
TWO APPROACHES TO MOBILE ROBOTS
SIMULATOR DESIGN

Gregor Klančar1, Mišel Brezak2, Ivan Petrović2, Drago Matko1

1University of Ljubljana, Faculty of Electrical Engineering,
1000 Ljubljana, Tržaška 25, Slovenia

2University of Zagreb, Faculty of Electrical Engineering and Computing,
Unska 3, Zagreb, Croatia

gregor.klancar@fe.uni-lj.si (Gregor Klančar)

Abstract

This paper presents the design of a mobile robots simulator which is applicable for robot
soccer or for general use. The simulator consists of a group of mobile robots, the ball and
includes knowledge of their dynamic behavior modeling, collisions modeling and
visualization. Two different approaches to the design of this simulator are given and
compared. By the first approach the simulator physics background was completely developed
by our team, which enabled us to get a better insight into the problem domain and gave us the
possibility to efficiently solve some simulator specifics. First the model of ball and robot
motion was derived and then complex approximate collisions models, where the real robot
shape is taken into consideration. Some new ideas of collision formulation, realization and
real robot shape inclusion are used. By the second approach the simulator was developed
using freely available physics engine ODE – Open Dynamics Engine. This engine already
includes physical background for rigid bodies dynamic; it is up to the user to define
mechanical and physical parameters of the objects to simulate e.g. dimensions, masses,
friction, joints and the like. The implementation of both simulators are described and a
comparisons of their reality description, computational efficiency, effort and knowledge
needed to built the simulator, advantages and disadvantages are given.

Keywords: Robot Simulator, Modeling, Collision Detection, Physics Engine.

Presenting Author’s biography
Gregor Klančar. He received his B.Sc. and Ph.D. degrees in 1999 and
2003 from the Faculty of Electrical Engineering of the University of
Ljubljana, Slovenia, where he is currently employed as a researcher. His
research interests are in the area of fault diagnosis methods, multiple
vehicle coordinated control and mobile robotics.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
In this paper two approaches to the design of
simulator for multi-agent group of robots are
described and compared: (i) classic approach, where
the simulation is based on a derived model of dynamic
behavior and collisions, and (ii) use of freely available
physics engine ODE - Open Dynamics Engine [1].
Generally, the classic approach has an advantage of
better insight into the problematic and gives the
possibility for various customizations if required,
while physics engine based approach eases simulator
development procedure, but offers less flexibility.

The main purpose of the simulator design procedure is
to obtain a realistic simulator which would be used as
a tool in the process of strategy and control algorithms
design for real world robot soccer as well as for other
mobile-robotics related topics. To assure
transferability to the real system the obtained strategy
algorithms have to be designed on a realistic
simulator.

The main motivation for robot soccer simulator
development was to design and study multi-agent
control and strategy algorithms in FIRA Middle or
Large League MiroSot category (5 against 5 or 11
against 11 robots). However, on FIRA’s (Federation
of International Robot Soccer Association) official
website (www.fira.net) there exists a simulator for
SimuroSot league, which could only be used in
Middle League MiroSot (5 against 5 robots).

A similar simulator was built by [2] where robot
motion is simulated by dynamic model, collisions
remaining oversimplified. There also exist a number
of other simulator applications [3] but not many
papers are available. Other problem is specificity of
each simulator which implies that many available
simulators are not usable in our robot soccer domain
and vice versa. An important part of every realistic
robot soccer simulator is collision modeling and
simulation. Good mathematical background in rigid
body collisions modeling and simulation could be
found in [4]. Another useful contribution in the field
of robotic simulator is [5] where collisions are treated
by spring-dumper approach rather than by impulse
force only.

