
CO-SIMULATION OF CHI AND SIMULINK
MODELS

D.A. van Beek1, A.T. Hofkamp1, M.A. Reniers2, J.E. Rooda1, and R.R.H. Schiffelers1

1 Eindhoven University of Technology, Department of Mechanical Engineering
P.O. Box 513 5600 MB Eindhoven, The Netherlands

2 Eindhoven University of Technology, Department of Computer Science
P.O. Box 513 5600 MB Eindhoven, The Netherlands

r.r.h.schiffelers@tue.nl
(This work has been carried out as part of the Darwin project under the responsibility of the Embedded Systems Institute. This

project is partially supported by the Netherlands Ministry of Economic Affairs under the BSIK program, and partially
supported by the ITEA project TWINS, number 05004)

Abstract

Using the model-based engineering paradigm for the design
of a system, the system is decomposed into several compo-
nents and models are developed for these components. The
models are preferably specified using domain-specific mod-
elling formalisms. By means of co-simulation, the component
models can be combined to obtain the overall system behav-
ior. Furthermore, co-simulation enables the reuse and com-
bination of already existing and validated subsystem models
without re-entering model data. In this paper, we present a co-
simulation framework (see figure at the right) that is based on
the S-function interface as present in Matlab Simulink, to sim-
ulate models that consist of subsystems modelled using Mat-
lab Simulink and subsystems modelled in the hybrid process
algebra Chi (χ). The principles of the implementation of the
framework are described and the framework is illustrated by
means of a bottle filling system example.

Simulink Unix process

Simulink model

SimStruct
modifications

callback function
invocations

Python Unix process

χDE+simulator

TimeStep Simulate()

DoActionTransition

TimeStep GetNextSteps()

callback methods

callback function
invocationsmodifications

SimStruct

callback methods chi sfunction
CMEX

chi sfunction
Python

IPC

χ model(inputvar a)

chi sfunction
χ model
outputvars = x, y y

a x

Keywords: hybrid systems, model-based engineering, modelling, co-simulation, Chi for-
malism, Simulink

Presenting Author’s Biography

Ramon Schiffelers received his Ph.D degree from the Eindhoven Univer-
sity of Technology in February 2006. His thesis was called ’Modelling,
Simulation and Verification of Hybrid Systems’. Currently, he is partic-
ipating in the Darwin project that aims to provide generic methods that
will lead to the design of high evolvable systems. He is a member of the
(Dutch) Institute for Programming research and Algorithmics (IPA).

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
In the design cycle of large-scale heterogeneous sys-
tems, modelling is a time and labor consuming step.
The models generally combine components from many
different domains, e.g., hydraulics, thermodynamics,
combustion, electronics, supervisory control, schedul-
ing, communication, etc., which have to be described
using appropriate formalisms and for which specific
software environments exist. Simulation is a popular
way of analysing the behavior of the controlled system
and it is supported by most of the tools dedicated to hy-
brid systems. Therefore, in the HYCON NoE [1] as part
of work package 3 on tool integration, a study was car-
ried out to provide tool interoperability for simulation
purposes. The objective is to increase the modelling
efficiency for large-scale heterogeneous systems by en-
abling

• the combination of domain-specific modelling for-
malisms and component libraries, and

• the reuse and combination of already existing and
validated subsystem models from different tools
without re-entering/re-modelling the model.

By means of co-simulation, these objectives can be met.
The term co-simulation in this document refers to sim-
ulation of a model that consists of different compo-
nents that may each be simulated by different simula-
tion tools running simultaneously and exchanging in-
formation. In literature, the term co-simulation is also
used for ‘hardware-software co-simulation’, however
such a kind of co-simulation differs from the use in this
document.
As part of the Darwin project [2], the model-based en-
gineering (MBE) method [3] is used to develop the con-
trol system of a patient support system of a MRI scan-
ner. The MBE method is visualized in Figure 1. The
system development process is subdivided into multiple
(concurrent) component development processes. Sub-
sequently, the resulting components are integrated into
the system. Using the MBE approach, the development
process of a component Ci consists of a requirements
definition phase, a design phase, a modelling phase, and
a realization phase resulting in the requirements Ri , the
design Di , the model Mi , and the realization Z i , re-
spectively. In the development process of a system S
that consists of multiple components, e.g. components
C1 and C2, the system requirements R and the system
design D precede the development process of the com-
ponents. The realization of system S is the result of
the integration of realizations of Z1 and Z2 of the com-
ponents C1 and C2 by means of infrastructure I12, de-
noted by 〈Z1, I12, Z2〉. The components might be mod-
elled in several domain-specific modelling formalisms.
For example, in case of the patient support system, the
physics of the patient support table can be modelled us-
ing Simulink [4] (M1), and the controller can be mod-
elled using χ [5, 6] (M2). By means of co-simulation,
the integrated models of the components 〈M1, I12, M2〉
can be validated against the system requirements and
design.

