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Abstract

In this paper actual simulation techniques and simulation systems for artificial neural networks
are compared. We focus on neural network simulators that allow a user easy design of new
neural networks. There are several simulation strategies that can be exploited by modern neural
network simulators described. We considered the synchronous simulation as the most effective
for parallel systems like artificial neural networks. Examples of general simulation systems that
can be used for simulation of neural networks are mentioned. Current neural network simula-
tors commonly depend on a type of neural network simulated and cannot be easily extended to
simulate a different or a neural network with a brand new architecture and function. Universal
simulation tools seem to be suitable for network design but do not support connectionism na-
tively. The missing language constructions and tools for native support of connecting objects
in the simulation lead us to design a new simulation tool SiMoNNe - Simulator of Modular
Neural Networks, which allows easy design and simulation of neural networks using a high
level programming language. The language itself is object oriented with weak type control. It
supports native connection of simulated neurons, layers, modules and networks, matrix calcu-
lations, easy control of simulation parameters using expressions, re-usability of the result as
a source code and more. The language is interactive and allows connection of a GUI to the
SiMoNNe core.
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1 Introduction
Artificial neural network simulators are commonly used
in experiments with neural networks. There are neural
networks of many types – paradigms. We can group
neural networks into several categories induced by a
history of a neural network research. There were simple
neural networks consisting of only one artificial neuron
in the beginning [1]. Afterwards, neural networks ex-
ploited massive connection of more neurons. Layered
neural networks were the main research interest and
they are at a high level of importance at present. Mod-
ern neural networks are build from hierarchy of mod-
ules – neural networks with a high amount of internal
connections solving specific tasks. A layered structure
is suppressed to the background. The, so called, mod-
ular neural networks [2] exploit a decomposition of a
task to subproblems and reduced connections by unnec-
essary full connection between single neurons. The full
connection between layers does not automatically lead
to the best solution of a particular task. The modular-
ity allows to combine various types of neural networks
together. A simulation of such complex system is not
usually a simple task.

A realization of neural networks is usually done by their
simulation. One can simulate a neural network by a
special simulation software, we call it a neurosimulator.

2 Strategies in Neural Network Simula-
tion

Neural networks are parallel systems. It is one of their
benefits that makes them suitable for solution of var-
ious real domain problems. One must decide how to
control parallelism during the simulation. Thus, there
are basically four types of simulation strategies in neu-
ral network simulation.

2.1 Synchronous simulation

The Synchronous simulation is the most simple strat-
egy. All network units - neurons (layers and modules
are expressed by their inner neurons) generate their out-
puts at synchronous time steps. Each unit calculates
its output based on output of other units (and/or itself)
from the previous time step. This approach allows sim-
ple simulation of recurrent neural networks. An advan-
tage is that we do not need to deal with order of exe-
cution of simulated units. The disadvantage is that in
some neural network paradigms we expect their output
in one time step. This simulation step is called recall
of the network - the network is given an input and it
recalls the output value. Applying synchronous sim-
ulation strategy to e.g. feed-forward neural networks
like multi-layered perceptron (MLP) [1] causes that we
can either recall each input of the network in one time
step and the corresponding output appears on the net-
work output after n time steps (while the signal passes
through the network layers) or we can consider n time
steps (equal to number of network layers) as one global
simulation step and the simulation of the network is n
times slower.

The synchronous simulation is suitable for complicated
neural networks with high amount of recurrent connec-
tions. It is the only one correct simulation strategy when
the recurrent connections are not regular and we need to
have the network result to be deterministic.

2.2 Data Driven Simulation

Each neuron (considering that layers and modules rep-
resent grouping of neurons only) can calculate its acti-
vation when proper input is available. This is a typical
approach of data-flow architecture. In the field of neural
networks this approach is closest to biological systems
where each biological neuron fires when a proper input
excitement excites the neuron.

A problem appears when a neuron output depends on a
recurrent connection. Such recurrent connection causes
a deadlock because the neuron will wait on its output.
This problem can be solved in two ways. First, we will
not use this simulation strategy for recurrent neural net-
works. Second, each recurrent synapse will supply its
initial value.

