-Sapi plan
relation among states of its knowledge base,

inp A
buffer, plan base and registers. wlan is the basic structure expressible in thepi-Sa

language. The plan is as usual a sequence of action
For correct agent functionality it is consideredtth In this case it is linear sequence in a form oihadr
such agent would be situated in a platform. In ga&lne list enclosed in brackets. If there is a set opalsible
the platform provides some services to all the egenactions (written as corresponding sentence of a
residing in the platform. Among others the moslanguage of actions denoted BgcrULisap) then t-
important service is that the platform manageSapi plan is any string from the set given by the
communication among agents. Moreover the platforformula
provides some computational services to the agents.
Formally, let there be a sEINC which is set of all Day,a... &bl act(M21,%(a, 8, - 3) Ul tsapi) ©)
functions that the platform provides to the agemid Execution of the plan is performed action by actin
then each function from the g&tFNC is defined as the plan fails or it is successfully executed.l$bagets

f L O Lisaps — Lo O Lisap 4) us closer to the semantic of the language. Indach

action could either succeed or it could fail.
It means that the functions’ input is either plaradist
of predicates and their output is again plan or
predicate list.

If an action fails then agent's register is setao
constant fail’ and rest of the plan into which the
failed action belonged is skipped. But not the uppe
Now all the basics constructions have been definddvel plan is skipped if the failed plan had been
and we can introduce the t-Sapi language itself. executed as a lower-level one.

Q!

3.3 t-Sapi language specification After action performance the model state can change
in many ways which depends on the action type. In

Lnszatgielﬁiaticc))];] ngncthefo:g]naluaséma\l;/(e ar}gvij‘gm:;rgc eneral, all parts of agent’s internal state calidnge
P guag P s well as the universe of the model.

informal notation with intuitively semantic defimn.

Formal syntax and semantic of original languageet us start with two special actiosscceed andfail
could be found in dissertation [11], but in Czeclwhich immediately cause successful or unsuccessful
language only. Here the language syntax will b&ermination of the plan. Naturally there could beren
presented as some constructions with predefined sulctions within the plan. In the following sectioal
languages. Semantic will be then illustrated byhe remaining action types will be shown and their
possible changes of the model and agent state. functionality will be defined.

3.3.1 Identifiers and predicates 3.3.3 Internal actions

Some of syntax construction was shown in thén general, internal actions are those that doaffect
previous sections. The syntax bf., language will environment but only agent’s internal state. Fived

be shown using languagése and L. In addition actions are those that manipulates with knowledgk a
we will need some other sets/languades. will be plan base. If there is a grounded predichtand a
language of identifier defined by regular expressio predicateq with possible anonymous variable, then
the action has a form by the following definition.

Lip=[#]{[a..Z][A..Z][0..9]} (5)
Now we defineLgp as a language given by the DdOL e OgOLp (+d OLacr U-q0bact) (10)
following formula are valid t-Sapi actions. Their semantic is then as
follows.
Ops.f...f0Lip(n20,(ps.i... fn) Ol o) (6)
Note that the predicate is written little bit diféet and KB, fKB Od . (11)
that the predicate symbol is the first element haf t KB’ =KB - {d-[b(d=q 0)} (12)

sequence. General list with predicates can contain means that if some data are added into the
predicates or sub-lists. knowledge base the base is simply extended by the
data. If there is action of deletion (which alsways
>
D81 &L Ol eust (21,5)k eust) - (7) succeeds) all the predicates unifiable with théoact
In similar way we will use another languad)g - parameter are deleted from the base.
which is language of predicates with possibl

anonymous variables instead of terms. (?n very similar manner there are actions of additio

and deletion into/from the plan base. If there [d@an

Of,...f,0L p O{_ }(n=1,(f,f5...T)0OLp) (8) written in t-Sapi then addition of such a plan has
The anonymous variable is those used in the Prolg ntax
language and is also denoted by underscore symbol Oplan/iL isapi (+"plan OL acT) (13)

“_". Its usage will be explained in the sectionsiitey
with language semantic.