In this paper, we describe a co-simulation framework
based on the S-function interface as available in Mat-
lab Simulink, to simulate models specified in the hybrid
process algebra χ . An S-function (system-function) [7]
is a computer language description of a MATLAB
Simulink block. The form of an S-function is very gen-
eral and accommodates continuous, discrete, and hy-
brid systems.
The hybrid χ formalism is a hybrid process algebra
with a relatively straightforward and elegant syntax and
formal semantics that is highly suited to modelling. The
intended use of hybrid χ is for modeling, simulation,
verification, and real-time control. Its application do-
main ranges from physical phenomena, such as dry fric-
tion, to large and complex manufacturing systems. The
semantics of hybrid χ is defined using a structured op-
erational semantics style (SOS) [8]. So far, a χ simula-
tor has been defined and implemented. For this simula-
tor, we derived an implementation from the SOS rules,
called the stepper, see [9], and used the symbolic solver
from Maple [10]. Based on this same stepper, a χ DE+

(discrete-event-plus) simulator is defined that interacts
with Matlab Simulink [4] using an S-function as fol-
lows. The DE+ simulator performs (discrete) action
transitions until the stepper returns a time step. This
time step is returned to Simulink. During the time tran-
sition, Simulink solves the equations and monitors the
zero-crossings as specified in the time step. At the end
of the time transition, the DE+ simulator is called again.
This paper is organized as follows. In Section 2, the
S-function interface is described. The χ language and
the DE+ simulator are described in Section 3. The im-
plementation is described in Section 4, and illustrated
by means of an example of a bottle filling system in
Section 5. Conclusions are drawn in Section 6.

2 S-function interface

In this section, a brief introduction to S-functions is
given, based on [7]. For a comprehensive description
of S-functions and their usage with MATLAB Simulink
see [7, 4].
An S-function implements a set of methods, called call-
back methods that together describe the behavior of the
(sub) system modelled by means of the S-function. The
simulation coordinator, in our case Matlab Simulink,
invokes these callback methods during the simulation.

2.1 Specification of an implementation of the S-
function interface

An implementation of the S-function interface must im-
plement the set of callback methods. Some callback
methods are optional. The simulation coordinator in-
vokes an optional callback only if the S-function defines
the callback.
The callback methods perform tasks required at each
simulation stage. These tasks performed by the call-
back methods include:

• Initialization. Prior to the first simulation loop, the

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

Fig. 1 Model-based engineering approach [3]

simulation coordinator initializes the S-function.
During this stage:

– The SimStruct is initialized. A SimStruct is
a simulation structure that contains informa-
tion about the S-function.

– The number and dimensions of input and
output ports are set.

– The block sample times are set.
– The storage areas are allocated.

• Calculation of next sample hit. In case a variable
sample time block is specified, this stage calcu-
lates the time of the next sample hit; that is, it cal-
culates the next step size.

• Calculation of outputs in the major time step. Af-
ter this call is complete, all the output ports of the
blocks are valid for the current time step.

• Update of discrete states in the major time step. In
this call, all blocks should perform once-per-time-
step activities such as updating discrete states for
next time around the simulation loop.

• Integration. This applies to models with continu-
ous states and/or non-sampled zero crossings. If
the S-function contains continuous states, the sim-
ulation coordinator calls the output and derivative
portions of the S-function at minor time steps. In
this way, the simulation coordinator can compute
the states for the S-function. If the S-function con-
tains non-sampled zero crossings, the simulation
coordinator calls the output and zero-crossings
portions of the S-function at minor time steps so
that the zero crossings can be located.

In this paper, we focus on the C implementation of the
S-function interface. The main callback functions to-
gether with a brief description of their functionality is
given in Table 1.

