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Abstract

An agent that learns by experimentation is bound to have a model of the physical world based
on a set of hypotheses that allow to predict the future state of the world, or the result of certain
actions. Significant deviations or contradictions between predicted and observed results can be
used to refute the model and trigger a revision of the hypotheses.
For detecting these deviations we propose a mechanism called Q-POLE which stands for Qual-
itative Prediction-Observation loop for Learning by Experimentation. The Prediction Engine of
this loop uses a qualitative model of the world to predict temporal states of the system. For this,
attributes and their domain, start state, elementary behaviors and the stop criteria of the model
are defined by using Qualitative Differential Equations (QDEs). These QDEs are then used
to generate a qualitative state tree called behavior tree which consist of the possible temporal
states that the system can attain. The Prediction Engine uses these behavior trees for generating
the qualitative prediction, while the Observation Engine performs an online comparison of this
prediction and the observed numerical data. The data used by the observation engine is supplied
by a visual sensor which monitors the environment and thus reflects the results of the agents
actions.
In this paper we present and discuss the results of first experiments with Q-POLE that estab-
lished and tested the thresholds for some simple real-world setups with a rolling and bouncing
ball.

Keywords: Learning by experimentation, prediction, observation, qualitative simulation,
Qualitative Differential Equations, behavior trees, temporal abstraction, surprise.
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1 Introduction
The work presented in this paper was carried out in
the context of XPERO (FP6-IST-29427), a project that
aims to enable an embodied agent to augment its cogni-
tive capabilities through open-ended learning by exper-
imentation. This type of learning is a form of “Learning
through interaction with the world”, which we view as
complementary to the concepts of “Learning through
introspection” and “Learning through interaction with
an instructor”. The goal of XPERO is to enable the
agent to autonomously design and conduct experiments
in order to achieve, maintain and improve a consistent
model of its environment and of the objects and its own
embodiment therein.[1]

This objective demands for a possibility for the agent to
verify the hypotheses which form its world model in a
non-experimental context. If a significant deviation be-
tween the predicted and the actual result is encountered,
the agent will have to revise its hypotheses by design-
ing, planning and executing experiments. In the begin-
ning, the agent’s hypotheses will not be precise formu-
las modelling physical phenomena, since these are of-
ten far too complex for the robot to derive from its sen-
sor data. Instead, the environment will be represented
by qualitative models, which offer the advantage of pro-
viding more expressive power of incomplete knowledge
than most numerical methods. The remaining challenge
is to effectively compare qualitative process models to
numerical data acquired during observation.

The prediction and observation of processes has been
thoroughly studied by disciplines such as system dy-
namics, control theory and statistics. In this context,
system identification is the process of combining a
partially-specified model with observations from a sys-
tem to converge on a more accurate and precise model.
Closed-loop variants are available such that the system
can be modeled and controlled even with only a sparse
knowledge of it. At the same time, model validation
is necessary to assure that the model can successfully
explain a situation in the real world and provide the ap-
propriate feedback to close the loop.[2] Qualitative ap-
proaches in this area focus mainly on extracting quali-
tative models from observed data.[3, 4, 5, 6]

Computer simulation also has explored the subject in
different domains. Lee et al. use a model of the sen-
sory perception of a learning agent obtained from the
interaction of the agent and the environment. The re-
sults of this model are used to predict the behavior of
the agent and to validate that the simulation created is
more accurate than those that can be obtained by clas-
sical simulation methods.[7]

SQUID is a system identification method which at-
tempts to match semi-quantitative trends to semi-
quantitative behaviors [8]. For this, the space of po-
tential models is defined by semi-quantitative differ-
ential equations. SQUID uses a conservative refine-
ment technique which eliminates only those ODEs from
the model space which do not fit the observation data.
While this approach seems applicable for certain do-

mains, it is higly limited when applied to measurements
that are a superposition of Gaussian noise with fixed
variance to the pure signal. Furthermore, it operates as
a batch computation over the measurement stream and
not as an online prediction-observation system.

Fig. 1 The Prediction-Observation loop Q-POLE. A
qualitative model of the experimental setup is used to
predict the behavior of the system. The sensor-obtained
observation from a real environment is then compared
to this prediction eventually yielding a surprise.