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

Deletion of a plan is performed when plan’s name imterpreter checks whether the agent platform pkvi
mentioned as action parameter. Then action form ttee function with the same name as is the predicate
set given by formula symbol of the predicate. If there exists such fiamct
then it is executed with predicate terms as its
OnamélLip (-"(namg Hbacr) (14) parameter. Then after the execution the resutbied
with the name parameter deletes a plan within the_ register. For example if thgre is ac_tion
corresponding name if such plan exists in the plaffactorial,2)’ and agent platform provides funatio
base. namedfactorial, then the result of such action is value
2 in the register.
PB’ = PB-"plan e plan=(name(Body)) (15) g
3.3.5 Sub-plan execution

If there is not plan with given name the action
succeeds anyway. Sub-plan execution and some other actions should be
also considered to be internal actions. Althougkyth
can produce only internal changes we describe them
On the other hand, communication is considereceto [s€parate sections. In principle, this section ak age
only possible external action that t-Sapi basechiagethe following two sections is about expansion & th
can make. In fact, real agent has some effectoishwh plan base.

use to affect surrounding environment. But we OMikjrg¢ \ye focus on sub-plan executions. By the term
such acting in our model. ‘sub-plan execution we mean that we expand

Now we provide syntax and semantic of the agent@urrently running plan by inserting another plan.
act actions. Agent (let it be named ‘agentl’) makeghere are two ways how to execute sub-plan — direct
communication act toward another agent if it parfer Way and indirect way. If the direct execution ids

action with syntax defined by the formula then the sub-plan is written inline in the executio
action. The syntax of direct execution action tigpas
OrevOL p msdLse(!(rev,msgOL act) (16) follows

3.3.4 Communication

wherercv is identifier andmsgis a list. This action Dact, actULacr(nz1,@(act _act)ULact) (22)
succeeds if there is an agent with correspondimgena '

else it fails. In the successful case receiverjsuin Here the actl and act2 and so on are some other
buffer is extended with tuple containing sender’gctions constituting of the plans. Semantic of Kingi

name and the sent message. of action is shown in Fig. 2a.
B receive;: B receiveD (‘agentl'mSQ (17) wPAN: T T 1 - I:l
Analogously, action that which withdraw messages
from agent’s input buffer uses identifisnd and has @(@11.a 12,..-2mn) J:L
syntax constructed as #PLAN
| | | | i:l
Dsnd]L|D(?(Sn@DLACT 0 ?(_)]LACT) (18) ai A ain
a,
with semantic
PLAN BASE
T=ne(sndn)JIB or'=ne (_,n)JIB (19) #PLANL__L | | - [= Plan_nam
IB’=IB -n (20) @~ (plan_name) ﬁ E I O
It means that the register will contain a messagenf o]
specified sender or a messages from any sendedstor (I L |

in the input buffer. The message is subsequently
deleted from the input buffer.

There are two other internal action types. Firg @ Fig. 2 Direct and indirect sub-plan execution
for belief base testing and has a form of predicate

(with possible anonymous variable). Such actio
succeeds if there is at least one unifiable preelica
else it fails. Result of the action is then a bftall
unifiable predicates in the knowledge base. Shefe
is for example a testing action with predicqteer L p

y, then the registers wallue would change as follows

After action execution that always succeeds the
agent's plan is expanded with given sub-plan.
Advantages of such construction is that even tle su
plan fails the original plan does not fail but dooes
with action following the sub-plan execution action

=1 q 2 Indirect plan execution is similar to the direct
r'={data- [o(dataueryo)} (21) execution, but the plan is not written inside totican.

Last action type which is considered to be inteisal Instead of the plan script there is mentioned an pla
‘function call’ action type. It has the same syntsx Nname as action parameter.

the testing action. To distinguish it from testitige Cplan_namélL (@ plan_namyler) (23)
_ ID _ ACT

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

Then a plan from agent’s plan base is includedtimo supply it with a subset of its plan- and beliefdas
original plan if there is a plan with correspondplgn Because the cloning will not be used further irs thi
name. Process of indirect plan execution is shawn text we introduce it just briefly. Syntax of theoning
Fig. 2b. action type can be for example is as follows

3.3.6 Plan instance execution @ @"(clonecore,(newbase,_),”(!(a,b)))

This section as well as the next section is extensei Double ‘at’ symbol is followed by plan name (inghi
the original language as it was proposed in digaert case clone_core) that will be the top-level plarihef
[11]. Experiments and practical usage of the odabin new agent. Then list of predicates or plans (in the
language leaded to a need for upgrade of the lgggussame form as the plan base and knowledge base
in some aspects. One of these aspects was a needesfing actions types have) are used for creatidheo
meta-reasoning capability provided by the languagegent’s knowledge and plan base. This action is tha
Original language then was upgraded with actioas thone that changes universe of the model.

allow executing a plan for given number of steps.