Tab. 1 Functionality of callback methods

mdlInitializeSizes
Specifies the number of inputs, outputs, states,
and parameters and other characteristics of the
S-function

mdlInitializeSampleTimes
Specifies the sample rates

mdlInitializeConditions
Initializes the state variables

mdlOutputs
Computes values of the output variables

mdlUpdate
Updates the state variables

mdlDerivatives
Computes the derivatives

mdlZeroCrossings
Updates zero-crossing vector

mdlTerminate
Performs any actions required at termination
of the simulation

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

S − function, initizalization

To simulation loop

mdlInitializeSizes

mdlInitializeSampleTimes

Fig. 2 Initialization of S-function.

2.2 Interaction of the simulation coordinator with
the S-function

During simulation, Simulink invokes the predefined set
of callback functions of the S-function implementation
in order to perform all necessary computations in the
right order.

Figures 2 and 3 show the order in which the simu-
lation coordinator invokes the callback methods of an
S-function, during initialization and simulation respec-
tively. Solid rectangles indicate callbacks that always
occur during model initialization and/or at every time
step. Dotted rectangles indicate callbacks that may oc-
cur during initialization and/or at some or all time steps
during the simulation loop.

3 The hybrid χ language and simulator

In this section, the syntax and semantics of (a subset of)
the hybrid χ language are discussed informally. A more
detailed explanation of hybrid χ can be found in [5, 6].

3.1 Syntax

A χ model identified by name is of the following form:

model name(input i1 : typei1 , . . . , ik : typeik) =

|[var s1 : types1 = c1, . . . , sm : typesm
= cm

, cont x1 : typex1 = d1, . . . , xn : typexn
= dn

, chan h1 : typeh1 , . . . , hq : typehq

, mode X1 = p1, . . . , Xr = pr
:: p
]|

Here, typei denotes a type, for instance bool, nat, or
real. Notation input i1 : typei1 , . . . , ik : typeik de-
notes the declaration of input variables i1, . . . , ik . The
values of these variables are defined in the environ-
ment of the χ model. Notation var s1 : types1 =
c1, . . . , sm : typesm

= cm denotes the declaration of
discrete variables s1, . . . , sm with their respective types
types1, . . . , typesm and initial values c1, . . . , cm . Simi-
larly, notation cont x1 : typex1 = d1, . . . , xn : typexn =
dn is used to declare continuous variables, and notation
chan h1 : typeh1, . . . , hq : typehq declares the channels

mdlOutput

End Simulation

mdlDerivatives

mdlOutputs

mdlDerivatives

m
in

or
tim

es
te

p
m

aj
or

tim
es

te
p

Initialization

S − function, simulation loop

mdlTerminate

mdlUpdate

mdlInitializeConditions

Integration

mdlOutput

mdlZeroCrossings

Zero − crossing detection

Fig. 3 Simulation stages of S-function.

h1, . . . , hq . Notation mode X1 = p1, . . . , Xr = pr de-
clares mode variables X1, . . . , Xr with their respective
statement definitions p1, . . . , pr . The χ language con-
sists of the following statements p ∈ P:

P ::= xn := en (multi-) assignment
| u delay predicate
| delay d delay statement
| X mode variable
| b → P guard operator
| ∗P repetition
| P ; P sequential composition
| P 8 P alternative composition
| P ‖ P parallel composition
| h ! en send statement
| h ? xn receive statement
| |[D :: P]| scope operator
| lp(en) process instantiation

Here, xn denotes the (non-dotted) variables x1, . . . , xn
such that time 6∈ {xn}, en denotes the expressions
e1, . . . , en , u and b are both predicates over variables
(including the variable time) and dotted continuous

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

variables, d denotes a numerical expression, X denotes
a mode variable, h denotes a channel, D denotes decla-
rations of local (discrete or continuous) variables, local
mode variables, and local channels, and lp denotes a
process identifier. The operators are listed in descend-
ing order of their binding strength as follows → , ; , {‖
,8 }. The operators inside the braces have equal binding
strength. For example, x := 1; y := x 8 x := 2; y := 2x
means (x := 1; y := x) 8 (x := 2; y := 2x). Parentheses
may be used to group statements. To avoid confusion,
parenthesis are obligatory when alternative composi-
tion and parallel composition are used together. E.g.
p 8 q ‖ r is not allowed and should either be written as
(p 8 q) ‖ r , or as p 8 (q ‖ r).

