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Abstract

We present a simulated controller of a scanning probe microscope using tuning forks. In scan-
ning probe microscopy, a new technology has been developed in the last years, exploiting a skew
force which results from friction between the probe tip and the smooth surface of the sample.
This force can be detected at a distance of several nm above the surface. It affects the parameters
of oscillation of a vibrating optical fiber positioned above the surface with forcing frequency
induced by quartz tuning forks. The distance from the surface sample can be determined by
measuring the shift in resonance frequency and amplitude of the oscillation. This can therefore
be used for precise positioning of the probe tip above the sample surface, and for reconstruc-
tion of the surface form. The simulation is based on an efficient and robust theoretically-based
algorithm. The algorithm is devised to control the tip within a specified distance above the
sample, at which a precise reconstruction of the form of the sample surface can be made. It was
made for the purpose of developing a digital scanning probe controller which could substitute
analogue controllers that are currently in use in scanning probe microscopy. This would enable
improved precision, faster response and would reduce the cost of production of the controller.
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1 Theoretical background
1.1 Introduction

The basic principle of torsion is that a force acts against
friction between two bodies, and as a consequence, en-
ergy in the form of heat is released. Friction against liq-
uids or solid layers, adsorbed on an ideally smooth sur-
face, is opposed by a skew force which is the result of
inter-atomic forces between atoms and molecules act-
ing on the plane of contact. The physical nature of
this force has not been sufficiently explained yet. In
scanning probe microscopy a new technology has been
developed in the last years which uses this skew force
between the probe tip and the smooth surface of the
sample to control a pointed optical fiber at a desired
distance over the surface [1],[3], [5]. The tip, which
vibrates in a direction parallel to the plane, detects at a
distance smaller than 25 nm from the surface a damping
effect which is the consequence of this skew force. The
amplitude of the mechanical oscillations is proportional
to the acting forces and can be measured through the
piezoelectric effect which is a result of the skew friction
force. Since a quartz tuning fork has a high goodness
Q ∼ 103 − 105, it is sensitive to very small forces (of
the order of magnitude under pN ). Because of this they
are used in scanning probe microscopy for positioning
the probe at a suitable distance over the surface[4],[2].

1.2 Parameters of oscillation in the vicinity of the
surface

Oscillations of quartz tuning forks are described by the
equation

Mü + Mγu̇ + ku = FD exp iωt, (1)

where u is the displacement, FD is the amplitude, and ω
is the forcing frequency. As the surface is approached,
the parameters k and γ describing the damping and vis-
cosity vary, and as a consequence the frequency at res-
onance changes. The dependency of k and γ on the
distance z of the tip from the surface of the sample has
been determined experimentally as

γ(z) = γ∞ + γ0 exp(− z

δγ
) (2)

k(z) = k∞ + k0 exp(− z

δk
). (3)

Figures 1 and 2 demonstrates experimental results
which confirm these formulas.

For tuning forks used in scanning microscopy the val-
ues of parameters of oscillation far away from the sam-
ple (more than 22 nm) are γ∞ = 30.88s−1, K =
k∞ =4220 N/m, and ω∞ =

√
K/M = 209040s−1.

The approximate values of other constants are γ0 =
72.0 s−1, δγ = 4.02 nm, k0 = 93.9 N/m in δk = 2.90
nm. The forcing amplitude is FD = 116 pN, the effec-
tive mass (i.e. one fourth of the total mass of the forks)
is M = 0.966 10−6 kg.

A solution of equation (1) is of the form A exp iωt
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Fig. 1 The dependency of the oscillation parameters k
on the distance of the tip from the sample n a logarith-
mic scale
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Fig. 2 The dependency of the oscillation parameters γ
on the distance of the tip from the sample n a logarith-
mic scale

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM



0  2 4 6 8 10  12 14 16 18 20  
6

8

10  

12

14

16

18

20  

razdakja nm

am
pl

itu
da

 p
m

Fig. 3 Dependency of the resonance amplitude x on the
distance from the sample z

where

A =
FD/M

ω2
0 − ω2 + iγω

(4)

and ω0 =
√

k/M . The absolute value of the amplitude
is thus

|A| = FD/M√
(ω2

0 − ω2)2 + γ2ω2
, (5)

and the phase is

ϕ = arctan
γω

ω2
0 − ω2

. (6)

It follows that at resonance the phase equals π/2, it is
smaller than π/2 if the forcing frequency is smaller than
at resonance, and bigger than π/2 if the forcing fre-
quency is bigger than at resonance.

The frequency at resonance is obtained from the homo-
geneous part of equation (1) and is equal to

ω2
res = ω2

0 − γ2/4 ≈ ω2
0 , (7)

where γ2 is much smaller than ω0, so the resonance
frequency is approximately ω0 =

√
k/M . Far away

from the sample it is equal to ω∞ =
√

K/M .