Such executions have syntax 4 Agent implementation in t-Sapi
Oact...actUL act,mO0,namelL p,inamé L p Here we show some implementation examples. In the
(rel, m=0 following examples we will work with some functions
@((act...act),m)dL act that should be provided by agent platform. These
O@((actl,act2...)thamem)dL act function are well known from the LISP language,
O@™namem)dL act concretely we need functiorsar, cdr for reaching
d@"(name#inamem)OL acT) (24) head (first element) and tail (rest of the listheitit the

. : , . first element)
Strings name and iname stand for some identifiers.

First two actions are for direct execution and gt 4.1 Reactive agent implementation
is for indirect execution. Plan is executed fosteps.

. 7 > First we demonstrate how pure reactive agents ean b
If it does not finish the rest of it is stored metplan P g

b h h he plan i o dimplemented. Main plan named ‘#CORE’ represents
ase. But there are two ways how the plan is nathed.;o e ropotic loop that executes two sub-planse-

there is mentioned a name with preposition # aed t or event selection and another for selected event

narr:je |fs ﬁ”g'n?l |r|1 thz plan b(zjise tTen S_uﬁh hr:me processing. Executed sub-plans may but need rpt fai
used. If there is already stored a plan with th@esa |, ever even if one of them fails, the main ageapl
name then some implicit name generated b

. : L : oes not fail.

interpreter is used. The implicit name is also use

when there is not mentioned a name in the action. T(#CORE,(@(

Principle of plan instance execution is shown ia th @"\(select_event),
following Fig. 3. @"(process_event),

)
#PLAN: AN#CORE
a; as an @) ()
€ (a 11,8 12,-.-81n) ,2) ﬁ)

HPLAN :I:‘;l;: Implementation of the sub-plans depends on event

2 3

au - representation and representation of relevant pease
—l for given events. Agent expects the incoming events
#PLAN [T T 1 PLANBASE to be in its input buffer and the event itself laaform
a; asz . #pi_01 of a grounded predicate. For our purposes the svent
will be sent by agent named GODI (we will discuss

role of the GODI agent later in this text) and the
predicate symbol will be ‘event’. So if there isuple

Plans that arise by such execution are treatedras s (GODI,(event,term1,term2....))

instances of the original plan. They could be etextu in the input buffer, then the agent tries to stapilan
again. But as they are processed the correspondimdich is relevant to the event predicate. Let thHese
plan instance in the plan base is modifiedome lists stored in the knowledge base with the
immediately. When execution of the plan instancéollowing form

finishes, it is deleted from the plan base.

3.3.7 Cloning

Fig. 3 Plan instance execution principle

((eventterms...),(plan_name))

and for each such list there should be also a wlen
Last but not least feature of the language is that corresponding name stored in the plan base
allows runtime cloning of the agents. It means that

agent can make its copy or it can create an ageht a T(plan_name, (actions...))

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

Now the processes for event selection and eveahe relevant and applicable plan (for the green sub
processing can be shown. goal) which is consequently added to the intention

First we implement the plan named ‘select_everd’. lstructure (d).

structure can be for example like this

1(select_event,(?(GODI),(cdy},

@(T(,_) succeed),
@(select_event))

Now we try to implement such system in t-Sapi.
However the implementation of complete BDI agent
is quite complex to fit it into this text we focosly at
the most important implementation parts. In follogi
paragraphs some basic constructions for intention

The action withdraws an event from agent's inpuforming and execution will be shown.

buffer. If the action succeeds, the registezontains om—> om——»
an event list. Then the event list presence in tgen O¥fd——» oZ—>
knqwledge base i_s t.ested. _The script contains a OO E- : OO EI- :
register symbol which is substituted with actuatrmv Desires O Desires
list. In runtime the testing action will appear rinelf
the testing succeeds the plan finishes with sucaeds Beliefs Beliefs 72
the event with corresponding plan name is appears i . .