A multi-assignment xn := en denotes the assignment of
the values of the expressions en to the variables xn.

A delay predicate u, usually in the form of a differential
algebraic equation, restricts the allowed behavior of the
continuous and algebraic variables in such a way that
the value of the predicate remains true over time.

A delay statement delay d delays for d time units and
then terminates by means of an internal action.

Mode variable X denotes a mode variable (identifier)
that is defined at the declarations. Among others, it is
used to model repetition. Mode variable X can do what-
ever the statement of its definition can do.

The guarded process term b → p can do whatever ac-
tions p can do under the condition that the guard b
evaluates to true. The guarded process term can delay
according to p under the condition that for the inter-
mediate valuations during the delay, the guard b holds.
The guarded process term can perform arbitrary delays
under the condition that for the intermediate valuations
during the delay, possibly excluding the first and last
valuation, the guard b does not hold.

Repetition ∗p denotes the infinite repetition of p.

Sequential composition operator term p; q behaves as
process term p until p terminates, and then continues
to behave as process term q.

The alternative composition operator term p 8 q mod-
els a non-deterministic choice between different actions
of a process. With respect to time behavior, the partic-
ipants in the alternative composition have to synchro-
nize.

Parallelism can be specified by means of the par-
allel composition operator term p ‖ q. Parallel
processes interact by means of shared variables or
by means of synchronous point-to-point communica-
tion/synchronization via a channel. The parallel com-
position p ‖ q synchronizes the time behavior of p and
q, interleaves the action behavior (including the instan-
taneous changes of variables) of p and q, and synchro-
nizes matching send and receive actions. The synchro-
nization of time behavior means that only the time be-
haviors that are allowed by both p and q are allowed by
their parallel composition.

By means of the send process term h ! en, for n ≥ 1, the
values of expressions en (evaluated w.r.t. the extended
valuation) are sent via channel h. For n = 0, this re-
duces to h ! and nothing is sent via the channel.

By means of the receive process term h ? xn, for n ≥ 1,
values for xn are received from channel h. We assume
that all variables in xn are different. For n = 0, this
reduces to h ?, and nothing is received via the channel.
Communication in χ is the sending of values by one
parallel process via a channel to another parallel pro-
cess, where the received values (if any) are stored in
variables. For communication, the acts of sending and
receiving (values) have to take place in different parallel
processes at the same moment in time. In case no val-
ues are sent and received, we refer to synchronization
instead of communication.

The scope operator |[D :: P]| is used to declare a scope
consisting of local (discrete or continuous) variables,
local mode variables, and local channels.

Process instantiation lp(en) denotes the instantiation of
process definition proc lp(fn) = |[D :: p]| that should
be defined at the level of the χ model. Here, en and fn
denote the actual and formal parameters, respectively.

3.2 Formal semantics

The semantics of χ is defined by means of deduction
rules in SOS style [8] that associate a hybrid transi-
tion system with a χ model as defined in [6]. The hy-
brid transition system consists of action transitions and
time transitions. Action transitions define instantaneous
changes, where time does not change, to the values of
variables. Time transitions involve the passing of time,
where for all variables their trajectory as a function of
time is defined.

3.3 Definition of the stepper

The stepper computes the set of possible transitions
given a χ process. The stepper consists of three main
functions: function Sa which returns the set of action
steps given a χ process, function Sd which returns the
set of time steps given a χ process, and function Tr
which returns the set of transitions given a step. Action
steps and time steps can be seen as symbolic transitions.
They consist of all information needed to determine the
transitions that the process from which they are derived
can perform. An action step represents zero or more
action transitions and a time step represents zero or
more time transitions. An action step (c, W, r, la, p′)

consists of the condition (guards) c that should hold,
the set of variables W that may change, the predicate
r describing (restricting) the discrete updates, the per-
formed action label la, and the resulting process term
p′. A time step (c[0], c(0,t), c[t], c[0,t], c, p′) consists of
the predicate c[0] that should hold at the start point of
the time transitions, the predicate c(0,t) that should hold
at all time points between the start- and endpoint of the
time transitions, the predicate c[t] that should hold at
the endpoint of the time transitions, the predicate c[0,t]

that should hold at all time points (including the start-
and endpoint) of the time transitions, the predicate c