For the first simulator design approach, some vital
parts of the simulator are explained and modeled in
more detail, beginning with the kinematics and
dynamic motion modeling considering kinematics
constraints and, further on dealing with different
collisions modeling. The stress is given to the motion
modeling where the assumptions of pure rolling
conditions are made and dynamic properties are
included. The results of this part are motion models of
the ball and the robot with differential drive. Some
new ideas of collision formulation and realization
(taking into account the real robot shape) are used as

well. Collisions are simply solved by mathematically
correct discontinuous change of velocities (states of
the velocity integrators), which is more convenient for
realization than simulating collisions by applying
impulse force [4, 5]. However, collisions are only
described by approximate models, which are sufficient
enough for realistic behavior of the obtained
simulator. Precise collision modeling is usually very
demanding because of many factors, which should be
considered during collision. When simulating a
realistic game a precise collision modeling is less
important than motion modeling. This is because the
game strategy is designed to play a good game where
different collisions are undesired and we want to avoid
them. Nevertheless collisions still happen and have to
be handled. The problems of collision detection and
the method of finding the exact time of the collision
are exposed too. For the latter the zero crossing
algorithms from Matlab Simulink are used. The
simulator code of motion and collision models is
implemented in C++ programming environment.

With a rapid progress of computer graphics used in
computer games, animated movies and other purposes
a number of physics engines have appeared which can
realistically simulate rigid body dynamics considering
variables such as mass, inertia, velocity, friction, etc.
Some of available physics engines are ODE – Open
Dynamics Engine, Ageia physX, AERO, Karma in
Unreal Engine and many others. Their usage enables
computer simulations, animations and games such as
racing games to appear more realistic. Depending on
their usage there exist two types of physics engines,
namely real-time and high precision. When dealing
with interactive computing (e. g. video games), the
physics engines are simplified in order to perform in
real-time. On the other hand high precision physics
engines require more processing power to be able to
calculate very precise physics and are usually used by
scientists and computer animated movies. Some of
physics engines are free and open source. As such
they can also be used to simulate physics in different
research oriented experiments. These packages are
usually comprehensive and therefore quite difficult to
manage, use and modify. To find out what advantages
can be obtained by using such physical engines, we
have also conducted the second approach to simulator
design by using ODE physics engine.

The paper is organized as follows. In section 2 a brief
system overview is revealed, followed by the
mathematical model derivation of basic agents (robots
and ball) in section 3. Then some new ideas of
collisions modeling considering complex robot shape
are presented in more detail in section 4. In section 5
simulator development using ODE physics engine is
described, and in section 6 both simulator
implementations are compared. The paper ends with
conclusions and some ideas for future work.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

2 System overview
The robot soccer set-up (see Fig. 1) consists of ten
Middle League MiroSot category robots (generating
two teams) of size 7.5cm cubed, orange golf ball,
rectangular playground of size 2.2×1.8m, color camera
and personal computer. Color camera is mounted
above playground (each team has its own) and is used
as a global motion sensor. The objects are identified
from their color information; orange ball and color
dresses of robots. The agent-based control part of the
program calculates commands for each agent (robot)
and sends them to the robot by a radio connection.
The robots are then driven by two powerful DC
motors; one for each wheel.

Fig. 1 Robot soccer system overview

The role of the simulator developed in the paper is to
replace the real playground, camera, robots and ball,
which are expensive and need a large place to be set
up. Therefore the simulator must include mathematical
models of motion as well as collisions which happen
on the playground.

3 Mathematical modeling
To simulate robot soccer game first mathematic
motion equations of the moving objects should be
derived. The playground activities consist of two
kinds of moving objects: robot and ball. Therefore
their motion modeling [6] is presented in the sequel.

3.1 Robot Model

The kinematics and dynamic motion equations for
mobile robot in Fig. 2 are derived.

Fig. 2 Mobile robot symbol description

Where To=(xo, yo) is robot geometric centre and
Tc=(xc, yc) is its mass centre. Supposing pure rolling
conditions of the wheels the following kinematic
constraints can be written:

 (1)

lcc

rcc

cc

rbyx

rbyx

dxy

φθθθ

φθθθ

θθθ

&&&&

&&&&

&&&

=−+

=++

=−−

sincos

sincos

0sincos

Where θ is robot orientation, φr and φl are wheels
angles and d is distance between mass centre and
geometric centre. According to the first constraint in
equation (1) robot cannot slide in the sideways while
the second and the third constraints describe pure
rolling of the wheels. The null space of kinematic
constraints (1) defines the robot kinematics motion
equation given as

() ()

