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Abstract  

Supply chain management deals with the management of information and material in a 
network of producers, retailers and customers. This task is rather complex since a high degree 
of uncertainty occurs in reality due to the fact that key factors such as product demands, stock 
availability, prices, facilities reliability, all have significant stochastic components. Stochastic 
programming is main representative approach to capture some aspects of the uncertainty due 
to the limited knowledge of the model input parameters. Although it has many contributions 
in supply chain management, they are mainly focused on the strategic decision level, where 
there is not enough concrete information about the features of uncertainties on which to base 
long-term decisions.  Within a current research, it is supposed that the most of the uncertainty 
could be handled adequately using a stochastic modeling approach precisely at the tactical 
planning level, mostly employing stochastic values for customer demand, supplier lead times, 
production costs and/or price fluctuations. The paper illustrates the application of stochastic 
programming approach for inventory optimization under uncertain demand and lead time. The 
mathematical model is created and tested by using the algebraic modeling language AMPL, 
which uses the large-scale optimization solver CPLEX. The developed inventory model is 
tested, leading to the conclusion that stochastic programming provides superior planning 
decisions in comparison with deterministic equivalent. The effect of the scenario number on 
the model performance is evaluated. The conclusion is that the optimal number of scenario 
exists and it is not necessary to make the model work under all possible scenarios.  

Keywords: supply chain, tactical planning, stochastic programming, uncertainty, 
inventory model. 
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1 Introduction 
The task of effective supply chain management is 
rather complex since a high degree of uncertainty 
occurs in reality due to the fact that key factors such as 
product demands, feed stock availability and their 
prices, technical parameters such as product yields and 
facilities parameters such as reliability/availability, all 
have significant stochastic components. 
Underestimating uncertainty and its impact can lead to 
planning decisions which will not safeguard a 
company against the threats.   

The main representative approach to capture some 
aspects of the uncertainty is called stochastic 
programming which deals with uncertainty due to the 
limited knowledge of the model input parameters. The 
term stochastic approach is usually pointing at the 
goal of creating a robust model of the supply chain. 
To be applied to SCM problems, stochastic 
programming provides a near-optimal solution which 
nevertheless stays valid over a larger range of variable 
values, at a predictable but higher cost [1].  

The paper illustrates the application of stochastic 
approach for inventory model optimization under 
uncertain demand and lead time. The paper is 
structured as follows. Section 2 provides literature 
review of application of stochastic programming 
approach in supply chain management. Section 3 deals 
with definition of robust supply chain. In section 4 a 
developed optimization model with uncertain demand 
for well-known beer game supply chain is described. 
A computational results and analysis are provided 
here as well. The enhanced optimization model under 
two uncertain parameter (demand and lead time), and 
computational results are shown in section 5. Section 
6 presents some conclusions and some directions for 
further research. 

2 Literature review  
During the last years the number of stochastic 
programming application to complex supply chain 
management problems has grown considerably. The 
experience of successful application of stochastic 
programming for complex real life problem solving 
[2, 3] stimulates researchers to apply this technique to 
unsolved problems. Sahinidis [4] presents the detailed 
overview on stochastic programming applications.   

Although stochastic programming has many 
contributions in SCM, they are mainly focused on the 
strategic decision level which effects the performance 
of the system over a relatively long time horizon 
ranging from 5 to 10 years. Generally, the objective 
function of stochastic models is a net present value of 
the associated investment, operating cost, and revenue 
streams. Most commonly, the dominant uncertain 
parameters are the product demands. Problems of 
design and planning of production plants under 

uncertainty have been treated in the operations 
research literature [5, 6, 7, 8, 9, 10].  

According to [1], on the strategic level there is not 
enough concrete information about the features of 
uncertainties on which to base long-term decisions. At 
this level, the supply chain infrastructure is laid down 
(such as the location of plants and warehouses) and 
the physical boundaries for tactical planning are 
provided, which are per definition inflexible to 
adaptation. On the other hand, at the operational level, 
characterized by timeframes of 1-2 weeks, the 
planning horizon is too short to react to uncertainties. 
Hence, most of the uncertainty could be handled 
adequately using a stochastic modeling approach 
precisely at the tactical planning level, which address 
planning horizons of 1-2 years, mostly employing 
stochastic values for customer demand, supplier lead 
times, production costs and/or price fluctuations.  