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

that should hold at least at one time point of the time
transition, and the resulting process term p′.
3.4 DE+ simulator

The stepper functions are defined in such a way that
it is easy to define the DE+ (discrete-event-plus) sim-
ulator. This simulator interacts with Matlab Simulink
using an S-function as follows. The DE+ simulator per-
forms action transitions until the stepper returns a time
step. This time step is returned to Simulink. During the
time transition, Simulink solves the delay predicates as
specified in the time step. At the end of the time transi-
tion, the DE+ simulator is called again.
The DE+ simulator consists of a function Simulate,
which is defined as follows:

Simulate(M) =
while M 6= X do

atrans :=
⋃

astep∈Sa(M) Tr(astep)

if atrans 6= ∅ then
M := DoActionTrans(pick(atrans))

else
dsteps := Sd(M)

if dsteps 6= ∅ then
return pick(dsteps)

else
return deadlock

endif
endif

endwhile
return stop simulation

Given a χ model M , all possible action transitions
are calculated and stored in variable atrans. If
the set of action transitions is not empty, an ac-
tion transition is selected (non-deterministically) and
performed resulting in the new state M (M :=
DoActionTrans(pick(atrans))). Then, the simulate
function is applied on the new state M .
If the set of action transitions is empty, the possible de-
lay steps (dsteps) that the process can perform are cal-
culated. If the set of delay steps is empty, the process
is deadlocked. If the set of delay steps is not empty, a
delay step is selected and returned. If the model is ter-
minated (M = X), a request is sent to the simulation
coordinator to stop the simulation (stop simulation).

4 Implementation
Realization of the co-simulation means that the step-
per for χ models has to be implemented. On top of the
stepper functions the DE+ simulator has to be built, and
finally callback functions from the S-function interface
are implemented using the Simulate() function. The
design considerations of the framework are discussed
in Section 4.1. In Section 4.2, the implementation of
the callback methods of the chi sfunction block is de-
scribed.
4.1 Design considerations

In our case, a simulator using the stepper was already
implemented in the programming language Python [11]

as a generic piece of software, independent of a spe-
cific χ model. Also, a tool set exists that translates a
χ model to a form usable for the stepper. The generic
stepper software together with the translated χ model
provides action transitions, termination transitions, and
time transitions specific for the χ model.
The C programming language [12] was used for con-
necting to the callback methods in the Simulink pro-
gram.
The following questions thus needed to be answered.

• In which language to write the DE+ simulator and
the χ S-function callback methods?

• How/where to run the Python interpreter?

Both the DE+ simulator and the χ S-function call-
back methods deal with equations and values of vari-
ables. They must evaluate expressions in order to de-
cide what reply to give to each callback method. Cod-
ing these in C implies that expressions need to be trans-
fered between Python and C. Also, an expression eval-
uator would need to be implemented in C, functional-
ity already present in the simulator. (Note that like the
stepper software, the coupling with the χ S-function
methods is generic software, that is, without knowledge
about which χ model will be used. Techniques such as
compiling expressions to C into the S-function block
can therefore not be employed.) Coding the DE+ simu-
lator and the χ S-function callback methods in Python
implies that vectors/arrays of reals or integers need to
be transfered between Python and C, a problem much
more manageable than handling expressions and evalu-
ating them, in C. The decision was thus made to imple-
ment both the DE+ simulator and the χ S-function call-
back methods in Python. In other words, calls received
from the S-function methods in C are first forwarded
to Python, the Python implementation of the S-function
methods computes the answer using the DE+ simulator,
and finally, the result is transfered back to C and deliv-
ered to Simulink. This solution results in a framework
of interfacing to S-function methods in Python which
is independent of its application (such as connecting to
the DE+ simulator). We may find other uses for this
framework in the future.

The question of how/where to run the Python interpreter
boils down to two options.

• Embed the interpreter in the Simulink program.

• Run the interpreter as a separate Unix process.