() ()
⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−+

+−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

l

r

l

r

c

c

b
r

b
r

db
b
rdb

b
r

db
b
rdb

b
r

y
x

φ
φθθθθ

θθθθ

φ
φ
θ

&

&

&

&

&
&

&

10
01
22

)cos()sin(
2

)cos()sin(
2

)sin()cos(
2

)sin()cos(
2

(2)

Dynamics motion equations are derived using
Lagrange formulation

 ∑
=

−=
∂
∂

+
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ m

j
jkjk

kkk
af

q
P

q
L

q
L

dt
d

1

λ
&&

 (3)

where L is Lagrangian, P is power (dissipation)
function, are generalized coordinates, kq ()tf is
external force and λj are Lagrange multiplicator
associated with j-th (j=1…3) constraint equation and
ajk is k-th (k=1…5) coefficient of j-th constraint
equation. Lagrangian is defined by

()
()θθθ

φφθ

cossin2
2222

22222

cck

l
k

r
k

cc

yxdm

JJJyxmL

&&&

&&&&&

−+

+++++=
 (4)

were m=mc+2mk, J=Jc+2Jm+2mk(d2+b2), mc is body
mass, mk is wheel mass and Jc, Jk, Jm are moments of
inertia for robot body around axis Z, for wheel around
its axle and wheel around axis Z, respectively.

According to (3) the dynamic model is written as

() ()
() ()

() (

lllk

rrrk

cck

kc

kc

rJ

rJ

bdyxdmJ

dmym

dmxm

τλφµφ

τλφµφ

λλλθθθ

θλλθλθθθθ

θλλθλθθθθ

=−+

=−+

=−+−−+

=+++−−

=++−++

3

2

321

321
2

321
2

0cossin2

0sincossincos2

0cossincossin2

&&&

&&&

&&&&&&

&&&&&

&&&&&

)
 (5)

where λ1, λ2, λ3 are Lagrange multiplicators which can
effectively be eliminated by the procedure given in [7,
8]. The dynamics of electric part (the motors) can
usually be neglected, as electrical time constant are
usually significantly smaller than mechanical time
constants.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

3.2 Ball Model

General motion of the ball on a plane can be described
by five generalized coordinates as shown in Fig. 3.

Fig. 3 The ball rolling on the plane

Dynamics motion equation can be derived using
Lagrange formulation (3) where Lagrangian is defined
as

)(
2
1)(

2
1 22222

zyxJyxmL ϕϕϕ &&&&& ++++= (6)

where m is the ball mass and J is moment of inertia.
Supposing pure rolling condition of the ball, the
following relations 0=+ yrx ϕ&& , 0=− xry ϕ&&
hold, where r is ball radius. These relations are
holonomic (integrable) constraints and are used to
eliminate two generalized coordinates in (6). Further
on by neglecting rotation around z axis 0=zω ,
Lagrangian is rewritten as

 (222

2
yxr

Jm
L && +

+
=) (7)

The power function is

 22

2
1

2
1 yfxfP DD && += (8)

where fD is dumping coefficient. Final motion
equation of the ball are as follows

2

2

)(

)(

r
Jm

fytFy

r
Jm

fxtFx

D

D

+
⋅−

=

+
⋅−

=

&
&&

&
&&

 (9)

4 Collision modeling
During the motion of the objects on the playground
several collisions between them are possible. However
in the sequel only a brief introduction is given a more
detailed description of collision modeling can be
found in [9]. The latter are given as submodels and
describe the collision between moving objects: the
robot-ball collision model, the robot-boundary
collision model, the ball-boundary collision model and
the collision between robots model.

4.1 Ball-Boundary Collision

In the collision between ball and boundary elastic
collision is supposed where the tangential velocity
component to the boundary remains the same while
the normal velocity component changes sign and is
multiplied by a factor less than one representing
energy loss.

4.2 Robot-Ball Collision

Similar procedure as in ball-boundary collision is
followed in robot-ball collision. Also actual robot
shape is considered which is demonstrated in Fig. 4.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

dimension [m]

di
m

en
si

on
 [m

]

Fig. 4 Robot shape and its outer shape

Outer shape of the robot is obtained by recording ball
centre while it rounds the robot. The collision is then
treated as point collision where robot tangential and
normal velocities on outer robot shape in point of
collision are determined by ϕϕω sin)(

1
rvvx −= ,

ϕϕω cos)(
1

rvy = . Where v is linear velocity and

ω is angular velocity of robot centre, r(ϕ) is the
distance from the robot centre to the collision point
and ϕ is the angle from the local robot axis x to the
line connecting the robot centre and the collision
point.