The classical illustration of tactical planning is related 
to the optimization of inventory models which are 
used to determine the optimal trade-off between 
inventory costs and customer demand satisfaction. In 
general, the model output consists of optimal order 
quantities or the optimal target stock level, in order to 
minimize the sum of backlog and inventory costs over 
the time horizon, dealing with stochastic customer 
demand, stochastic supplier lead times, price 
fluctuations etc. [11, 12, 13].   

The random data representing the uncertainty of the 
future are expressed in stochastic programming by a 
scenario tree. A major focus of scenario generation is 
to create a tree structure of scenarios that “best” 
approximates a given underlying distribution of the 
random parameters of the model [14].   

A scenario is the particular succession of possible 
random parameter’s values (samples) over the periods 
in the time horizon.  

Domenica et.al [14] describe the procedure of scenario 
generation which consist of four steps and point out 
the main methods which may be adopted for the 
different steps. One computational bottleneck in 
solving stochastic programs is the amount of possible 
scenarios. In many problems there are combinatorial 
many scenarios that require prohibitive amounts of 
computational time. Authors note that in many cases 
researchers try to apply some reduction techniques to 
resulting scenario tree to provide model instances, 
which can be realistically optimized by the available 
computational recourses.   

One recently developed technique called Sample 
Average Approximation (SAA) proposed in [15] 
allows one to reduce the number of scenarios. The 
authors suggest using only a subset of the scenarios, 
randomly sampled according to the scenario 
distribution, to represent the full scenario space. 
Illustratively, Benisch in [16] address an issue of 
scheduling component of the trading agent 
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competition in supply chain management problem. 
This combinatorial optimization problem with 
inherent uncertainty is formulated as a stochastic 
program, and is solved using the SAA approach.  
Growe Kuska et.al [17] proposed reduction algorithms 
which determine a subset of the initial scenario set and 
assign new probabilities to the preserved scenarios. 
The scenario tree construction algorithms successively 
reduce the number of nodes of a fan of individual 
scenarios by modifying the tree structure and by 
bundling similar scenarios. Numerical experience is 
reported for constructing scenario trees for the load 
and spot market prices entering a stochastic portfolio 
management model of a German utility. 

Stochastic programming is often mentioned as a tool 
for creating a robust solution for a problem with 
uncertain input parameters. The next part focuses on 
the definition of robustness.   

3 Robust supply chain defined 
Developed mainly from around 1960, robustness 
provides methods that are resistant to errors or outliers 
in the data, which can be arbitrarily large. The need of 
robustness has been recognized in a number of 
application areas. Even the interest in this topic 
increases significantly during last few years no unique 
definition of robustness has been accepted.    

Bundschuh et.al define robustness as the extent to 
which a system is able to perform its intended 
function relatively well in the presence of failures of 
components or subsystems [18]. Kleijnen et al. [19] 
define robustness as the capability to maintain short-
term service in a variety of environments. Kutanoglu 
et al. [20] research scheduling robustness under 
processing time variation. The scheduling procedure is 
called to be robust than an alternative if the schedules 
it generates achieve better performance (as defined by 
the objective function) under the same set of random 
disturbances and changes. Rosenhead [21] discuss 
robustness analysis as a way of supporting decision 
making when there is radical uncertainty. Author 
argues for the wide prevalence of uncertainty in 
strategic decision making and the potential relevance 
of robustness at this planning level.    

Vincke [22] distinguish four concepts of robustness: 
the concept of robust decision in a dynamic context, 
the concept of robust solution in optimization 
problems, the concepts of robust conclusion, and the 
concept of robust methods. In the case where the 
decision problem is modeled as an optimization 
problem, the robust solution is that which is good in 
most versions (i.e. sets of values for the data and the 
parameters of the model) and not too bad in the other. 
Although author states that a robustness of decision 
depends on the mire or less great margin the decision-
maker is ready to concede in the information. The 
novelty adopted by the author within his research is 
the term “version” which is used instead of “scenario” 

in order to avoid any reference to an unknown future 
and to the traditional probabilistic approaches.     