Python is designed to act as glue between other soft-
ware, so embedding it in other software is in itself no
problem. However, you can have only one Python inter-
preter in a single operating system process. Use of mul-
tiple χ S-function blocks (each with its own χ model)
in the same simulation can only be supported by run-
ning multiple Python threads (inside the interpreter).
Such thread information would typically be stored as

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

part of the Simstruct data, and would need to travel over
the C/Python connection, making the generic call for-
warding framework more complex. Also, in an earlier
experiment, we experienced clashes between the dy-
namic module loading mechanism of Matlab/Simulink
and Python of which we are unsure how to deal with,
but we consider this to be a non-critical issue for now.
The other alternative, running a Python interpreter as
separate Unix process for each S-function block, and
connect them to the S-function interface using Inter
Process Communication (IPC) is a proven technology
explained in many books (for example [13]) that al-
lows as many concurrent χ S-function blocks as the ma-
chine allows new processes without any of the thread-
ing and/or dynamic loading troubles. In addition, the
Python side of the call forwarding framework becomes
a normal Python extension, which makes it easier to
use and support. The decision was made to have one
Python Unix process running the stepper and the DE+

simulator for each χ S-function block.
The IPC mechanisms that are potentially useful are

• Sockets: Network-enabled, more complex to setup
connection, sockets are managed by the operating
system.

• (Named) pipes: Fast, not over the network, pipes
are managed by the operating system.

• Shared memory: Very fast, not over the network,
needs additional read/write access control, mem-
ory blocks need separate management.

We selected (named) pipes as IPC mechanism for their
simplicity. The additional complexity of sockets gives
no additional advantages. If we encounter performance
problems due to IPC, we can always switch to shared
memory.
The result of these decisions together is visualized in
Figure 4. Inside the Simulink model, many blocks can
be used to model a system, including one or more χ

S-function blocks. For each χ S-function block, the
call forwarding framework is instantiated. A Python
interpreter is started as a separate Unix process, and two
pipes are created between them (one for forwarding S-
function method parameters to the Python interpreter,
and one for sending results back). At the Python side,
the S-function methods are implemented by using the
DE+ simulator, the stepper, and the compiled χ model.
4.2 Implementation of the chi sfunction callback

methods

The implementation of the callback methods of the
chi sfunction block are defined as follows.
mdlInitializeSizes

The pipes are created, the Python interpreter is initial-
ized (forked) and the χ model is instantiated. The dis-
crete variables of the χ process are mapped to the dis-
crete state variables of the S-function block. The con-
tinuous variables and the variable time of the χ pro-
cess are mapped to the continuous state variables of

Simulink Unix process

Simulink model

SimStruct
modifications

callback function
invocations

Python Unix process

χDE+simulator

TimeStep Simulate()

DoActionTransition

TimeStep GetNextSteps()

callback methods

callback function
invocationsmodifications

SimStruct

callback methods chi sfunction
CMEX

chi sfunction
Python

IPC

χ model(inputvar a)

chi sfunction
χ model
outputvars = x, y y

a x

Fig. 4 Process model of the framework.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

the S-function block. The number of input ports is set
to the number of input variables that are specified in
the formal parameter list of the χ model. The num-
ber of output ports is set to the number of output vari-
ables as specified in the parameters of the chi sfunction
block. The number of Sample Times is set to 1. The
number of zero crossings is set to the number of oc-
currences of guard operators plus the number of occur-
rences of inequality delay predicates plus 1 for the time
events. Using pseudo code, the implementation of func-
tion mdlInitializeSizes is as follows:

global TimeStep
chimodel = GetChiModel()
mapVariables()

mdlInitializeSampleTimes

The sample time of the S-function is set to a continuous
sample time with offset 0.
mdlInitializeConditions

The initial values for the state variables from the S-
function are obtained from the valuation from the χ

process, using the variable mapping as defined in func-
tion mdlInitializeSizes.
mdlOutputs

The values of the discrete and continuous variables and
the variable time are copied to the corresponding output
variables. If the simulation step is a major time-step, it
is determined whether a time event occurred.
mdlUpdate