The approximate value of the amplitude of oscillation
then

x =
FD/M

γω0
. (8)

Equation (2) now gives the theoretical solution of the
problem, which is the basis of our algorithm:

Proposition. The dependency of the resonance ampli-
tude x on the distance from the sample z is given by

x =
x∞

1 + γ0/γ∞ exp(−z/δγ)
(9)

The resonance amplitude far away from the surface is

x∞ =
FD/M

γ∞ω∞
= 18.6 pm (10)

The goodness Q, that is the quotient of the resonance
frequency (i.e. the height of the resonance curve) and
the width of the resonance curve at half of its height, is

Q =
ωres√

3γ
≈ ω0√

3γ

The goodness far away from the sample is thus

Q∞ =
ω∞√
3γ∞

= 3907.86,

and the amplitude is approximately proportional to the
goodness:

x =
FD

k
√

3
Q ≈ FD

K
√

3
Q. (11)

Equations (8) and (10) now give

γ = γ∞
ω∞x∞
ω0x

(12)

and similarly

k = k∞
ω2

0

ω2
∞

(13)
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Fig. 4 The resonance curve at specific distances from
the surface

2 The algorithm for controlling the probe
We describe an algorithm for digital control of a scan-
ning probe, based on the principles described above.
Such an algorithm would enable control with higher
precision and lower costs than in the case of analog con-
trollers [6].

The algorithm is devised to control the probe’s position
within the interval 8-12 nm from the surface, where the
resonance amplitude is approximately 75 % do 85 % of
the amplitude x∞.

We first choose a reference distance from the sample at
the point where the resonance amplitude equals half the
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value at ∞. All distances are expressed as differences
from this value, which we denote by z0.

Following is an overview of the algorithm.

2.1 Steps of the algorithm

1. Calibration. The initial step is to determine the
value of the parameter δγ in (9). A detailed de-
scription is given below in 2.2.

2. One step of the algorithm consists of (possibly sev-
eral) adjustments of the height of the probe after a
horizontal move to the next point above the sam-
ple, and is decomposed into:

(a) determining the sign of the difference of the
frequency from resonance

• several values (four or five) of the dis-
placement ui of the oscillating probe tip
are measured, from which the parame-
ters in A and ϕ of oscillation are com-
puted using least squares (compare 2.4)

• the phase ϕ obtained in this way is com-
pared to the value at resonance (π/2),
the sign of the difference determines the
sign of the frequency increment in step
(b)

(b) several (in the implementation around five)
points on the resonance curve are found in
the following way:

• the frequency is changed by an in-
crement ∆ω (of fixed sign determined
above)

• the amplitude of oscillation is computed
from a few measured values ui using
least squares (as in step (a))

(c) the resonance curve is obtained from the
computed values by a least squares fit, and
the resonance amplitude (the height of the
curve) is computed (computeresonanca)

(d) the computed resonance amplitude x is com-
pared to the reference value x0 = x∞/2, and
the height adjustment dz is computed (com-
pare 2.3)

(e) this step is repeated several times until the
resonance amplitude is within the acceptable
interval

In the following, details of some of the steps of the al-
gorithm are given.

2.2 Calibration

The difference from the reference height z0 is denoted
by ∆z = z − z0.

The logarithmic decrement δγ of the viscosity γ(z) is
determined from a series of measurement at the initial
point above the sample. Equation (2) now has the form

γ(z) = γ∞ + γ0 exp(z0/δγ) exp(−∆z/δγ),

where ∆z = z − z0, so

x∞
x

= 1 +
γ0

γ∞
exp

(
z0

δγ

)
exp

(
−∆z

δγ

)
(14)

x∞
x
− 1 = q exp(−∆z/δγ) (15)

q =
γ0

γ∞
exp(z0/δγ) (16)

for an estimate of the value δγ a series of moves ∆z =
idz, i = 1, 2, . . . n of the probe from the reference value
z0 is made and the changes in corresponding resonance
amplitude xi are measured.

By differentiating we obtain

dx
x∞
x2

=
q

δγ
exp(∆z/δγ)dz (17)

δγ =
x(x∞ − x)

x∞

dz

dx
(18)

≈ x(x∞ − x)
x∞

dz

∆x
(19)

The value dz is constant. For each i we compute

δγ,i =
xi+1(x∞ − xi+1)

x∞

dz

dx
(20)

δγ,i =
xi(x∞ − xi)

x∞

dz

dx
(21)

δ̂γ,i =
1
2
(δγ,i + δγ,i) (22)

As an estimate for δγ we use the average value of δ̂γ,i

(up to two decimal places the obtained values coincide
as long as dz is not bigger than 0.5 nm and we remain
within the interval8-12 nm).