In system dynamics robustness is mostly refers to the 
extent to which the real system can deviate from the 
assumptions of the model without invalidation policy 
recommendation based upon it [23]. 

The discussion about reliability and robustness of 
supply chain networks has gained momentum mainly 
after September 11, which has led to an increased 
perception of risk and vulnerability in general as well 
as in today’s production-distribution systems. In the 
context of supply chain, robustness describes how 
much the output of a supply chain is affected by its 
participant (i.e. suppliers, customers) failures. Authors 
point that there are two aspects of supply chain 
robustness that can be quantified. The first one is a 
number of supplier failures before a supply chain is 
completely disrupted. The second is the standard 
deviation of the output, which is a common measure 
for risk-induced variability of performance indicators. 
The standard deviation however is strongly influenced 
by reliability as well [18]. 

Mulvey et al. [24] separate solution robustness and 
model robustness. The robust solution is robust with 
respect to optimality if it is “close” to the optimal 
solution for any set of realizations of the scenarios s 
which describe possible statements of environments. 
Authors call the model is robust when a solution is 
robust with respect to feasibility, i.e. it is “almost” 
feasible for any realization of the scenario s. They 
modify two-stage stochastic model by adding a weight 
of variability of the second-stage cost to the objective 
function. Varying the weight forces the optimization 
process to produce solutions that may present higher 
expected total cost with lower second-stage cost-
deviations. This paradigm is then called as robust 
optimization.  The application of this paradigm in 
power capacity expansion problem showed that the 
solutions gained within robust optimization has higher 
expected cost then the stochastic linear programming 
solution, but it has substantially lower standard 
deviation.       

Aghezzaf [25] discovers robust planning in production 
systems with uncertain demand. He presents two 
alternative models to generate plans that are robust to 
the variability resulting from uncertainty of demand. 
The robustness is measured through the average extra 
cost resulting from adaptation of the plan when 
extreme scenarios occur. 

4 Beer-game inventory model under 
uncertain demand 
The model that is used within current research is the 
Beer Game supply chain, which represents a single-
product linear supply chain consisting of 4 echelons – 
factory, warehouse, wholesaler and retailer. A fifth 
echelon is constituted by the market, passing on the 
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customer’s demand to the retailer echelon. Every 
period each echelon places its order to the lower 
echelon, trying to meet the optimal trade-off between 
customer demand satisfaction and inventory costs. 
There are two costs involved in the game: inventory 
carrying costs and backlog costs. To determine the 
optimal trade-off (i.e. the order strategy with the 
lowest total supply cost), an inventory planning model 
can be derived, optimizing the inventory position on 
the efficiency frontier.  

A deterministic beer game model, not taking into 
account the real life fluctuation of customer demand, 
supplier lead times, etc., provides an inadequate 
representation of reality and will result in inferior 
planning decisions. One can always assume the 
average occurrence of demand and establish a 
production plan, but in practice the resulting plans are 
weak. To reduce the total costs and the variability 
inherent to planning in a multi-echelon supply chain 
as simulated by the beer game, a scenario approach 
should be utilized.  

Since demand variability can be considered as the key 
source of uncertainty in planning and controlling 
supply chains, a beer game model under uncertainty of 
demand is developed initially, which results already in 
a far more robust planning model, attempting to define 
the optimal trade-off between customer demand 
satisfaction and inventory costs.  

4.1 Mathematical model  

The beer game can be considered to represent an 
inventory problem in a single-product linear supply 
chain consisting of 4 echelons – factory, warehouse, 
wholesaler and retailer. The factory has an infinite 
inventory without inventory costs or backlog costs. 
The products ordered by the warehouse are 
immediately shipped by the factory without any delay. 
The objective of the beer game is to minimize the total 
inventory cost, i.e. the sum over all periods and levels 
of the backlog costs and the inventory costs. The 
objective function of the basic beer game model under 
uncertainty of demand is given by (1).  

The decisions to be made in the beer game are beer 
quantities to order at each echelon at each period. 
Thus, decision variables in the model are order 
quantities Olt per level per period. However, in reality 
for companies it is no doubt more useful to work with 
a stock target level, i.e. a level of inventory which has 
to be maintained, instead of revising the optimal order 
quantities again every period for every level. With this 
Periodic Order Review (POR) policy, the order 
quantities are defined as the difference between the 
desired target level and the stock on hand, in order to 
keep this target level fixed. In this case, the order 
quantities are calculated for every level, every period 
and, in contrast to the regular model, for every 
scenario, and the output of this stochastic model 
consists of the optimal target stock level, which 
minimizes the total inventory costs. 