If the mdlUpdate function is called for the first time
(ssIsFirstInitCond(S) holds, where S denotes the Sim-
Struct), the χ process is simulated using the DE+ sim-
ulator. If a time event occurred (IsTimeEvent holds),
which is determined in function mdlOutputs, the re-
sulting process is obtained using the end-valuation of
the time transition (EndState(TimeStep)). After that,
this process is simulated using the DE+ simulator.
Using pseudo code, the implementation of function
mdlUpdate is as follows:

if ssIsFirstInitCond(S) then
TimeStep := Simulate(M)

else
if IsTimeEvent then

TimeStep := Simulate(EndState(TimeStep))

endif
endif

mdlDerivatives

The equality conditions from the time step are used to
obtain the values for the derivatives of the continuous
state variables of the S-function. The χ model is re-
stricted in such way that these equality equations to-
gether form an ODE. Using pseudo code, the imple-
mentation of function mdlDerivatives is as follows:

Equations := GetEquations(TimeStep),

where function GetEquations projects the equalities
from a time step.
mdlZeroCrossings

The inequality conditions (zero-crossing conditions)
are obtained from the time step. Using pseudo code,
the implementation of function mdlZeroCrossings is as
follows:

ZeroCrossings := GetZeroCrossings(TimeStep),

where function GetZeroCrossings projects the inequal-
ities from a time step.
mdlTerminate

Using this function stops the Python interpreter and
closes the pipes.

5 Example
The bottle filling system as shown in Figure 5 consists
of a liquid storage tank, two identical bottle filling lines,
and a bottle supply (see [6]).

Qa

V

QFrQFl

Qu

Fig. 5 The bottle filling system.

The bottles are filled with liquid from the storage tank.
A control system keeps the volume V in the storage
tank between 2 and 10. The liquid supply processes is
not modeled, since we consider the liquid always to be
available, and we are not interested in the amount of
liquid that is used.
The Simulink model of the bottle filling system is
shown in Figure 6.
The dynamics of the liquid storage tank are modelled in
Simulink. The volume controller is modelled in χ , see
below:

model VC(input V : real)=
|[var beta : nat = 0
:: *(V <= 2.0 -> beta := 1

; V >= 10.0 -> beta := 0
)

]|

The behavior of the volume controller VC is explained
as follows. Initially, the volume V in the storage tank
equals 10. If the volume drops below the minimum

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

chi_sfunction

Volume controller
Chi

Vb_r

Vb_l

VSubtract

Qu
1.5

Qsetu

1
s

Integrator

chi_sfunction

Filling Lines
Chi

QF_l

Vdot

beta

QF_r

Vb_r

Vb_l

Fig. 6 Simulink model of the bottle filling system.

value 2 (V<=2), the valve is opened (beta:=1) so that
liquid is added into the tank. The valve is closed
(beta:=0) when the volume in the tank equals 10
again.
The liquid storage tank and the two bottle filling lines
are connected by means of the variables QF l, and QF r
representing the flows between the left and the right fill-
ing lines, respectively. The volume of the storage tank
is available in both bottle filling lines to prevent filling
of the bottles when the storage tank is empty.
The filling lines are modelled in χ , see below:

model FillingLines(input V : real)=
|[var QF_l : real = 0.0
, QF_r : real = 0.0
, cont Vb_l : real = 0.0
, Vb_r : real = 0.0
, chan bottles : nat
:: CLine(Vb_l, QF_l, bottles, 0.0)
|| CLine(Vb_r, QF_r, bottles, 5.0)
|| Bottle_Supply(bottles)
]|

proc CLine (cont Vb : real
, var QF : real
, chan bottles? : nat
, val Vset : real) =

|[var n : nat = 0
:: Vb’ = QF
|| |[mode

get_crate = V >= Vset -> bottles?n
; Vb := 0.0
; filling

, filling = QF:=1.0
; (V <= 0.5 -> QF := 0.0

; stopped
| Vb >= 1.0 -> QF := 0.0

; finished
)

, finished = n := n - 1
; (n = 0 -> get_crate

| n >= 1 -> Vb := 0.0
; filling

)
, stopped = V >= 0.7 -> filling

:: get_crate
]|

]|

proc Bottle_Supply(chan bottles! : nat) =
|[*(bottles!6; delay 5.0)]|

Model FillingLines consists of two controlled
filling lines CLine(Vb l, QF l, bottles, 0.0),
CLine(Vb r, QF r, bottles, 5.0) and a bottle
supply process Bottle Supply(bottles).

Repeatedly the bottle supply process sends 6 bottles via
channel bottles (bottles!6), and 5 time units later
(delay 5.0), it tries to send 6 bottles again.