The playground coordinate system is rotated so that
axis x is in tangential direction of the outer shape of
the robot (in the point of collision).

Fig. 5. Collision of two spheres

Mathematically the collision model is based on kinetic
energy and momentum balance equations for two
spheres as follows

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

22

11

221
2

211
1

21

121

21

212

2

2

yy

yy

xxx
x

xxx
x

vw

vw
mm

vmvmvm
w

mm
vmvmvm

w

=

=
+

−+
=

+

++−
=

 (10)

where indexes 1 and 2 stand for the robot and ball, v
represents the velocities before and w the velocities
after the collision, while m1 is robot and m2 ball mass
respectively.

4.3 Robot-Boundary Collision

During the game such collisions are undesired
therefore a motion algorithm includes also obstacle
avoidance capabilities. If in the simulated game such
collisions happen they are treated by a very simple
model for realization in the simulator code which
describes collision only approximately. It is therefore
not intention to capture exact collision but just to have
a simple solution to handle such collision situations.

If robot hit the boundary with two or more corners its
motion is stopped as long as the robot tries to advance
in the boundary. At one corner collision with the
boundary the robot starts to rotate around that corner
if the approaching angle between the robot and
boundary is big (more than 15°) otherwise it slides
along the boundary.

4.4 Collisions Between Robots

Among mentioned collisions in robot soccer game the
most challenging one is collision between robots.
Robots velocities after collision are obtained from
known force impulse which happened in the collision.
The detailed procedure to estimate velocities of two
rigid bodies after collision is described in [4, 9]. The
idea is to calculate relative velocities in the point of
collision before and after collision in normal direction.
It is always true that absolute value of relative velocity
in normal direction after collision remains the same
comparing to absolute value of relative velocity in
normal direction before collision in that point. From
that property the amplitude of force impulse can be
calculated. Once having estimated impulse linear and
angular velocity after collision can be calculated.
Linear velocity +vv and angular velocity +ωv for robot
mass centre after collision can be calculated by using
relations:

() () ()

() () ()()0
1

00

0
00

tJrItt

M
tJtvtv

vvvv

v
vv

×+=

+=

−−+

−+

ωω
 (11)

where t0 is time of the collision, M is mass of the
robot, I is corresponding moment of inertia, J is force
impulse because of collision and rv is a displacement

vector between mass centre xv and point of collision
pv (see Fig. 10), while the sign in the superscript

denotes time instant of the collision (- before and +
after collision).

5 Use of Open Dynamics Engine
In the second approach freely available physics engine
for rigid body dynamics simulation - ODE (Open
Dynamics Engine) was used. We have chosen ODE
because it is free, platform independent, with an easy
to use C/C++ API, it has integrated collision detection,
supports simulation of friction, and lots of
documentation is available.

ODE can be used for simulation of wheeled robots, as
well as legged robots, and is particularly suitable for
real time simulation of moving objects in virtual
environment. Simulation in ODE is based on rigid
body dynamics, where each body can have arbitrary
mass distribution and is described with its position and
orientation in 3D space, linear and angular velocity,
mass, position of the center of mass, and inertia
matrix. Bodies are connected to each other through
different kinds of joints, which include hinge, slider,
ball, fixed, contact etc. ODE also has integrated
collision detection engine, which based on given
information about shape of each body, can identify the
bodies that touch each other and passes the resulting
contact points to the user which can then create
contact joints between bodies that touch. Body’s shape
has no influence on body dynamics; it only affects the
collision detection. ODE uses a highly stable
integrator, so that simulation error cannot accumulate
in the way that the simulation becomes unstable, but
accuracy can be achieved only if step size is small, so
that we use the minimum step size so that real time
simulation is still possible.