This study provides three models, for three different 
order policies. In the first case, the regular model, the 
optimal order quantities minimizing the total 
inventory costs is returned, per level per period. For 
the POR model, the optimal stock target level is 
returned as model output. Finally, the POR version is 
extended to the model, returning an optimal stock 
target level for each echelon separately, as in reality 
different branches of the supply chain network have 
different operating logistics (called SCR, Supply 
Chain Reorder point). 

For testing this basic beer game model, the 
deterministic lead time is set to 2 periods, the initial 
inventory is 100 for all echelons and the initial 
backlog is 0. Consequently, the concerned model is 
subject to following constraints: 

The initial inventory for each echelon l at period 0 is 
set to 100 units for each scenario (3); 

The initial backlog for each echelon l is set to 0 units 
for each scenario. The supply chain has no history at 
period 0 (4); 

No former shipments p are coming for the first lead 
time interval for each echelon l for each scenario. The 
supply chain has no history at period 0 (5); 

The order quantity for the customer (l=5) for each 
period is set to the demand of that period (6); 

Assuming that the plant inventory is unconstrained, 
the order quantity for each period at the warehouse 
factory is equal to the shipped quantity at the plant for 
that period. This means that the plant always can 
satisfy the orders from the warehouse factory (7); 

The increase of total backlog for one period for each 
echelon is equal to the difference of the ordered 
quantity at the next echelon for that period and the 
shipped quantity to that echelon (10); 

The increase of total inventory for one period for each 
echelon is equal to the difference of the shipped 
quantity at the echelon for that period and the shipped 
quantity at a higher echelon, respecting a time interval 
that is the lead time N (11). 

The restrictions above are independent of the used 
order policy. For the POR model only three extra 
constraints are needed.  

The on order quantity Ond has to be defined, i.e. the 
quantity ordered in previous periods which has not 
arrived yet (in the regular model, there’s no need for 
such an on order quantity variable (9); 

Assuming the supply chain has to start from scratch, 
the on order quantity is 0 for the first period in each 
echelon l for each scenario (2); 

An extra order constraint using the desired stock target 
level ζ is needed to define the order quantity per level 
per period and per scenario, being the difference 
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between the target level and the stock on hand (i.e. 
inventory and on order quantity minus the backlog (8). 

Simply adding an extra level index l to the stock target 
level ζ upgrades the POR model to a SCR model, 
returning the optimal stock target level for each 
echelon separately as model output (12):  

( )),1,(),1,(),1,( stlstlstlllts OndBIO −−− +−−= ζ . 

The only extra difference between the two described 
models is the missing of a scenario index s in the 
decision variable Ol,t in the regular model, where in 
the POR model an extra scenario index s indicates that 
the order quantity is calculated for each level, each 
period, and each scenario separately (the order 
quantities are calculated for each scenario separately 
in order to determine the optimal stock target level as 
model output). Thus, in the POR and SCR model the 
decision variable Ol,t is provided with an extra 
scenario index s. The entire POR model becomes 
then: 

with: 

S: The number of demand scenarios in the demand 
tree. 

L: The number of level. 

T: The user defined number of periods in the time 
horizon. 

Vs: The probability that a demand scenario s occurs.  

iclt: Inventory cost for level l at period t.  

Ilts: Inventory for level l at period t for each scenario. 

bclt: Backlog cost at period t for level l.  

Blts: Backlog for level l at period t for each scenario. 

To obtain concrete results, the mathematical models 
described above can be incorporated in AMPL, a 
computer language for solving large-scale 
optimization and mathematical programming 
problems. The CPLEX solver implements a modified 
primal and dual simplex algorithm to find an optimal 
solution.  