The advantages of the data-flow simulation of neural
network are that the current network output reflects it
current input. The disadvantage is the recurrent connec-
tion problem and its more complicated implementation
over the synchronous simulation strategy.

2.3 Topology Analysis Based Simulation

When we know the network topology before the simu-
lation starts, which is a case of most neural networks ex-
cluding special neural networks like GMDH networks
[3] with dynamic connections, the network topology
can be analyzed and exploited.

Neurons in the network are classified into several
groups by their distance (measured by amount of con-
nection the signal is passing through) from the network
input. In simulation, each group is executed using the
synchronous simulation strategy from closest groups
to the most distant ones. Recurrent connections are
not taken into account during the analysis and they are
marked as recurrent.

The advantage is that this strategy properly deals with
recurrent connections and in each simulation step the
output of the networks corresponds to proper network
input. The disadvantage is that a complicated topology
analysis has to be performed before simulation starts.

2.4 Other Simulation Strategies

Other simulation strategies for neural networks include:

• Random permutation, where each neuron is ex-
ecuted exactly once during the simulation step.
The order of the neurons is random. Such sim-
ulation strategy is exploited within certain neural
networks (e.g. Hopfield network) where it does
not affect the network success.

• Random simulation, is only hypothetic simula-
tion strategy. The order of activation of neurons
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is chosen randomly and it is not guaranteed how
much the neuron is executed during the simulation.

• Predefined order simulation strategy is given by
a user of the network. Such simulation strategy
may be usable in simulation of complex recurrent
neural network where topology analysis fails and
synchronous simulation is not satisfactory.

Concluding the simulation strategies we named several
approaches to neural network simulation. We consider
that we did not mention strategies for simulation of con-
tinuous time neural networks (e.g. spiking neural net-
works). Such neural networks are usually simulated us-
ing synchronous simulation strategy with a short simu-
lation time period. As there is a lot of neural network
paradigms, each neural network requires its own simu-
lation strategy. In the field of modular neural networks
the synchronous simulation strategy takes place and is
the most important one.

3 Neural Simulators
Currently, there is a lot of simulation software and li-
braries for simulation of neural networks available. A
comprehensive introduction to many neurosimulators
can be found in [4]. The neural simulators can be di-
vided into several categories.

3.1 Single Purposes Neurosimulators

Single purpose simulators are written especially to sim-
ulate one selected neural network paradigm. Such neu-
rosimulator usually contains a graphical user interface,
which allows easy manipulation with neural network
parameters. The neurosimulator can provide a good un-
derstanding to the network behavior. The disadvantage
is that it is not easy to simulator another neural network
in this neurosimulator. It is almost impossible to do this
and the solution is to create another specific neurosim-
ulator for that network.

SOMPAK [5] is an example of such single purpose neu-
rosimulator. It is a set of command-line tools that simu-
late and visualize function of Kohonen’s Self Organiz-
ing Map network.

3.2 Multi Purpose Neurosimulators

Multi purpose simulators can simulate more than one
specific neural networks. Such neurosimulators have
advantages of graphical user interfaces but are more
general. The neurosimulators have built in more neu-
ral network paradigms. This implies that the core of
such neurosimulator is made more general and it may
be possible to add neural networks which are not in-
cluded usually by the means of programming. The dis-
advantage is that there is no standard of implementa-
tion of such multipurpose simulation system and it is
also possible that a future neural network is not imple-
mentable there because the simulation system has re-
strictions, which does not affect currently built-in net-
works.

3.2.1 SNNS

There are several examples of multipurpose neurosimu-
lators. SNNS (Stuttgart Neural Network Simulator) [6]
is an open source implementation of a simulator core
with GUI. The core is a library written in C. The GUI
is either for X-Window or a modern one written in Java
usable on all Java capable platforms.

3.2.2 Neural Works Professional

NeuralWare’s NeuralWorks Professional is an example
of a multipurpose neurosimulator. It contains and can
perform simulation of several types of neural networks.
Since it is a commercial neural multi purpose neurosim-
ulator a user has to respect and use included neural net-
work paradigms.

3.2.3 Weka and YALE

There are several data mining tools available. Data min-
ing is one of the application field of the neural networks,
therefore data mining frameworks include them. A us-
age of the neural networks performed as a black-box
simulation. A user could not study the network interior.
The tools are open-sourced. More neural network types
can be written and included.

