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Abstract 

This paper presents the design of a mobile robots simulator which is applicable for robot 
soccer or for general use. The simulator consists of a group of mobile robots, the ball and 
includes knowledge of their dynamic behavior modeling, collisions modeling and 
visualization. Two different approaches to the design of this simulator are given and 
compared. By the first approach the simulator physics background was completely developed 
by our team, which enabled us to get a better insight into the problem domain and gave us the 
possibility to efficiently solve some simulator specifics. First the model of ball and robot 
motion was derived and then complex approximate collisions models, where the real robot 
shape is taken into consideration. Some new ideas of collision formulation, realization and 
real robot shape inclusion are used. By the second approach the simulator was developed 
using freely available physics engine ODE – Open Dynamics Engine. This engine already 
includes physical background for rigid bodies dynamic; it is up to the user to define 
mechanical and physical parameters of the objects to simulate e.g. dimensions, masses, 
friction, joints and the like. The implementation of both simulators are described and a 
comparisons of their reality description, computational efficiency, effort and knowledge 
needed to built the simulator, advantages and disadvantages are given.  
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1 Introduction 
In this paper two approaches to the design of 
simulator for multi-agent group of robots are 
described and compared: (i) classic approach, where 
the simulation is based on a derived model of dynamic 
behavior and collisions, and (ii) use of freely available 
physics engine ODE - Open Dynamics Engine [1]. 
Generally, the classic approach has an advantage of 
better insight into the problematic and gives the 
possibility for various customizations if required, 
while physics engine based approach eases simulator 
development procedure, but offers less flexibility. 

The main purpose of the simulator design procedure is 
to obtain a realistic simulator which would be used as 
a tool in the process of strategy and control algorithms 
design for real world robot soccer as well as for other 
mobile-robotics related topics. To assure 
transferability to the real system the obtained strategy 
algorithms have to be designed on a realistic 
simulator. 

The main motivation for robot soccer simulator 
development was to design and study multi-agent 
control and strategy algorithms in FIRA Middle or 
Large League MiroSot category (5 against 5 or 11 
against 11 robots). However, on FIRA’s (Federation 
of International Robot Soccer Association) official 
website (www.fira.net) there exists a simulator for 
SimuroSot league, which could only be used in 
Middle League MiroSot (5 against 5 robots).  

A similar simulator was built by [2] where robot 
motion is simulated by dynamic model, collisions 
remaining oversimplified. There also exist a number 
of other simulator applications [3] but not many 
papers are available. Other problem is specificity of 
each simulator which implies that many available 
simulators are not usable in our robot soccer domain 
and vice versa. An important part of every realistic 
robot soccer simulator is collision modeling and 
simulation. Good mathematical background in rigid 
body collisions modeling and simulation could be 
found in [4]. Another useful contribution in the field 
of robotic simulator is [5] where collisions are treated 
by spring-dumper approach rather than by impulse 
force only. 

For the first simulator design approach, some vital 
parts of the simulator are explained and modeled in 
more detail, beginning with the kinematics and 
dynamic motion modeling considering kinematics 
constraints and, further on dealing with different 
collisions modeling. The stress is given to the motion 
modeling where the assumptions of pure rolling 
conditions are made and dynamic properties are 
included. The results of this part are motion models of 
the ball and the robot with differential drive. Some 
new ideas of collision formulation and realization 
(taking into account the real robot shape) are used as 

well. Collisions are simply solved by mathematically 
correct discontinuous change of velocities (states of 
the velocity integrators), which is more convenient for 
realization than simulating collisions by applying 
impulse force [4, 5]. However, collisions are only 
described by approximate models, which are sufficient 
enough for realistic behavior of the obtained 
simulator. Precise collision modeling is usually very 
demanding because of many factors, which should be 
considered during collision. When simulating a 
realistic game a precise collision modeling is less 
important than motion modeling. This is because the 
game strategy is designed to play a good game where 
different collisions are undesired and we want to avoid 
them. Nevertheless collisions still happen and have to 
be handled. The problems of collision detection and 
the method of finding the exact time of the collision 
are exposed too. For the latter the zero crossing 
algorithms from Matlab Simulink are used. The 
simulator code of motion and collision models is 
implemented in C++ programming environment. 