4.2 Scenario generation 

However, with P the number of periods in the time 
horizon and N the number of possible demand values, 
the number of demand scenarios S (i.e. the number of 
all possible combinations of the demand values over 
all periods) increases as PNS = . In this study three 
scenario development methods are employed:  

(1) scenario tree (see Fig.1): the developed model 
employs 3 possible demand values, each having the 
same probability of occurrence. Assuming a normal 
demand distribution (mathematical expectation µD = 
50 units per period and standard deviation σD = 20 
units), 3 samples can be derived as: S1=27.2, S2=50, 
and S3=72.8 (the average demand values are used to 
generate the demand data tree). 

Fig.1 Demand data tree generation 

(2) a set of random generated demand sequences (see 
Fig.2): instead of employing user defined demand 
values, a data structure can also be generated using 
totally random demand samples. 

 
Fig. 2 Random data generation 

(3) a hybrid data tree (see Fig.3): non-random periods 
employing user defined demand values in a demand 
data tree are alternated with totally random periods.  
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Fig. 3 Hybrid data generation 

In order to create the necessary AMPL data file in a 
fast and easy way, a Visual Basic Application for 
Excel was created which generates user-defined data 
trees and exports the generated data to an AMPL ‘.dat’ 
file. The program consists of three main sections: the 
Stochastic Demand Section, responsible for generating 
stochastic demand data trees whether they are random, 
hybrid, or derived from user-defined demand values; 
the Stochastic Lead Time Section, responsible for 
generating random, hybrid or user defined lead time 
data trees; and the Export Section responsible for 
creating an appropriate AMPL data file. 

4.3 Results  

The AMPL beer game model under uncertainty of 
demand was tested on a Pentium® 4 CPU 3.00GHz 
with 1024 MB of RAM memory. The number of 
periods for the data tree method was therefore limited 
to 6, leading to 36 = 729 scenarios. The initial 
inventory was set to 100 units for all levels, initial 
backlog 0, inventory cost equaled 1 and backlog cost 
equaled 2. The AMPL model was tested employing all 
presented data generation methods. The hybrid 
approach consisted also of 6 periods, 4 non-random 
and 2 random periods, leading to 81 scenarios. For 
both the hybrid as well as the random method, the 
demand sample boundaries were set to 10 – 90 units. 
For the random approach, 729 scenarios were 
generated. Using the POR basic beer game model, 
these settings led to the results in Tab. 1.  

 Tab. 1 Quantitative results   

 Tree Hybrid Random 

Total Cost 678,1 709,8 807,2 

The hybrid method introduces more randomness than 
the rather well-structured data tree approach, and 
therefore results in a higher cost. The random method 
provides the most robust solution against the demand 
uncertainty, but returns the highest cost, due to the 
total randomness of the demand samples, varying 
between 10 and 90 demand units. When the random 
demand sample interval is shortened (for instance to 
an interval of 30-70 demand units), the total cost 
decreases, as there will be less randomness to deal 
with. The returned optimal target stock level is quite 

similar for all experiments, as the number of periods 
in the time horizon is quite small. A larger number of 
periods results in more variety. 

For the data tree and the hybrid method, the number of 
scenarios is defined by the number of periods in the 
time horizon. However for the random generation 
mode, the desired number of scenarios is user-defined. 
Therefore, the influence of the number of scenarios on 
the total cost should be analyzed in order to find an 
optimal number of scenarios to apply. To analyze if 
the total cost continuously decreases when the number 
of scenarios increases, or if there is a limit, the AMPL 
POR model was tested twice with random data, over 5 
periods and 10 periods respectively, starting at 5 
scenarios and steadily increasing this number to 729 
scenarios.  

In the first experiment, the total cost decreases with a 
growing number of random demand scenarios, to 
stabilize around a total cost of 520 at the number of 
500 scenarios. In this case, using more than 500 
scenarios will not result in a lower total cost and is 
therefore not recommendable, see Fig.4.  

Fig. 4 Influence of the number of scenarios over 5 
periods 

Fig. 5 Influence of the number of scenarios over 10 
periods 

In the second experiment, which uses random data 
over 10 periods, the total cost also decreases when the 
number of employed scenarios is increased, but the 
cost stabilizes more or less already at a number of 150 
scenarios. In this case, no more than 150 scenarios 
should thus be generated, see Fig.5. 
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Fig. 6 Scenario reduction 

Finally, the scenario reduction algorithm [17] was 
applied for the reduction of random scenario tree of 
729 (T=6). The results are presented in Fig.6. 