Here we will give a short description of mobile robots
simulation procedure based on ODE. Procedure
consists of two stages: initialization and simulation
loop. In initialization stage first an object that acts as
container for rigid bodies and joints is created, which
is called dynamics world. Then also a collision world
is created which is container for geometric objects that
represent shape of simulated bodies and thus enable
collision detection. For each object in simulation, such
as robot, ball or playground, the corresponding rigid
bodies as well as geometric objects that represent
simulated objects are created and added to the
dynamics and collision world, respectively. For
example a robot consists of three rigid bodies and
corresponding geometry objects: robot’s chassis,
which is represented by box rigid body and two drive
wheels, which are represented by cylinder rigid bodies
and geometry objects. Here the impact of the castor
wheels on robot dynamics can be neglected because of
their small mass, and only the dynamics of contact
between castor wheels and ground is important for
simulation. Therefore the castor wheels are not

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

modeled with corresponding dynamic bodies but only
with cylinder geometric objects that have the role of
detecting of contact with the ground so that contact
dynamics can be simulated, which enables
maintaining the robot balance. In this way, under
normal conditions (e.g. the robot is not overturned), in
each time instance both drive wheels and only one (or
none) of the castor wheels have contact with the
ground. To achieve realistic collision behavior,
additional geometric objects are added to robot, which
model the actual robot shape shown in Fig. 4. Then for

each single body and corresponding geometric object,
its parameters (dimensions, initial position and
orientation, mass etc.) are set. Initialization phase ends
with creation of joint objects in dynamics world. In
our case, only hinge joints are required, where a hinge
connects each drive wheel with robot chassis.

In simulation loop stage, in each simulation step
forces are applied to the drive wheels, according to
velocity commands sent from strategy module. Then
collision detection engine is invoked, and for every
detected collision point a contact joint is created. Then
the parameters of the contact joint (such as friction
coefficient, restitution parameter etc.) are set for each
contact joint and joint is added to contact joint group.
The friction coefficient for contact joint between drive
wheel and the ground has high value because drive
wheels are coated with high grip tires. On the
opposite, the contact joint between castor wheel and
the ground has low friction coefficient value because
castor wheels are made out of smooth metal. Finally,
simulation step is taken, where new states for each
object are computed.

6 Comparison of Two Approaches
A comparison of two described simulator design
approaches is given. The first simulator approach uses
the classical way for deriving kinematics, motion and
collision equations while the second approach uses
physics engine ODE to obtain simulator core. Both
simulators GUI’s are shown in Fig. 6 and Fig. 7.

Collision simulation is more challenging than motion
simulation without collision. To compare behavior of
both simulators in such conditions, results of three
simulation experiments are given in the sequel.
Finally, to find out how close the simulators describe
the real world situations, results of correspondent
experiments with real robots and ball are presented as
well. The values of all relevant variables in
experiments are sampled using sample time of 33.3
ms, and results of all experiments are graphically
presented using only every fifth sample (i.e. with 165
ms resolution). Additionally, the intern sample time
that was used by ODE engine in second simulator was
1 ms.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6
Fig. 7. Screen shot of the second (ODE-based)
simulator
Fig. 6. Screen shot of the first simulator (based on
classical approach)
In the first experiment the ball starts to move towards
the playground boundary with initial velocity v=1m/s,
and then it collides with the boundary and finally with
the non-moving robot. The behavior of both
simulators in this experiment can be visually
compared by observing different scenarios in Fig. 8. It
can be seen that both simulators show similar results
and consider the actual robot shape shown in Fig. 4,
except that the second simulator produces somewhat
lower ball velocity after collision and slightly different
final ball direction. Besides that, if the experiment is
observed in 3D viewer, the second simulator shows a
small ball jump after collision with boundary or robot.
This is more realistic, because in the real world, on
higher velocities ball rotation causes the jump in the
case of ball collision with the boundary, which is also
verified by the real world experiment shown in Fig. 8
(c). In this experiment initial state of the ball was
slightly different than the one used in simulations,
because in real world it is difficult to reproduce exact
ball initial state. It can be concluded that results of
both simulators are close to real world behavior,
except that in real world the ball no more has straight
line trajectory on low velocities, which is caused by
non ideally flat ground plane, but of course this would
be difficult to model in simulator.