. Intentions Intentions
the register. If the testing action fails the plan
executed again until it finds a suitable event hw t
input buffer is empty. a, b,

T(process_event,((car), @"1)) om—» om—»

Plan for processing event is even simpler. It reach om— olm——»
plan name using thear function and then executes o—> o———r
the plan. After plan execution, no matter if sustels Desites @ @ Desires @
or not, the control is returned back to main cdntro Belief Belicfs 7
loop and another event can be processed. A elets
4.2 Intention-driven agents implementation intentions intentions
Second agent architecture that will be shown is thi c, d,

text is based upon today popular idea of intention-
driven behavior. In brief, these systems adopt some

goal as its intention when they find that this goadld

be achieved. Then they make plans in a form of S'Bhe intention structure itself will be a structwet-
called intention structures that are built with gom>aPi plans. At the lower level some plans storeanin

predefined plans (sometime also called to be ‘)actsi,ntention structure would be executed. First wewsho
from agent's plan library. When there is an intenti how plans and some metadata could be stored iefbeli

structure, its plans can be executed until thentiga ~ 21d plan bases. Each plan has defined purposes and
is fulfilled or all possible attempts to make irtien condition of its usage. So in belief base thereaaset

structure for given intention fails. of tuples in the form.

Fig. 4 Example of BDI based reasoning

To make such system with t-Sapi language we exploit ((eventterms...),condition,plan_name)

its meta-reasoning abilities. In fact there will ve- Eventandconditionare predicates amqglan_nameis a
levels of processes. At the upper level there ball string. This triple is used when relevant (for aert)
process of goal and sub-goal processing and iotentiand applicable (in actual state of belief basep fia
structure fabrications. This process senses f@earched. It is supposed that for egilhn_name

incoming events and would tries to make propesppearing in any such triple there is a plan wité t
intention structure for these events. At the love.el sameplan_namestored in the plan base.

will be the processes for intention achievements

themselves. In Fig. 4 an example of BDI agen?Dl agent control loop will be similar to that of
reasoning is shown. reactive agent.

T(#CORE,(@(
@"(select_event),
@"\(process_event),

At the beginning one goal is in agent’s desireaset
belief set is a state pictured with rectangle (&here

is a plan library with one plan suitable for (yelo
goal and applicable in given environment state.hSuc
plan is added into the intention set (b,). During
execution of the plan the belief state changedtewad
new desires aroused. First desire (green) is ageab-)
of the only intention and second (brown) is another)
top-level goal (c,). Then there are two goals iy o

@"\(execute_is),
@"#CORE)

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

Selection of an event is quite the same as beldre. are several classes of actions distinguished &yniat

only change is that the sender is followed with aactions, external actions and goal statements.
intention which raised the event. We will discusst Although internal actions and external actions are
later in this section. So the event in general $0ak similar to the knowledge base manipulation and

follows communication actions provided by the t-Sapi
(sender,PID, (event,termi, term2...)) Ik;alggr]g;igzzdwe only show here how goal statements can

The event selection plan deletes

. . - X . the Send‘lirirst we show goahchievemenstatement. It means
information and finishes with a list

that agent should actively behave to reach declared
(PID,(event,terml,term2...)) goal. Goal statement is in fact event processihg |
lan needs to set a sub-goal it simply send antdgen

s input buffer. But there must be also mention an
instance of the event producer. For this reasonesom
mechanisms introduced in the section about plan
Shstances execution will be used. For example tkere
a plan with actions (a,...a,) and the first action
should be a sub-goal statement. This can be
implemented in the t-Sapi language with respett¢o
event-processing plan like this

Now we aim our sights at event processing. WE
consider that there is an event in the registeth
mentioned form and the agent needs to find outa pl

withdraws all the triples relevant to the event &meh
it tests the condition of usage. It does this unhfihds
a plan that is applicable or it finds that suchlanp
does not exist. Implementation of this is littlet bi
difficult in t-Sapi but still possible.

m(planl,
T[(DFOCE?SS_'@VEHt (. @"\((a,...a).#planl_i1,0),
1, -(pint,_),+(pinty), I(agentl,#planl_il,
2, (cdr,1),(car,1), (event,terms...))
3, T).)