With a rapid progress of computer graphics used in 
computer games, animated movies and other purposes 
a number of physics engines have appeared which can 
realistically simulate rigid body dynamics considering 
variables such as mass, inertia, velocity, friction, etc. 
Some of available physics engines are ODE – Open 
Dynamics Engine, Ageia physX, AERO, Karma in 
Unreal Engine and many others. Their usage enables 
computer simulations, animations and games such as 
racing games to appear more realistic. Depending on 
their usage there exist two types of physics engines, 
namely real-time and high precision. When dealing 
with interactive computing (e. g. video games), the 
physics engines are simplified in order to perform in 
real-time. On the other hand high precision physics 
engines require more processing power to be able to 
calculate very precise physics and are usually used by 
scientists and computer animated movies. Some of 
physics engines are free and open source. As such 
they can also be used to simulate physics in different 
research oriented experiments. These packages are 
usually comprehensive and therefore quite difficult to 
manage, use and modify. To find out what advantages 
can be obtained by using such physical engines, we 
have also conducted the second approach to simulator 
design by using ODE physics engine.  

The paper is organized as follows. In section 2 a brief 
system overview is revealed, followed by the 
mathematical model derivation of basic agents (robots 
and ball) in section 3. Then some new ideas of 
collisions modeling considering complex robot shape 
are presented in more detail in section 4. In section 5 
simulator development using ODE physics engine is 
described, and in section 6 both simulator 
implementations are compared. The paper ends with 
conclusions and some ideas for future work. 
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2 System overview 
The robot soccer set-up (see Fig. 1) consists of ten 
Middle League MiroSot category robots (generating 
two teams) of size 7.5cm cubed, orange golf ball, 
rectangular playground of size 2.2×1.8m, color camera 
and personal computer. Color camera is mounted 
above playground (each team has its own) and is used 
as a global motion sensor. The objects are identified 
from their color information; orange ball and color 
dresses of robots. The agent-based control part of the 
program calculates commands for each agent (robot) 
and sends them to the robot by a radio connection. 
The robots are then driven by two powerful DC 
motors; one for each wheel. 

 
Fig. 1 Robot soccer system overview 

The role of the simulator developed in the paper is to 
replace the real playground, camera, robots and ball, 
which are expensive and need a large place to be set 
up. Therefore the simulator must include mathematical 
models of motion as well as collisions which happen 
on the playground. 

3 Mathematical modeling 
To simulate robot soccer game first mathematic 
motion equations of the moving objects should be 
derived. The playground activities consist of two 
kinds of moving objects: robot and ball. Therefore 
their motion modeling [6] is presented in the sequel. 

3.1 Robot Model 

The kinematics and dynamic motion equations for 
mobile robot in Fig. 2 are derived. 

 
Fig. 2  Mobile robot symbol description 

Where To=(xo, yo) is robot geometric centre and  
Tc=(xc, yc) is its mass centre. Supposing pure rolling 
conditions of the wheels the following kinematic 
constraints can be written: 
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Where θ is robot orientation, φr and φl are wheels 
angles and d is distance between mass centre and 
geometric centre. According to the first constraint in 
equation (1) robot cannot slide in the sideways while 
the second and the third constraints describe pure 
rolling of the wheels. The null space of kinematic 
constraints (1) defines the robot kinematics motion 
equation given as 

 
( ) ( )

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−+

+−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

l

r

l

r

c

c

b
r

b
r

db
b
rdb

b
r

db
b
rdb

b
r

y
x

φ
φθθθθ

θθθθ

φ
φ
θ

&

&

&

&

&
&

&

10
01
22

)cos()sin(
2

)cos()sin(
2

)sin()cos(
2

)sin()cos(
2

(2) 

Dynamics motion equations are derived using 
Lagrange formulation 
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where L is Lagrangian, P is power (dissipation) 
function,  are generalized coordinates, kq ( )tf  is 
external force and λj are Lagrange multiplicator 
associated with j-th (j=1…3) constraint equation and 
ajk is k-th (k=1…5) coefficient of j-th constraint 
equation. Lagrangian is defined by 
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were m=mc+2mk, J=Jc+2Jm+2mk(d2+b2), mc is body 
mass, mk is wheel mass and Jc, Jk, Jm are moments of 
inertia for robot body around axis Z, for wheel around 
its axle and wheel around axis Z, respectively. 

According to (3) the dynamic model is written as  
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where λ1, λ2, λ3 are Lagrange multiplicators which can 
effectively be eliminated by the procedure given in [7, 
8]. The dynamics of electric part (the motors) can 
usually be neglected, as electrical time constant are 
usually significantly smaller than mechanical time 
constants.  
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3.2 Ball Model 

General motion of the ball on a plane can be described 
by five generalized coordinates as shown in Fig. 3. 