Copyright © 2007 EUROSIM / SLOSIM

0.4 0.5 0.6 .7 0.8 0.9 1

1.3

1.4

1.5

1.6

1.7

1.8
Ball-robot collision

0.4 0.5 0.6

1.3

1.4

1.5

1.6

1.7

1.8
Ba

0.4 0.5 0.6

1.3

1.4

1.5

1.6

1.7

1.8
Ba

Fig. 8. Ball-robot coll
simulator (b) second

In the second experime
towards the boundary at
boundary while the m
controlled to produce th
angular velocity of the w
robot linear velocity of
experiment can be seen
that both simulators, as w
almost identical behavio
collision robot ends stuck
one very important di
second simulator; in the

by viewing the simulation in 3D viewer one can
observe that after the robot finishes stuck on the
boundary, the wheels of the robot are still rotating
although the robot is not moving, which means that
wheels are sliding. This is closer to reality, because in
real world experiment the wheel sliding is also
present. The simulation of this effect in the case of
second simulator is possible because ODE engine is
capable of simulating the friction effects.

1.6

1.7

1.8
Robot-boundary collision

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2
0

(a)
.7 0.8 0.9 1

ll-robot collision

l

i
s

e

0.4 0.5 0.6 .7 0.8 0.9 1

1.3

1.4

1.5

1.6

1.7

1.8
Robot-boundary collision

)

0

(b)
.7 0.8 0.9 1

l-robot collision

0.4 0.5 0.6 7 0.8 0.9 1

1.3

1.4

1.5

1.6

1.7

1.8
Robot- ry collision

)

0

(c
sion experiment (a) first
imulator (c) real world

nt the robot starts to move
the 45° angle relative to the
otors of both wheels are
 torque in order to maintain
heels that is correspondent to
0.6 m/s. The results of this
in Fig. 9. It can be observed
ell as real world robot, show
r as in every case after the
 in the boundary. But there is
fference between first and
case of the second simulator,

0.4 0.5 0.6

1.3

1.4

1.5

Fig. 9. Robot-boundary
first simulator (b) second

Finally, in the third ex
starting positions R1 = (0
m start to move towards

7 Copyright ©
0

(a
0.

bounda
(b)
.7 0.8 0.9 1)

0

(c

 collision experiment (a)
 simulator (c) real world

periment two robots with
.5, 1) m and R2 = (0.8, 1.05)
each other. During the whole

 2007 EUROSIM / SLOSIM

experiment wheel motors of both robots are controlled
to maintain linear velocity of 0.6 m/s. The results of
this experiment are shown in Fig. 10, where the traces
of the first and second robot are marked with solid and
dashed lines, respectively.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Robot-robot collision

R1 = (0.5, 1)

R2 = (0.8, 1.05)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.9

1

1.1

1.2

1.3

Robot-robot collision

R1 = (0.5, 1)

R2 = (0.8, 1.05)

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Robot-robot collision

R1 = (0.5, 1)

R2 = (0.8, 1.05)

Fig. 10. Robot-robot collision experiment (a) first

simulator (b) second simulator (c) real world

 In this experiment the differences between two
simulators are most notable, as in case of the first
simulator after the collision robots split up and each
robot continues to move in its own direction. But in
case of second simulator, after the collision robots
remain stuck on each other, while the wheels are
sliding along the ground plane. The experiment with
real robots shows that after the collision robots also

remain stuck on each other while the wheels are
sliding, but because the grip is different for each
wheel, in most cases the pushing force of one robot
takes over the other’s push force and both robots
together start to move slowly in an unpredictable
direction. This shows that none of the simulators
predicts precisely the behavior of the real robots.
Nevertheless, the second simulator is here also closer
to reality.

It can be concluded that both simulators give
sufficient representation of reality, although the
second simulator provides more realistic model
because it can predict real world effects such as wheel
sliding. In cases when detection of wheel sliding is
important, as can be the case when designing and
testing the robot soccer strategy, it could be more
convenient to use the second simulator approach.