First the register is stored in the knowledge hiase Please note that symbols a. & are again just some
further use. All predicates with the same predicat@Pstractions for some t-Sapi actions. But the jplac
symbol are deleted and the current event is stotied IS clear. Rest of the plan is executed for O stéps.
line 1). Subsequently the event is reached as theeans thatjust an instance called #planl_il stede
second element of the register list (line 2). Folg and stored in the plan base. Then a message igosent
line tests for presence of triple beginning witte thitself (here we consider agent's name to be ‘agentl

event stored in the register. If this action sudsetme and if the specified event is processed by a sab;pl

Second possible goal declaration is called gosting

In this case the agent waits whether declared igoal
valid or not (the goal may occur for example by
Three actions in line 4 stores the tuple (condjfamn) environment change - as an example let us mention
into the knowledge base. Then the condition it&lf goal ‘is it night?’). In this case the test goatiae
reached and test action with the condition is ete@tu could be implemented as

If the plan does not fail so far then we have a pleat

4, (cdr,1),-(pplan,_),+(pplan),
5, (car,0), 1,

is relevant for the event and applicable in givelidf miplan2,
base state. (@(o
Now the plan does the following: executes founded (test_predicate)
plan and possibly executes plan instance thatdaise -(waitning_inst,#plan2_i1))
the event. Rest of the “process_event” plan then @(3,...a)
continues with @plan2),
#plan2_i1,0)
3 (@pf):an,_),(cdﬂ),(car,t), +(waiting_inst, #plan2_i1)
8 (pint,_).(cdrn).(can),)
9, @ Based on similar principles like the achievemerdlgo
10,) action the plan instance is used here. First a plan

instance is made. Then a predicate is written théo

Actions in lines 6 and 8 reach plans stored duti®y |,q\\ledge base meaning that there is an instance

process and they execute event-related plan |n7||neW iting with test goal. The instance consists of

and possibly executes plan instance which produceQejicate testing itself, execution of the resttios
the eventin line 9. plan and deletion of instance predicate from the

Another important issue of the BDI agent is how th&nowledge base. Each time the main loop cycle
plans for event processing are designed. In sheret reaches execution of the plan “execute_is” the plan

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

should execute one waiting plan instance if there simulation that allows us checking whole system
any. When the test predicate passes successfelly tthehavior and tuning particular agents’ facilities.

rest of the plan instance is executed and the ngpiti
predicate need not be tested anymore. If it fdiks t
instance is renewed by calling itself again. Current version of T-Mass allows making two-step

. . “ - synchronous silmulation. In general there are two
We will not describe the “execute is” plan here>Y 9

because it is similar to the “process_event” plar{J hases, first one of agents’ acting and secondobne

Better after showing how some agent types can tg:enwronment evaluation.

implemented with t-Sapi we move forward ands.2.1 The GODI agent
introduce T-Mass simulation principles.

5.2 Simulation with T-Mass

There is still the problem how to include agents’
. environment into the system model. As we outlined
5_ Mul_tlagent system development and already the multi-agent community is in principal a
simulation with T-Mass open system influenced by a surrounding environment

In this section we show how the process of mogdfat can be affected by the agents. But the