 
Fig. 3 The ball rolling on the plane 

 

Dynamics motion equation can be derived using 
Lagrange formulation (3) where Lagrangian is defined 
as  
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where m is the ball mass and J is moment of inertia. 
Supposing pure rolling condition of the ball, the 
following relations 0=+ yrx ϕ&& , 0=− xry ϕ&&  
hold, where r is ball radius. These relations are 
holonomic (integrable) constraints and are used to 
eliminate two generalized coordinates in (6). Further 
on by neglecting rotation around z axis 0=zω , 
Lagrangian is rewritten as  
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where fD is dumping coefficient. Final motion 
equation of the ball are as follows 
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4 Collision modeling 
During the motion of the objects on the playground 
several collisions between them are possible. However 
in the sequel only a brief introduction is given a more 
detailed description of collision modeling can be 
found in [9]. The latter are given as submodels and 
describe the collision between moving objects: the 
robot-ball collision model, the robot-boundary 
collision model, the ball-boundary collision model and 
the collision between robots model. 

4.1 Ball-Boundary Collision 

In the collision between ball and boundary elastic 
collision is supposed where the tangential velocity 
component to the boundary remains the same while 
the normal velocity component changes sign and is 
multiplied by a factor less than one representing 
energy loss. 

4.2 Robot-Ball Collision 

Similar procedure as in ball-boundary collision is 
followed in robot-ball collision. Also actual robot 
shape is considered which is demonstrated in Fig. 4. 
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Fig. 4  Robot shape and its outer shape 

Outer shape of the robot is obtained by recording ball 
centre while it rounds the robot. The collision is then 
treated as point collision where robot tangential and 
normal velocities on outer robot shape in point of 
collision are determined by ϕϕω sin)(

1
rvvx −= , 

ϕϕω cos)(
1

rvy =  . Where v is linear velocity and 

ω  is angular velocity of robot centre, r(ϕ) is the 
distance from the robot centre to the collision point 
and ϕ is the angle from the local robot axis x to the 
line connecting the robot centre and the collision 
point. 

The playground coordinate system is rotated so that 
axis x is in tangential direction of the outer shape of 
the robot (in the point of collision). 

 
Fig. 5.  Collision of two spheres 

Mathematically the collision model is based on kinetic 
energy and momentum balance equations for two 
spheres as follows 
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where indexes 1 and 2 stand for the robot and ball, v 
represents the velocities before and w the velocities 
after the collision, while m1 is robot and m2 ball mass 
respectively. 

4.3 Robot-Boundary Collision 

During the game such collisions are undesired 
therefore a motion algorithm includes also obstacle 
avoidance capabilities. If in the simulated game such 
collisions happen they are treated by a very simple 
model for realization in the simulator code which 
describes collision only approximately. It is therefore 
not intention to capture exact collision but just to have 
a simple solution to handle such collision situations. 

If robot hit the boundary with two or more corners its 
motion is stopped as long as the robot tries to advance 
in the boundary. At one corner collision with the 
boundary the robot starts to rotate around that corner 
if the approaching angle between the robot and 
boundary is big (more than 15°) otherwise it slides 
along the boundary.  

4.4 Collisions Between Robots 

Among mentioned collisions in robot soccer game the 
most challenging one is collision between robots. 
Robots velocities after collision are obtained from 
known force impulse which happened in the collision. 
The detailed procedure to estimate velocities of two 
rigid bodies after collision is described in [4, 9]. The 
idea is to calculate relative velocities in the point of 
collision before and after collision in normal direction. 
It is always true that absolute value of relative velocity 
in normal direction after collision remains the same 
comparing to absolute value of relative velocity in 
normal direction before collision in that point. From 
that property the amplitude of force impulse can be 
calculated. Once having estimated impulse linear and 
angular velocity after collision can be calculated. 
Linear velocity +vv  and angular velocity +ωv  for robot 
mass centre after collision can be calculated by using 
relations: 
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where t0 is time of the collision, M is mass of the 
robot, I is corresponding moment of inertia, J is force 
impulse because of collision and rv  is a displacement 

vector between mass centre xv and point of collision 
pv  (see Fig. 10), while the sign in the superscript 

denotes time instant of the collision (- before and + 
after collision). 

5 Use of Open Dynamics Engine 
In the second approach freely available physics engine 
for rigid body dynamics simulation - ODE (Open 
Dynamics Engine) was used. We have chosen ODE 
because it is free, platform independent, with an easy 
to use C/C++ API, it has integrated collision detection, 
supports simulation of friction, and lots of 
documentation is available. 