2.3 Computation of the adjustment dz

The adjustment dz of the height of the probe tip above
the sample is determined from the differential (19),
rewritten as

dz = δγ
x∞

x(x∞ − x)
dx (23)

Because of the convexity of the function x = x(z) they
are overestimated. Experiments will show if a relax-
ation might improve the results.

2.4 Computation the amplitude and phase

In order to compute the amplitude and phase of the os-
cillating tip several values ui of the displacement, for
example five or six, should be measure within one pe-
riod of oscillation. The amplitude and phase is then
computed from the equations

ui = a cos(ωti) + b sin(ωti) (24)

A =
√

a2 + b2 (25)

ϕ = arctan
b

a
(26)

using least squares.
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2.5 Determining the resonance amplitude

As the forcing frequency is changed, the corresponding
amplitude of oscillation Ai is computed for each value
ωi. Results are best if a few values above and a few
values below the resonance are used. Assume that six
values of the amplitude for different forcing frequencies
have been obtained. For each i, we compute

Si =
(

FD

|A|iM

)2

, (27)

quadratic function of ωi, find the parabola which best
fits the measured values (ω2

i , Si), and determine ω0 at
the vertex (i.e. the lowest point) of this parabola.

The resonance amplitude should be computed within
the time interval of a few (less than 10) oscillations, that
is, in less than < 1/3 ms, which is more than realistic.

3 Simulation
The algorithm has been tested by computer simulations
over different simulated surfaces.

3.1 The scenario

1. In the simulation, the average distance of the tip
from the surface in three neighboring points was
used.

2. The probe of a scanning probe microscope scans
the underlying sample surface line by line so it suf-
fices to generate a section of the simulated surface.
The simulated surfaces used in the simulation were
of two types. Figures 5, 6 and 7 demonstrate sim-
ulated control over surfaces which were generated
as plots of functions (with Matlab). Figures 9 and
8 demonstrate simulation over a digitally rendered
surface. The profile corresponds to the gray scale
function of a digital image.

3. In the simulation, the probe tip was controlled
within a region corresponding to 75 % do 85 %
of the resonance amplitude far from the surface.
Within this region, precise reconstruction of the
underlying surface was achievable, with limited
danger of collision of the tip with the sample.

3.2 Results

Results of some of the simulations are presented in
figures 5, 6, 7, 8 and 9. On all graphs, the bottom
curve represents the simulated surface, the middle curve
represents the reconstructed surface, positioned at 10
Åabove the simulated surface for better clarity. The top
curve represents the path of the probe tip.

Figures 5 shows that the reconstruction of a smooth ar-
tificial surface (in this case modeled by f(x) = a(1 −
bx2) sinx2) is very precise. In areas where the slope
of the surface is relatively steep, the tip movements are
delayed. In areas where the surface is almost flat the tip
there are no unnecessary movements of the tip which
remains at a constant height within the given bounds.
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Fig. 5 Simulated control over a Matlab generated sur-
face
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Fig. 6 Control over a smooth obstacle

Control over a smooth obstacle which is shown on fig-
ure 6 gave similar results. The errors of the reconstruc-
tion in both cases are of far smaller order than the sur-
face features.
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Fig. 7 Control over a sharp obstacle

Perhaps the most interesting simulation is shown on fig-
ure 7 which demonstrates the results of control over a
simulated sharp obstacle on the surface. The recon-
struction in this case is not precise, and the obstacles
appears smoothed in the reconstruction. This is due
to the fact that the force magnitude was simulated us-
ing the average distance from three neighboring points
which seems reasonable. Nevertheless, since the phys-
ical nature of the friction force between the surface and
the probe tip in reality is not completely understood yet,
this effect should be verified experimentally.
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Figure 8 demonstrate the results of control over a simu-
lated surface of a completely different type. The surface
profile corresponds to the gray scale function of a dig-
ital image. the resulting surface is highly non-smooth,
with many perturbations and irregularities. As the top
curve shows, the movements, required to keep the probe
tip within the required bounds are relatively few, and
the tip typically does not follow the profile of the sur-
face closely. Nevertheless, the reconstructions are very
precise.
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Fig. 8 Control over a digitally simulated surface

A similar simulation on a different surface of the same
type is shown in figure 9
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Fig. 9 Control over a slightly different digitally simu-
lated surface

The simulations indicate that the algorithm reconstructs
surfaces of very different type successfully. It is also
sufficiently efficient to enable real-time control of the
actual probe of a scanning probe microscope, assuming
that relatively fast processor and implementation are
used. Nevertheless, actual testing on samples will be
necessary for a realistic evaluation of its performance.
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