3.3 Universal Simulation Systems

Universal simulation systems which are not directly
faced to simulation of neural networks can be also used
for the neural network simulation task. Since the neu-
ral networks are at most mathematic and statistic tools,
one can use systems used for mathematic calculations
or tools for simulation of systems. In the field of math-
ematic calculations we can use Matlab, Mathematica
etc.

3.3.1 Matlab

There is the Neural Network Toolbox for Matlab [7]
which supplies several neural network paradigms. The
toolbox makes a multi purpose neurosimulator from the
universal mathematical calculation system. The advan-
tage of Matlab is that it is widely used and if someone
is used to use it and if he wants to use a neural network
which is already implemented in the toolbox, a usage
of the network is easy. More mathematical systems like
Mathematica, Statistica, Maple etc. can be used in the
same way. The neural network add-on turns it into mul-
tipurpose neurosimulator. The generic disadvantage of
those systems is a lack of connectionism – the ability
to create and connect neurons. The Matlab and Mathe-
matica do not contain explicit language expressions for
making connections between simulated units. This is
the main reason why we could not consider them as uni-
versal neurosimulators.

3.4 VHDL

Due the lack of connection one can use a system which
embeds connection subsystem like VHDL [8] for sim-
ulation of logical circuits. Description of neural net-
works using matrix operations is much easier than treat-
ing them as logical circuits. There was done a little
in the field of neural network simulation using VHDL
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which may be important from the point of view of their
future hardware simulation. In general, description of
neural network using hardware terms like signals, buses
and architectures leads designer’s attention away of the
neural network design and usage.

3.4.1 Mathematica

Wolfram’s Mathematica is a powerful tool for symbolic
mathematics and functional programming. The Mathe-
matica miss a native connectionism and all neural net-
work simulation can be performed using functional pro-
gramming. A big advantage is an effective syntax and
re-usability of the output code that can be used as a
source for a next calculation.

3.4.2 Modelica

Another choice can be the Modelica simulation lan-
guage. It contains built-in connectionism but it is miss-
ing neural network library at present. Modelica is an
interactive simulator. The compilation is not incremen-
tal, compile and run-time are separated. A change of
the neural network structure in run-time is not possible.

3.5 Neural Libraries

Neural libraries add functionality needed for simulation
of neural networks to common simulation systems and
programming languages. We can consider the Neural
Network Toolbox for Matlab as such library, but it does
not implement connectionism needed for general neu-
rosimulator - it only simulates it. We can take neural
network framework named Joone (Java Object Oriented
Neural Engine) as an example. It consist of two parts,
effective core and graphical user interface (GUI). One
can use the GUI or directly exploit the Java core library
API. The drawback is that Joone supports layered neu-
ral networks only. It is not suitable to build modular
neural networks. Joone benefits with parallel process-
ing (or pseudo-parallel by Java threads) of the simula-
tion. This approach eases simulation of layered neu-
ral network but such simulation of recurrent modular
network with complex structure is not possible due the
high recurrence level.

3.6 Universal Neurosimulators

A universal neural simulation system is focused on sim-
ulation of simple, layered and modular neural networks.
Such organization structures should be enough to simu-
late various neural networks including modern modular
neural networks and their possible improvements. The
modular approach is like object oriented approach in
classical programming. The module as an object encap-
sulates other modules and neurons at the lowest gran-
ularity level. The layers can be compared to creating
arrays in classical programming language. The crucial
component that is added by the simulator in comparison
with a classical programming language is the connec-
tionism support. As can be seen in following section, it
is evident, that the task of creation of an universal sim-
ulation system leads to creation of a new programming
language, which supports object oriented programming
approach (modularity) as well as connectionism.