The experiments lead to the conclusion that the total 
cost can indeed be reduced by increasing the number 
of random demand scenarios, and this up to an optimal 
number after which the total cost stabilizes. This 
optimal number of scenarios is however dependent of 
the concerned number of periods in the time horizon, 
and can therefore not be predefined. This leads to the 
overall conclusion that for the random approach of the 
beer game model, the more periods are concerned over 
the time horizon, the less scenarios need to be 
generated to obtain a stabilized lowest total cost.  

5 Enhanced model under uncertain 
demand and lead time 
After having developed and tested a basic stochastic 
beer game model under uncertainty of customer 
demand, the next task consists of enhancing this 
model by varying the supplier lead times over time.  
In the stochastic lead time model, the lead time value 
N as used in the basic beer game model, is not fixed 
anymore, but is dependent of parameters s (lead time 
scenario), l (level) and t (period). A separate lead time 
scenario tree (with a number of periods equal to the 
number of periods in the demand tree) is generated. 
Each lead time scenario in the data tree will indeed 
consist of a specific lead time for each period as well 
for each level in the supply chain, as in reality there 
are different operating logistics in different branches 
of the network. Thus, in the objective function, 
inventory and backlog costs are not anymore only 
summated over all demand scenarios, but for each 
specific demand scenario all lead time scenarios are 
summated as well. The total number of summated 
scenarios is then given by DS*LS (with DS the 
number of demand scenarios and LS the number of 
generated lead time scenarios) and after adding an 
extra lead time scenario index ls to all variables, the 
new objective function becomes (for both regular and 
POR version) (13): 
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The extra lead time scenario index ls is added to all 
variables Orders O, Shipments P, Inventory I, Backlog 
B and On Order Ond, in order to indicate that these 
variables now also depend of the actual lead time 
scenario, besides concerned level, period and demand 
scenario. 

5.1 Results  

The enhanced AMPL model was tested twice with 
random data, using the POR order policy over 4 and 8 
periods respectively, starting at 3 scenarios for both 
customer demand and supplier lead time, and steadily 
increasing this number to 35 demand and 35 lead time 
scenarios. This total number of periods and stochastic 
scenarios is rather small, due to computational 
restrictions. The results are illustrated below (see Fig. 
7 and Fig.8). 

TEST 1: 4 Periods
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Fig. 7 Influence of the number of scenarios over 4 

periods 

TEST 2: 8 Periods
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Fig. 8 Influence of the number of scenarios over 8 

periods 

Both experiments lead once again to the conclusion 
that for the random approach, the total cost decreases 
with an increasing number of stochastic scenarios, 
stabilizing after a certain optimal number. However, in 
this case the computational restrictions are too high to 
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determine this optimal number of scenarios or to 
derive any further conclusions. This is therefore once 
again the major disadvantage of the stochastic 
modelling approach: the number of scenarios or 
periods in the time horizon taken into account in 
reality is much bigger than a regular computer is able 
to model. However, even with a small number of 
scenarios or periods, a stochastic approach considering 
the uncertainty of customer demand and supplier lead 
times, leads to a far more robust planning solution 
than any other deterministic equivalent, and therefore 
results in a superior decision management.  

6 Conclusion and future research 
This paper has illustrated the application of stochastic 
approach for the optimisation of the inventory model 
of the Beer Game under uncertainty of customer 
demand and lead times, representing an inventory 
problem in a single-product linear supply chain 
consisting of 4 echelons. The model was developed 
and tested in AMPL, as well as for a conventional 
order policy using optimal order quantities per period, 
as for POR and SCR order policies. The conducted 
experiments lead to the conclusion that the stochastic 
approach increases the total cost output of the model, 
but nevertheless results in a far more robust planning 
solution than any other deterministic equivalent, 
armed against the real life uncertainty. When 
employing the random approach, a higher number of 
scenarios results in a lower total cost, reaching a 
minimum after a variable optimal high number of 
scenarios. Future enhancements of the beer game 
model can be obtained by (1) making the inventory 
and backlog costs dependent of the concerned period 
in the time horizon, (2) extending the model to an 
infinite number of supply chain levels.  
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