based design can be realized with T-Mass. First V\;\e(_mvi.ronment has not been introduced till now howeve
introduce main stages of the model-based design afidp Important part of MAS.
then we focus on the simulation process. In fact the environment is encapsulated in onehef t
) ; agent’'s knowledge base and its evolution is under
5.1 Model-based design of MAS control of this agent. Such an agent is called GODI
Model based development of MAS has three mai(General Object Design Interpreter). GODI is
phases — creation of the model, design by simulaticesponsible for projection of other agents’ actioms
and realization of the system. In following poimts the environment, evolution of the environment doe t
extend each phase for closer insight into the @®ice the actions and exposition of the environment simte
Creation of the model the other agents input bu_ffe_rs. The GODI maintains
1. Definition of agent roles necessary for the model.WhOIe multl-_agent model in its k_nowledge base that
2. Definiion of agents’ behavior (decision means that it has a model of environment as wedl as
procedures, protocols, etc.) model agent population. In each step the GODI can
3. Development or adoption of suitable agenFVOIVe the model and to send relevant r‘?es?ag"’mo t
architecture. agents. Fu_rthermore also the communication among
4. Implementation of particular agents. the agent is drlven by the GODI and for this reason
5. Development of environment model. there are not direct interconnections among the
particular agents. The only communication is betwee

Model-based design agents and the GODI and vice versa.

6. Loop: . .
6.1. Sipmulation of system run and checking 01‘5'2'2 T-Mass Simulation loop
agent behavior. In recent realization of the T-Mass tool the sintiola
6.2. ldentification of possible design mistakes. process runs in accordance with two phase’s
6.3. Handling problems and redevelopment of th&ynchronous algorithm. In the first stage each fagen
multi-agent model. runs their code until an external action in thenfasf

communication act toward the GODI is performed.
hen every MAS agent has sent its external action t
he GODI the second phase starts. GODI makes an
evaluation of the MAS model then finds particular
stimuli for every agent in the model and sends them
The whole process of model-based design algheir stimuliin a form of message.
includes stages that are out of the scope of tMa3s
toll. Especially the first three points are relatather
to software engineering where methodology lik . .
GAIA [10] could help. To propose agent roles an). The signals used in the_ system dReady
agent one need to delimitate responsibilities learBuffer (request for deleting the content of

competences and protocols and for those find Whi{ﬁcelvers input bufferfzvolve(continue process run),

. ; . . xecute (start process run) and@erminate (cancel
kind of agent and which algorithms would be suigabl . .
g 9 process run). The behaviour of the simulator wdks

The point 4 we have already discussed the in thhe following algorithm:
previous sections. Environment modeling is of coirre
interest in the researchers’ community. Thus we on
remarks that the model needs to be relevant and all

Realization of the system

7. Realization of the agents with identical behavio
as their models had.

8. Situating agents into the real environment.

The whole simulation process is driven by some
ignals which are sent to particular agent (re€agl

I1. System Initialization, the agent population
constitutes universé = (GODI, Agent, Agenb

; ; ... Agent)
important aspects for agent behavior must be ptes .
in the model. So we move on to the process .T;ytisesnswiggls thelearBuffersignal to every agent

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

3. T-Mass sends thexecutesignal to the GODI 7 Conclusion and future work
4. GODI evolves the system model and sends the)
proper stimuli to the model agents We presented a new way how the systems with agents
5. GODI sends th®eadysignal to the T-Mass can be developed. As main advances of the language
6. T-Mass sends thelearBuffersignal to the GODI ~ We consider that it is easily interpretable, allows
7. T-Mass sends thé€xecute signal to the model implementation systems based on behavior like
agents intelligent agents are and is suitable for usage in
8. Agents run their plans until they execute arfystems for MAS modeling and simulating. Finally
external action the language allows their mobility among platforms
9. Agents send thReadysignal to the T-Mass. where interpreter of the language and some basic
10. T-Mass either functions are present. Because this is languagedbas
10.1. sends theTerminate signal to the model at low level of abstraction and it is sometime
agents and terminates the simulation. uncomfortable to write codes directly in this lange
10.2. or sends nothing to them now our next effort is to develop higher-level language
11. T-Mass sends thEvolvesignal to the GODI. Such language would allow easier implementation of
12. GODI evolves the system model and sends trgents and t-Sapi is then used as destination daegu
proper stimuli to the model agents. into which the agent code will be compiled.
13. GODI sends th&eadysignal to the T-Mass. In this time the tool is implemented in Java largia

14. T-Mass sends thelearBuffersignal to the GODI. for the Eclipse system. Also some experiments with
15. T-Mass send&volvesignal to every model agent. agent models and models of multi-agent systems have
16. GOTO 8 been done. Now we are about to make some real