Search for such universal neurosimulator is not easy.
First, we state several features of such simulation sys-
tem. The ideal neural network simulator has following
features:

• Independence on its implementation. This means
that the simulator does not depend on implemen-
tation of any particular framework. This condi-
tion is hard to fulfill because there are not any
recommendations how the neurosimulator is to be
implemented. Neural networks are usually used
for data processing, data-mining etc. At present
one of the problems of independence is how the
data are handled by the neurosimulator and how
the neural networks should be stored and inter-
changed. We have to think about not only the data
but about all information that neural simulation re-
quires. In e.g. logical circuits, there are simula-
tion languages like VHDL and Verilog for instance
that can be used for data interchange. But in the
field of neural networks there is not any standard
at present. There are some activities to create data
exchange standard for neural networks but those
standard does not reflect high evolution of neural
networks paradigms. There are XML descriptions
for layered networks models but a standard for e.g.
modular neural networks is not being developed.
That is also because of rapid evolution of neural
networks at present. Our neural network language
called SiMoNNe, see section 5 can supply solution
of the problem especially in the field of modular
neural networks.

• Simplicity. The neurosimulator should be as sim-
ple as possible. It should be easy to implement
and simulate current and new types of neurons,
synapses, modules and networks. A user has not
to be forced to program the networks by himself.
A work with the simulator should be effective.

• Interactivity. Debugging of a neural network is
not an easy task. There is usually a large set of
network parameters that require proper setup. The
debugging process is a long time work. The sim-
ulator should allow easy storage and restore of
the simulated network. A user should be able to
interactively change the network and reduce the
need of restart of the simulation. The simula-
tor should support changing networks (networks
which change their behavior themselves), thus it is
not possible to use static simulation systems like
VHDL and Modelica which do not allow to mod-
ify architecture of simulated system in simulation
run-time.

• Modularity and re-usability. Besides ability of
simulation of modular neural networks the neu-
rosimulator should be modular itself. Modular
structure of the simulator allows possible embed-
ding into other non-neural applications. All im-
plemented neural network algorithms should be
reusable in various parts of the neurosimulator.
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3.7 Language versus Graphical User Interface

There are neural network simulators and simulation
systems that are driven by a language or a graphical
user interface (GUI). Many language driven tools con-
tain a GUI as well. The GUI only simulators can be
hardly extended because the GUI structure depends on
the simulated neural network in most cases.

The best approach is to control the simulation language
by a GUI. The problem is that for high level program-
ming languages a GUI that supports all language fea-
tures is not easy to construct. In the other words a GUI
could not be fully equivalent and as powerful as the un-
derlying programming language.

4 How to Choose a Simulator
Choosing a proper simulator for simulation of modern
neural networks is a challenge. One must decide the
purpose of the simulation. In case of modern neural
networks the final purpose may not be clear at present
because nobody knows how much time it takes to per-
form all experiments before real usage as an embedded
neural system.

A choose of the simulator is in general based on an ex-
perience of a user. Mathematicians will likely use one
of their favorite mathematics tool like Matlab or Mathe-
matica and they will solve a task of converting all those
connectionistic models to matrices, functions etc.

People involved in simulation of systems will take sys-
tems like Modelica into account but the systems lack of
neural network toolboxes and libraries will need more
effort to implement all those typical neural network al-
gorithms.

Real programmers will like to use a neural network li-
braries because they will benefit from experience with
well known and high quality debugging tools for com-
mon programming languages. The library will supply
the connectionism.

Researchers focused on a specific task as well as spe-
cific neural networks will look for specific simulators
for a particular networks but they may have problems
with further embedding of the network. The will ben-
efit from a particular graphical user interface and well
working simulator but problems with extending of their
neural network paradigm will appear in a serious re-
search.

There is a simulator’s matrix in Table 1 which gives an
overview of common simulation systems from the point
of view of neural networks simulation.

5 SiMoNNe – Simulator of Modular Neu-
ral Networks

Motivated by a design of new neural network architec-
tures we were forced to design and implement a new
neural network simulation system, which is enough
powerful to simulate a neural network of an arbitrary
structure and function and serves a user neural net-

work specific features, especially the connectionism.
We named it Simulator of Modular Neural Networks
(SiMoNNe) [9].

The SiMoNNe consists of high level programming lan-
guage as well as the language interpreter and the sim-
ulation workspace. Considering the criteria for ideal
neural simulator the SiMoNNe has following features
implemented.