Our proposed prediction-observation loop Q-POLE es-
tablishes a possiblity for online comparison of quali-
tative models and hypotheses to numerical sensor data
gathered by an autonomous robot in a real world en-
vironment. For this purpose the data acquired during
observation are abstracted to qualitative values by an
Observation Engine. The comparison to the qualita-
tive prediction from the Prediction Engine then yields
a measure of mismatch which is passed on to an adapt-
able mechanism. In the case of a significant deviation
from its current model, this Surprise Mechanism blocks
the scheduled execution of actions and triggers an exter-
nal mechanism either for revising the prediction model,
or for repeating the last action or action sequence to
avoid erroneous results caused by noise. In the case
of a sufficiently accurate prediction, the model is con-
firmed and the execution of actions continues. Figure 1
depicts the overall concept of Q-POLE.

In sections 2 and 3 of this paper, we describe the tech-
niques and mechanism used in Prediction and Observa-
tion Engines respectively. Section 4 illustrates our first
experiments with Q-POLE for testing its effectiveness,
which is discussed in section 5.

2 Prediction
Prediction attempts to claim that a certain event will oc-
cur in the (near) future. In order to achieve this, the
prediction engine uses the simulation software QSIM
[9] to perform qualitative simulation of the manually
written qualitative model. QSIM generates a behavior
tree of states starting from a pre-specified initial state.
This behavior tree is used by the prediction engine to
define the future events. It is also used to create an ap-
propriate data structure that facilitates comparison with
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the observations.

2.1 Qualitative models

Ordinary Differential Equations (ODEs) may seem ap-
propriate for modelling the real world, but they are
inherently weak in expressing incomplete knowledge.
Qualitative models are similar to ODEs but are able to
express more incomplete knowledge. Qualitative Dif-
ferential Equations (QDEs) provide an efficient way
to define a qualitative model. A QDE model can be
viewed as another layer of abstraction over an ODE. It
consists of real-valued variables, functional, algebraic
and differential constraints. The values of the variables
in a QDE are described in terms of their ordinal rela-
tions and not in terms of real numbers. Similarly the
functional relations between the variables are described
as monotonic functions and not by an actual function.
[9, 10]

2.2 QSIM

The simulation software QSIM provides the represen-
tations and algorithms necessary for qualitative simula-
tion. The structure required to facilitate qualitative sim-
ulation includes a qualitative description of the range of
each variable and the qualitative relationships between
variables. The steps required for Qualitative Simulation
using QSIM are as follows

1. Define the structure of a mechanism as one or
more qualitative differential equations (QDEs) in
a specific format that QSIM can parse.

2. Define the functions that enable transitions be-
tween QDEs if there is more than one QDE.

3. Specify the initial conditions (state) for the simu-
lation.

4. Generate a behavior tree for the model created
above using QSIM.

Fig. 2 The prediction process

The Figure 2 shows the prediction process. It starts
from a pre-specified initial state and generates a state
tree of behaviors with qualitative values associated with
each state. The prediction is done until all the vari-
ables reach a steady state or until a pre defined num-
ber of levels. Every path starting from the root of the
behavior tree until a leaf node is a possible qualitative
behavior.[9, 10]

The behavior tree is a tree of possible temporal states
achievable by the defined model. The links of the tree
are transitions from one state to another and the nodes
are the temporal states of the model. The nodes con-
tain the qualitative values of each variable defined in
the model. An appropriate transformation is required to
ensure easy comparison with the observations recorded.
In order to ensure this, the values are extracted by the
prediction engine and pre processed. The tree of behav-
iors are sent to the observation engine which compares
these temporal states to the real observed data.

3 Observation
The perception of the environment in which an agent
is situated depends on the sensors it is equipped with.
Visual sensors provide a wide range of possibilities to
analyze and transform incoming data into meaningful
information useful to evaluate the outcome of an exper-
iment. However, due to the nature of such sensor, the
information obtained is always quantitative. This quan-
titative information is abstracted to qualitative values to
facilitate comparison with the prediction.

The environment is monitored using color and motion
tracking. Color histograms are obtained from the ob-
jects that will be tracked and the CAMSHIFT algorithm
[11] is applied to obtain the position, velocity acceler-
ation and approximate size of the object at a specific
time.

3.1 Surprise

An observation that concurs with the prediction is inter-
preted as a confirmation of the current model. A mis-
match between prediction and observation refutes the
current model thereby triggering surprise. The surprise
and the circumstances under which it occured (e.g. ac-
tion, time, feature preconditions etc.) can then be used
by another mechanism for eventually revising or chang-
ing the prediction model. The loop continues as long as
no surprise is detected (see fig. 1).