To summarize, we can emphasize advantages and
disadvantages of each simulator. Advantages of ODE
based physics engine based simulator are: already
developed physical models of usually complex
systems, stable integration methods, the user need less
theoretical background, there is less possibilities for
modeling mistakes, wrong assumptions or unjustified
simplifications, it enables general usage, has verified
operation and quite optimized performance. Also, the
ODE greatly simplifies simulation of objects (e.g.
robots) with complex shape, because all that has to be
done is to approximate complex object shape with
appropriate geometric objects, which would be very
difficult to accomplish using classical approach.

(a)

On the other hand, the ODE package is comprehensive
and therefore quite difficult to modify if required. In
the case of very complex models, it could also be
difficult to achieve sufficient performance. ODE uses
various approximations to achieve better performance,
which can result with insufficient precision for some
simulation tasks. Therefore, in same cases it can be
better or even mandatory to derive own physical
models. This benefits with better insight to system
inner characteristics and gives the possibility for
various customizations and the simulation code can be
made more efficient.

(b)

Besides robot soccer practical use of such simulators
can be in non-prehensile object manipulations studies
(without grasping), study of interaction of multiple
agents and the like. (c)

7 Conclusion
In this paper we describe design and implementation
of mobile robots simulator designed for robot soccer
or for general use. Two different approaches for
simulator design are presented and compared. In the
first approach the complete simulator physics
background was developed by our team, and in the
second approach we used freely available physics
engine ODE.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

It can be concluded that use of physics engines saves
the cumbersome task of deriving mathematical model
of complex systems, and depending on physics engine
used, can also provide some additional features that
would be otherwise hard to model. For example, ODE
physics engine enables us to simulate friction, which
means that unrealistic assumption of pure rolling
condition can be avoided and situations when robot
slip occur can be simulated. On the other hand,
derivation of own model gives better insight to system
inner characteristics and gives the possibility for
various customizations if required.

Acknowledgement
This research was jointly supported by the Slovenian
Research Agency of the Republic of Slovenia (grant
No. BIHR 07-08-008) and the Ministry of Science,
Education and Sports of the Republic of Croatia (grant
No. 036-0363078-3018).

8 References
[1] R. Smith, Open Dynamics Engine,

http://www.ode.org/

[2] T. C. Liang, J.S. Liu, A Distributed Mobile Robot
Simulator and a Ball Passing Strategy, Technical
Report TR-IIS-02-007, Institute of Information
Science, Academia Sinica, Nankang, Taiwan,
2002.

[3] S. Moss, P. Davidsson, Multi-Agent-Based
Simulation, Springer-Verlag, New York, 2002.

[4] D. Baraf, An Introduction to Physically Based
Modeling: Rigid Body Simulation II –
Nonpenetration Constraints, in: SIGGRAPH '97
Course notes, Carnegie Mellon University, 1997.

[5] E. Larsen, A Robot Soccer Simulator: A Case
Study for Rigid Body Contact, Sony Computer
Entertainment America R&D, March 2001.

[6] O. Egeland, J.T. Gravdahl, Modeling and
Simulation for Automatic Control, Marine
Cybernetics, Trondheim, Norway, 2002.

[7] G. Oriolo, A. Luca, M. Vandittelli, WMR Control
Via Dynamic Feedback Linearization: Design,
Implementation, and Experimental Validation,
IEEE Transactions on Control Systems
Technology, 10 (6) (2002) 835-852.

[8] N. Sarkar, X. Yun, V. Kumar, Control of
mechanical systems with rolling constraints:
Application to dynamic control of mobile robot,
The International Journal of Robotic Research, 13
(1) (1994) 55-69.

[9] G. Klančar, M. Lepetič, R. Karba, B. Zupančič,
Robot soccer collision modelling and validation in
multi-agent simulator, Mathematical and
computer modelling of dynamical systems, 9(2)
(2003) 137-150.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

	Introduction
	System overview
	Mathematical modeling
	Robot Model
	Fig. 2 Mobile robot symbol description

	Ball Model

	Collision modeling
	Ball-Boundary Collision
	Robot-Ball Collision
	Fig. 4 Robot shape and its outer shape

	Robot-Boundary Collision
	Collisions Between Robots

	Use of Open Dynamics Engine
	Comparison of Two Approaches
	Conclusion
	Acknowledgement
	References