The behavior of a controlled filling line CLine is ex-
plained as follows. In mode get crate, the process
waits until the volume in the storage tanks exceeds
Vset, and a new crate of bottles arrives, (bottles?n,
where n denotes the number of bottles in a crate).
Then, the bottle volume is reset to 0 resulting in mode
filling. In mode filling, the valve is opened
(QF:=1.0) starting the filling process. Filling stops
when the volume in the storage tank drops below 0.5
(V <= 0.5 -> QF := 0.0; stopped). In mode
stopped, filling resumes when the volume in the stor-
age tank is at least 0.7 (V >= 0.7 -> filling). Fill-
ing also stops when the bottle is full (Vb >= 1.0 ->
QF := 0.0; finished). In mode finished, the
number of bottles to be filled (modelled by variable n)
is decreased by 1. If the number of bottles equals 0, a
new crate is requested, otherwise the bottle volume is
reset, and filling of the new bottle is started.

Figures 7 and 8 show the simulation results for the vol-
ume V in the liquid storage tank and the incoming flow
Qu, respectively.

6 Conclusions

In this paper, we presented a framework to simulate
models that consist of subsystems modelled using Mat-
lab Simulink and subsystems modelled in the hybrid
process algebra Chi (χ). Its implementation and its use
is illustrated by means of a bottle filling system exam-
ple.

Future work entails, amongst others, to explore the pos-
sibilities of using this approach in a real-time setting
using Matlab Simulinks Real-Time-Workshop. The S-
function approach, as described in this paper, also en-
ables co-simulation with other simulators that can in-
terface with S-functions. For instance, in the HYCON

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100

V

time

Fig. 7 Volume V in the liquid storage tank.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100

Q
u

time

Fig. 8 Incoming flow Qu.

NoE, the Modelica language [14, 15] will be extended
with an interface to simulate S-functions. In the Dar-
win project, by means of co-simulation, the integrated
models of the components of the patient support table
can be validated against the system requirements and
design.

7 References
[1] HYCON Network of Excellence. http://www.ist-

hycon.org/, 2005.
[2] Darwin project.

http://www.esi.nl/site/projects/darwin.html,
2006.

[3] N. C. W. M. Braspenning, J. M. van de Mortel-
Fronczak, and J. E. Rooda. A model-based inte-
gration and testing method to reduce system de-
velopment effort. Electronic Notes in Theoretical
Computer Science, 164:13–28, 2006.

[4] The MathWorks, Inc. Using Simulink, version 6.
http://www.mathworks.com, 2005.

[5] D. A. van Beek, K. L. Man, M. A. Reniers, J. E.
Rooda, and R. R. H. Schiffelers. Syntax and con-
sistent equation semantics of hybrid Chi. Jour-
nal of Logic and Algebraic Programming, 68(1-
2):129–210, 2006.

[6] K. L. Man and R. R. H. Schiffelers. Formal Speci-
fication and Analysis of Hybrid Systems. PhD the-
sis, Eindhoven University of Technology, 2006.

[7] The MathWorks, Inc. Writing S-functions, version
6. http://www.mathworks.com, 2005.

[8] Gordon D. Plotkin. A structural approach to oper-
ational semantics. Journal of Logic and Algebraic
Programming, 60-61:17–139, 2004.

[9] D. A. van Beek, K.L. Man, M. A. Reniers, J. E.
Rooda, and R. R. H. Schiffelers. Deriving simula-
tors for hybrid Chi models. In IEEE International
Symposium on Computer-Aided Control Systems
Design, pages 42–49, Munich, Germany, 2006.
IEEE.

[10] MapleSoft. http://www.maplesoft.com, 2005.
[11] Python. http://www.python.org, 2005.
[12] Brian W. Kernighan and Dennis M. Ritchie. The

C programming language. Prentice Hall, second
edition, 1988.

[13] W. Richard Stevens. Advanced programming in
the unix environment. Addison Wesley, 1993.

[14] Sven Erik Mattsson, Martin Otter, and Hilding
Elmqvist. Modelica hybrid modeling and efficient
simulation. In 38th IEEE Conference on Decision
and Control, pages 3502–3507, 1999.

[15] Modelica Association. Modelica - A Unified
Object-Oriented Language for Physical Systems
Modeling. http://www.modelica.org, 2002.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