3.2 Temporal Abstraction

The extraction of values from the observed quantita-
tive data that are comparable to the qualitative values
provided by the prediction model is central to our ap-
proach. The substantial amount of data obtained over
time from monitoring the robot actions needs to be ab-
stracted to a new representation meaningful for compar-
ison. Such representation may include trend templates,
temporal interpolation, temporal inference among oth-
ers [12]. The concept described is also known as tem-
poral abstraction and has been successfully applied to
varied domains such as medical information analysis,
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hierarchical and abstract planning and reinforcement
learning. Most techniques for temporal abstraction and
comparison of qualitative and/or quantitative values are
known to work over offline data sets, e.g. monitoring of
blood glucose in diabetic patients from controls of past
months [13].

An interesting approach to qualitative-quantitative
comparison is presented by Kay et al. [8], where a tem-
poral abstraction is performed by a ”sliding window”
that ran through the data points over time obtaining the
slope of the best fitting line, finding the trends of the
data distribution. Though in principle, the technique
could be applied to online data, the results presented
denoted that the data used had been obtained a priori.

We present a qualitative-quantitative comparison ap-
proach that builds upon the concepts and ideas pre-
sented before. We propose a method that extracts trends
from online data coming from the robot sensors, and
compares them with the predicted trends produced by
the prediction engine. The trend analysis is bivariate
with one of the variables used as a common base, usu-
ally time, and the other as the compared variable.

Our method assumes the input received from sensors as
a signal that must be processed. For this matter we in-
corporate techniques from time series analysis such as
a weighted moving average that allows a reconstruction
of the signal measured. Such reconstruction offers the
advantage of a better approximation of the original sig-
nal with greater flexibility at defining the window size.
This is depicted by Formula 1

Yn =
C1X1 + C2X2 + ... + CnXn

n
(1)

where {C1, C2, ..., Cn} ∈ [0..1] and
∑N

n=1 Cn = 1
with a relation that is proportionally inverse to time.
This allows to increase the influence of past inputs with
respect to new ones in the signal reconstruction.

To reduce the effects of noise in the trend extraction,
hysteresis is applied to the smoothed signal obtained by
the moving average technique. The implementation of
hysteresis as a signal delay follows Formula 2

y(t) = x(at− b) (2)

where a ∈ < and b ∈ ℵ+ . The response delay ob-
tained by setting a = 1 is activated by a change in
the orientation detected on the smoothed signal. In this
way, only if the change in orientation is constant for a
period t > b the trend is considered to have changed.

3.3 Trend matching

The temporal abstraction that is applied to the incoming
data from sensors, provides the current system behav-
ior trend resulting from the robot actions. A compar-
ison between the current predicted and observed trend
is performed. If a mismatch is detected, the next pre-
dicted trend is examined. If there is a match between
trends, the observation continues, otherwise surprise is
triggered and the observation ends. In the case when
there is no surprise, there are two stop criteria:

* all qualitative predicted behaviors have been ob-
served or,

* the observation time has expired.

Such observation time is fixed prior to the experiment

4 Experiments
The experimental setup is composed of a rectangular
area of 1.20 x 0.80 meters enclosed by walls 20 cm
in height. A color CCD camera with a resolution of
640x480 pixels and a framerate of 30 fps is mounted on
top of the robot pointing in the direction of the robot’s
orientation. The floor of the environmental setup is of
grey color while the walls are white. The ball used to
perform the experiments is colored red. The robot is
equipped with a gripper that enables it to lift the ball
from the ground. Thus the robot can actively perform
the experiments: rolling (by pushing it) and vertical
bouncing (by lifting and dropping it).

The observation time is not fixed, however, at the cur-
rent state of our work the human expert decides when to
stop observing in case there is no surprise. This can be
enhanced to use other mechanisms like visual attention,
boredom and curiosity to start and stop an observation
cycle. The parameters for the temporal abstraction were
obtained empirically from observations. The weighted
moving average considers a window of five observa-
tions with a decreasing weight that emphasizes older
inputs. The hysteresis delays the detection of change in
the trend by 15 observations (approx. half a second).