ODE can be used for simulation of wheeled robots, as 
well as legged robots, and is particularly suitable for 
real time simulation of moving objects in virtual 
environment. Simulation in ODE is based on rigid 
body dynamics, where each body can have arbitrary 
mass distribution and is described with its position and 
orientation in 3D space, linear and angular velocity, 
mass, position of the center of mass, and inertia 
matrix. Bodies are connected to each other through 
different kinds of joints, which include hinge, slider, 
ball, fixed, contact etc. ODE also has integrated 
collision detection engine, which based on given 
information about shape of each body, can identify the 
bodies that touch each other and passes the resulting 
contact points to the user which can then create 
contact joints between bodies that touch. Body’s shape 
has no influence on body dynamics; it only affects the 
collision detection. ODE uses a highly stable 
integrator, so that simulation error cannot accumulate 
in the way that the simulation becomes unstable, but 
accuracy can be achieved only if step size is small, so 
that we use the minimum step size so that real time 
simulation is still possible. 

Here we will give a short description of mobile robots 
simulation procedure based on ODE. Procedure 
consists of two stages: initialization and simulation 
loop. In initialization stage first an object that acts as 
container for rigid bodies and joints is created, which 
is called dynamics world. Then also a collision world 
is created which is container for geometric objects that 
represent shape of simulated bodies and thus enable 
collision detection. For each object in simulation, such 
as robot, ball or playground, the corresponding rigid 
bodies as well as geometric objects that represent 
simulated objects are created and added to the 
dynamics and collision world, respectively. For 
example a robot consists of three rigid bodies and 
corresponding geometry objects: robot’s chassis, 
which is represented by box rigid body and two drive 
wheels, which are represented by cylinder rigid bodies 
and geometry objects. Here the impact of the castor 
wheels on robot dynamics can be neglected because of 
their small mass, and only the dynamics of contact 
between castor wheels and ground is important for 
simulation. Therefore the castor wheels are not 
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modeled with corresponding dynamic bodies but only 
with cylinder geometric objects that have the role of 
detecting of contact with the ground so that contact 
dynamics can be simulated, which enables 
maintaining the robot balance. In this way, under 
normal conditions (e.g. the robot is not overturned), in 
each time instance both drive wheels and only one (or 
none) of the castor wheels have contact with the 
ground. To achieve realistic collision behavior, 
additional geometric objects are added to robot, which 
model the actual robot shape shown in Fig. 4. Then for  

each single body and corresponding geometric object, 
its parameters (dimensions, initial position and 
orientation, mass etc.) are set. Initialization phase ends 
with creation of joint objects in dynamics world. In 
our case, only hinge joints are required, where a hinge 
connects each drive wheel with robot chassis. 

In simulation loop stage, in each simulation step 
forces are applied to the drive wheels, according to 
velocity commands sent from strategy module. Then 
collision detection engine is invoked, and for every 
detected collision point a contact joint is created. Then 
the parameters of the contact joint (such as friction 
coefficient, restitution parameter etc.) are set for each 
contact joint and joint is added to contact joint group. 
The friction coefficient for contact joint between drive 
wheel and the ground has high value because drive 
wheels are coated with high grip tires. On the 
opposite, the contact joint between castor wheel and 
the ground has low friction coefficient value because 
castor wheels are made out of smooth metal. Finally, 
simulation step is taken, where new states for each 
object are computed. 

6 Comparison of Two Approaches 
A comparison of two described simulator design 
approaches is given. The first simulator approach uses 
the classical way for deriving kinematics, motion and 
collision equations while the second approach uses 
physics engine ODE to obtain simulator core. Both 
simulators GUI’s are shown in Fig. 6 and Fig. 7. 