In each step the system allows to check particul@PPlications in which artificial agents will be ase
agent's bases states as well as all the messages ﬂ:,on_cretely we mten(_j to make sensor network for
had been sent between agents and the GODI. So fHBtime risk analysis and management. In this
simulation is done when all the agents work wetl an@PPplication such principles described in this papitir

they satisfy the reasons for which they had beetiema P€ used for checking of argumentation protocols and
distributed reasoning algorithms. We believe thag t

5.3 Realization of t-Sapi agent process approves usefulness of T-Mass usage and

Finally, if we are satisfied with the agents bebain possiply inspire us for further extension of this
the model we would like to use them in a reafnodeling tool.

environment. Our approach how to do it is to make

platforms with t-Sapi interpret for each device il8 References

which the agent(s) should reside (computer opegyati
systems, microcontrollers, etc.). Such platformutho
also provide basic algorithms which the agents u
and furthermore it should be able to interpret agen

actions in the real environment. As we showed leefor[2] R. Brooks: “Intelligence Without Reason”,
the actions in the model are in the form ofProceedings of the 12th International Joint
communication acts. But now the platform shouldConference on Artificial Intelligence (IJCAI-91pp.
execute some real actions when agent makes sobf9-595, 1991

communication acts. So however there are so
actions in the form of communication and some
real acting the agents does not distinguish amloeig t
in this sense.

r[1] M. E. Bratman:Intention, Plans and Practical
Reason Harvard University Press, Cambridge, MA,

] L. Cabac, T. Dorges: “Tools for Testing,
ebugging and Monitoring Multi-Agent
Applications” Proceedings of the Workshop on

PNSE’07 Siedlce, Poland, 2007
Reallzeq agents then are faced with real enwrothmepl M. dlverno, M. Luck and M. Georgeff.: “The
and their success depends on how we managed .) e

. .dMARS Architecture: A Specification of the
model the environment. For some reasons we can fi

.) . Istributed Multi-Agent Reasoning System”,
that there is something wrong in the systems. Wen Autonomous Agents and Multi-Agent Systemsp-

need to check if the environment does not behave g}s Kluwer Academs Publisher. Netherland. 2004
different way than we had expected or if we have no ™’ ' '

omitted something to verify via simulation. If such[5] J. Ferber:Multi-Agent SystemsAddison-Wesley,
situation appears the agent and their capabiliti€dreat Britain, 1999

should be redeveloped again. [6] M. Huber: “JAM Agents in a Nutshell'intelligent
Reasoning Systemm@ceanside, CA, USA, 2001

i [7] A. Rao:“AgentSpeak(L): BDI Agents speak out in
This work was supported by the Czech Grar_wt_Agen(ay logical computable language’Agents Breaking
under the contracts GP102/07/P431, and Ministry OAway, Lecture Notes in Artificial Intelligence, Vol

Education, Youth and Sports under the contract MSIYI038 Springer-Verlag, Amsterdam, 1996
0021630528. ’ ’

6 Acknowledgement

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

[8] A. S. Rao and M. P. Georgeff,: “BDI Agents:
From Theory to Practice”Proceedings of the First
International Conference on Multi-Agent Systems
(ICMAS-95) San Francisco, USA, 1995

[9] Y. Shoham: “Agent-oriented programming”,
Technical Report STAN-CS-1335-90Computer
Science Department, Stanford University, Stanford,
CA 94305, 1990.

[10] M.Wooldridge, N. Jennings, D.Kinny: “The Gaia
Methodology for Agent-Oriented Analysis and
Design”, Autonomous Agents and Multi-Agent
Systems, 3, pp. 285-312, Kluwer, The Netherlands,
2000

[11] F. Zbail: Planovani a komunikace
v multiagentnich systémech, Brno, Czech Republic,
2004

[12] F. Zbdil, R. Kog¢i: “Intention structures modeling
using object-oriented Petri nets”, accepted for
conference ISDA’07

[13] Foundation for Intelligent Physical Agents,
http://www.fipa.org

ISBN 978-3-901608-32-2 11

9-13 Sept. 2007, Ljubljana, Slovenia

Copyright © 2007 EUROSIM / SLOSIM