Multiple experimental scenarios were used to to test the
performance of Q-POLE. In the first scenario, the robot
pushes the ball which comes to a stop after rolling for
some time, owing to friction and air resistance. The
second scenario is similar to the first one, but here an
obstacle is introduced in the path of the rolling ball.
This makes the ball rebound towards the robot and thus
causes a deviation from the expected behavior. In the
third scenario, the robot lifts the ball and drops it, thus
making it bounce vertically.

4.1 Scenario 1: Rolling ball.

In this scenario the robot pushes the ball which starts to
roll until it stops naturally. From the point of view of
the robot, the directly observable features are the color
and the size of the ball. From both, the variable with
respect to time is the size of the ball.

The prediction generates the behavior tree shown in fig-
ure 3, where the variable values in parenthesis stand for
the following:

• smax: qualitative indicator of the actual size of the
ball

• smin: any perceived size between zero and smax

• inf : infinitive value

• inc /dec /std: increasing/decreasing/steady value
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Fig. 3 The behavior tree generated by the prediction
engine for a ball rolling and stopping due to friction,
with the variables size of the ball and distance be-
tween robot and ball. The terms in brackets behind each
variable specify the qualitative value and the qualitative
trend in each state.

In the case of two values in one parenthesis (like in state
S-2), this indicates that the variable in this state will
have a value in between the two given qualitative val-
ues.

Fig. 4 Observed area (in squared pixels) of the color
blob that represents the ball that the robot sees. The
observation starts the instant before the robot pushes the
ball (approx. 1 second) and finishes when the ball has
stopped (approximately 5 seconds).

In this scenario the prediction generates 3 consecutive
states: S1-S2-S3. According to the predicted behavior,
the ball rolls for a while and then comes to a halt be-
cause of air resistance and friction. The frictional com-
ponent is modeled as part of the system involving the
ball. If the model did not include the frictional compo-
nent then the prediction would be a ball rolling forever.
This indicates that the experimenter needs to decide on
how specific the model must be. The more specific the
model, the closer the prediction will be to reality.

The observation detects the color blob associated with
the ball (red) and calculates its area, measured in pixels.

Fig. 5 Visualization of the trends extracted using the
time abstraction mechanism for this particular scenario.
The trends are consistent with the numerical observa-
tions: an initial constant value is observed in the instant
before the robot pushes the ball, followed by a mono-
tonically decreasing trend of the area value as the ball
rolls away.

The time basis for the observation is the video framerate
(approx. 25 fps after image processing). Figure 4 shows
the variation in object size with respect to time taken
across approx. 5 seconds of observation of the event.

The time abstraction mechanism allows to reduce the
effect of noise in the observation. In this case, trend
matching does not detect any deviation in the signal
from the qualitative prediction and thus, surprise is not
triggered and the robot continues with its normal tasks.
Figure 5 presents a visualization of the trends extracted
from the data mentioned above and used in the match-
ing.

4.2 Scenario 2: Rolling ball bouncing off the wall.

This scenario was intended to test the model that was
created for the previous one. The observation was made
under the same conditions. The robot pushes the ball as
in the previous scenario, but an obstacle is introduced
manually such that the ball rebounds off it and rolls
back towards the robot. The observed behavior of the
ball size variable is shown in Figure 6. As predicted,
the observed size of the ball starts decreasing until it
collides. After that, however, it increases as the ball
approaches the robot again. As soon as this deviation
is encountered, Q-POLE triggers a surprise. This may
be used as an indication for a need of performing the
action again (if possible) to confirm the deviation, or
to design another experiment that tests the validity of
the model. Within XPERO, the result of these exter-
nal mechanisms will be used to refine the model so that
future predictions may concur with it.

A visualization of the temporal abstraction for the case
where there is no surprise is shown in Figure 7. In our
experiment, the model is not able to correctly predict
the behavior of the observed variable once this starts
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Fig. 6 Observed area (in squared pixels) of the color
blob that represents the ball that the robot sees. The
observation starts the instant before the robot pushes
the ball. The ball rolls until it bounces off the wall.
The observation stops when the perceived data does not
match the predicted behavior.

increasing as a result of the bounce. So a surprise is
triggered by the surprise mechanism.

Fig. 7 Visualization of the trends extracted using the
time abstraction mechanism for this particular scenario.
In our experiment, we used the model built for Scenario
1, resulting in surprise triggered (trend change to in-
crease).