Collision simulation is more challenging than motion 
simulation without collision. To compare behavior of 
both simulators in such conditions, results of three 
simulation experiments are given in the sequel. 
Finally, to find out how close the simulators describe 
the real world situations, results of correspondent 
experiments with real robots and ball are presented as 
well. The values of all relevant variables in 
experiments are sampled using sample time of 33.3 
ms, and results of all experiments are graphically 
presented using only every fifth sample (i.e. with 165 
ms resolution). Additionally, the intern sample time 
that was used by ODE engine in second simulator was 
1 ms. 
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Fig. 7.  Screen shot of the second (ODE-based) 
simulator 
Fig. 6.  Screen shot of the first simulator (based on 
classical approach) 
In the first experiment the ball starts to move towards 
the playground boundary with initial velocity v=1m/s, 
and then it collides with the boundary and finally with 
the non-moving robot. The behavior of both 
simulators in this experiment can be visually 
compared by observing different scenarios in Fig. 8. It 
can be seen that both simulators show similar results 
and consider the actual robot shape shown in Fig. 4, 
except that the second simulator produces somewhat 
lower ball velocity after collision and slightly different 
final ball direction. Besides that, if the experiment is 
observed in 3D viewer, the second simulator shows a 
small ball jump after collision with boundary or robot. 
This is more realistic, because in the real world, on 
higher velocities ball rotation causes the jump in the 
case of ball collision with the boundary, which is also 
verified by the real world experiment shown in Fig. 8 
(c). In this experiment initial state of the ball was 
slightly different than the one used in simulations, 
because in real world it is difficult to reproduce exact 
ball initial state. It can be concluded that results of 
both simulators are close to real world behavior, 
except that in real world the ball no more has straight 
line trajectory on low velocities, which is caused by 
non ideally flat ground plane, but of course this would 
be difficult to model in simulator. 

Copyright © 2007 EUROSIM / SLOSIM
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experiment wheel motors of both robots are controlled 
to maintain linear velocity of 0.6 m/s. The results of 
this experiment are shown in Fig. 10, where the traces 
of the first and second robot are marked with solid and 
dashed lines, respectively. 
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Fig. 10.  Robot-robot collision experiment (a) first 

simulator (b) second simulator (c) real world 

 

 In this experiment the differences between two 
simulators are most notable, as in case of the first 
simulator after the collision robots split up and each 
robot continues to move in its own direction. But in 
case of second simulator, after the collision robots 
remain stuck on each other, while the wheels are 
sliding along the ground plane. The experiment with 
real robots shows that after the collision robots also 

remain stuck on each other while the wheels are 
sliding, but because the grip is different for each 
wheel, in most cases the pushing force of one robot 
takes over the other’s push force and both robots 
together start to move slowly in an unpredictable 
direction. This shows that none of the simulators 
predicts precisely the behavior of the real robots. 
Nevertheless, the second simulator is here also closer 
to reality. 

It can be concluded that both simulators give 
sufficient representation of reality, although the 
second simulator provides more realistic model 
because it can predict real world effects such as wheel 
sliding. In cases when detection of wheel sliding is 
important, as can be the case when designing and 
testing the robot soccer strategy, it could be more 
convenient to use the second simulator approach. 

To summarize, we can emphasize advantages and 
disadvantages of each simulator. Advantages of ODE 
based physics engine based simulator are: already 
developed physical models of usually complex 
systems, stable integration methods, the user need less 
theoretical background, there is less possibilities for 
modeling mistakes, wrong assumptions or unjustified 
simplifications, it enables general usage, has verified 
operation and quite optimized performance. Also, the 
ODE greatly simplifies simulation of objects (e.g. 
robots) with complex shape, because all that has to be 
done is to approximate complex object shape with 
appropriate geometric objects, which would be very 
difficult to accomplish using classical approach. 

(a)

On the other hand, the ODE package is comprehensive 
and therefore quite difficult to modify if required. In 
the case of very complex models, it could also be 
difficult to achieve sufficient performance. ODE uses 
various approximations to achieve better performance, 
which can result with insufficient precision for some 
simulation tasks. Therefore, in same cases it can be 
better or even mandatory to derive own physical 
models. This benefits with better insight to system 
inner characteristics and gives the possibility for 
various customizations and the simulation code can be 
made more efficient. 

(b) 

Besides robot soccer practical use of such simulators 
can be in non-prehensile object manipulations studies 
(without grasping), study of interaction of multiple 
agents and the like.  (c)

7 Conclusion 
In this paper we describe design and implementation 
of mobile robots simulator designed for robot soccer 
or for general use. Two different approaches for 
simulator design are presented and compared. In the 
first approach the complete simulator physics 
background was developed by our team, and in the 
second approach we used freely available physics 
engine ODE. 
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It can be concluded that use of physics engines saves 
the cumbersome task of deriving mathematical model 
of complex systems, and depending on physics engine 
used, can also provide some additional features that 
would be otherwise hard to model. For example, ODE 
physics engine enables us to simulate friction, which 
means that unrealistic assumption of pure rolling 
condition can be avoided and situations when robot 
slip occur can be simulated. On the other hand, 
derivation of own model gives better insight to system 
inner characteristics and gives the possibility for 
various customizations if required. 
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