4.3 Scenario 3: Drop ball.

Scenario 3 demonstrates how surprise is obtained as a
result of a model that is correct for the ideal case, but
falls short when applied to real observations. Following
the procedure described previously, we created a qual-
itative model for the drop ball scenario. The variables
that are observable over time are the size of the ball,
represented by the area of the color blob, the displace-
ment in two dimensions (relative to the image plane)
and the computed velocity (measured in pixels per time
step) of the ball as it bounces.

The model is created for a system assuming no air resis-
tance or surface friction. One reason for this is that the
damping of the bounce is something that the robot must

Fig. 8 The behavior tree generated by the prediction en-
gine for a ball bouncing, with vel as the variable for
velocity.

learn by refining the model, using semi-quantitative de-
scription which is not yet realized within Q-POLE. The
prediction generates a behavior tree as shown in Figure
8. As can be seen in the figure, the prediction generates
a behavior that predicts the ball bouncing vertically at
the same location with change in the direction of veloc-
ity. This behavior is the one that is compared online by
Q-POLE with the observation made in this experiment.

For this model, both variables trigger surprise as they
deviate from the predicted behavior (Figure 9). The size
of the ball is predicted to remain constant over the ob-
servation. However, the perceptual information reveals
that the size of the ball does change when dropping a
ball. Possible causes for this observation are the mate-
rial of the ball or a slightly tilted collision surface. The
velocity of the ball was measured by taking the center
of mass of the color blob associated to it and tracking
it during the observation. The measure is given in pix-
els per second and represents the displacement in pixels
that the robot is able to ”see”. The deviation from the
expected behavior is partly due to the nature of the qual-
itative prediction. Such prediction states that a steady
(constant) velocity is reached in each contact with the
floor and return to original drop position. The observa-
tion of such a state proved to be very difficult, especially
in cases when the ”steadiness” lasted only one or two
of frames or even less. In our experiments, the predic-
tion was correctly matched when the steady behavior of
the model was accounted for, temporarily skipped when
looking for the next node in the behavior tree. Figure
10 shows the trends obtained before surprise was trig-
gered.

It is clear from the results that our model wasn’t accu-
rate enough to account for the situations that a robot
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Fig. 9 Behavior of ball size and ball velocity over time
for the drop ball scenario. The size of the ball is mea-
sured in square pixels . The velocity is measured in pix-
els per milliseconds. The scale of the figures is shown
in seconds.

has to deal in a real environment. These are the charac-
ters of the system that the robot has to gradually learn.
The data from the observation stream that triggered this
surprise maybe used to revise the model appropriately.
An improvement would be to compare the observations
with behaviors from multiple models and use exclusion
to narrow the possible models of the system.

5 Discussion

The current qualitative representation appears well
suited for the kind of problems that have been contem-
plated in this paper. However, a more powerful mech-
anism may be needed when analyzing experiments that
involve asynchronous observation of variables. Also,
the introduction of semi-quantitative differential equa-
tions will be necessary to improve the accuracy of the
world model or include phenomena such as friction in
more complex scenarios such as the drop ball scneario.

The surprises triggered by Q-POLE can be passed on
to external mechanisms which can use this information
to decide whether more data generation (by performing
epxeriments) or learning is required. Thus, Q-POLE
proves to be an effective surprise detection mechanism
for open-ended learning in an embodied discoverer.

Fig. 10 Visualization of the trends extracted using the
time abstraction mechanism for this particular scenario.
In our experiment, the model used predicted a constant
value for the variable size as well as a continuous se-
quence of increasing, steady and decreasing values for
velocity. This resulted in a surprise triggered by the de-
creasing and oscillatory trends observed respectively.

The parameters of the mechanisms used by the tem-
poral abstraction provided satisfactory results for the
scenarios presented here. It is obvious though that the
same parameters are not valid for every case. An er-
roneous parameter selection may result in an incorrect
signal approximation to the sensor input, an excessive
delay in recognizing changes in the trends, or even the
complete absence of such changes. We believe that a
self-adaptive mechanism that is able to learn from past
experiences, as well as the context of the current per-
ception, will help in determining the correct parameters
for observing the outcome of different kinds of actions.

Our future work on Q-POLE will focus on develop-
ing this self-adaptivity within the surprise mechanism,
and on introducing semi-quantitative differential equa-
tions. Futhermore, we plan to extend the Observation
Engine so that multiple concurrent hypotheses, repre-
sented by different models and behavior trees, can be
tested simultaneously. Other issues to be adressed are
periodic or semi-periodic behavior of the observed ob-
jects, which will become an important aspect in more
complex scenarios.
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