It uses modules (objects) to build modular neural net-
works. The modules can be connected as a user de-
cides using simple expressions that can aggregate full
connections between modules and layers. The simula-
tor is interactive, basic interaction is done using com-
mand line and interactive compiler of the SiMoNNe
Language. The simulation system is universal and
paradigm independent. It can simulate arbitrary neu-
ral network. The language allows to perform matrix
operations and other mathematic calculations.

The SiMoNNe supports synchronous simulation strat-
egy and predefined order strategy natively. Those are
the most important strategies for modular neural net-
work simulation. Other simulation strategies like ran-
dom order and permutation can be easily implemented
within SiMoNNe Language. Topology analysis is not
supported due the dynamic and interactive character of
the simulation. There is no starting (before compile)
point when the topology analysis can be performed.

The SiMoNNe shortens description of common neu-
ral networks to minimum size of code. The abilities
of the language were tested on common neural net-
works like Multi-layer Perceptron, Hopfield and Ko-
honen type networks as well as on new modular neu-
ral networks like CALM (Categorizing and Learning
Modules), TICALM (Temporal Information Categoriz-
ing and Learning Map)[10] and their variants.

The main features of the SiMoNNe are:

• connectionism is implemented by basic language
expressions. A user can easily connect neurons,
layers and any arbitrary defined structures and sub-
networks,

• modularity is expressed by object oriented pro-
gramming. Modules and network are created as
objects,

• language driven simulation. SiMoNNe is a pro-
gramming language and it’s incremental compiler
and interpreter,

• GUI accompanies the SiMoNNe. GUI is con-
nected to the simulation core using the SiMoNNe
Language,

• bi-directionality of the SiMoNNe Language as-
sures that a simulation output is a code in Si-
MoNNe Language syntax as well,

• matrix calculations are embedded in the lan-
guage,
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Tab. 1 Simulator Matrix

Feature / System Matlab Mathematica Modelica Joone VHDL SiMoNNe
Neural Extensions Yes Yes - Yes - Yes
Native Connectionism - - Yes - Yes Yes
Matrix Calculations Yes Yes - - - Yes
Modular Networks - - Yes - Yes Yes
Modularity - - Yes Yes - Yes
Embedding Limited - Yes Yes - -
Implementation Inde-
pendence

- - - - - -

Simplicity - - - Yes - Yes
Universality Yes Yes Yes - Limited Yes
Interactivity Yes Yes - GUI - Yes

• query subsystem gives a user a tool for query-
ing all objects, neurons, modules and their internal
values by expressions,

• collective operations with arrays and matrices al-
low easy and rapid setup and data acquisition from
a simulation,

• universality assures that almost any network that
can be simulated using synchronous simulation
can be simulated in SiMoNNe. The SiMoNNe
is a neural network paradigm independent simula-
tor. Neural networks and their simulations are de-
scribed by programs in the SiMoNNe Language.

6 Conclusion
Based on an unsuccessful survey and search for an
ideal neural network simulator we stated several re-
quirements that we put on such simulation system.

We found that future of the neural network research
could not be satisfied by existing single purpose simula-
tors when dealing with a problem which neural network
is suitable for solution of particular task. Such interac-
tive neural simulators are not exploitable as embedded
systems as well.

First, we need a simulation system which is close to
the ideal neural network simulator for experiments with
modern modular neural networks, thus we designed Si-
MoNNe - Simulator of Modular Neural Networks. Si-
MoNNe allows easy definition, creation, execution and
debugging of modular neural networks of various struc-
ture, topology and function. It supports network with
heterogeneous neurons and modules. One can play with
connections within modules, replace units and change
their behavior on the fly and see a response of the sim-
ulator at the moment.
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Berezovskij M., The Modified GMDH Method
Applied To Model Complex Systems: ICIM 2002
Conference Proceedings, Lviv, Ukraine, 2002

[4] Murre J. M. J.: Neurosimulators. In: Arbib M.A.,
The Handbook of Brain Theory and Neural Net-
works, The MIT Press, 1998, pp. 634-639.

[5] Kohonen T., Hynninen J., Kangas J., Laaksonen
J.: SOM PAK: The Self-Organizing Map pro-
gram package, Report A31, Helsinki University
of Technology, Jan. 1996.

[6] Zell A., Mamier G. Vogt M., Mache N., Hübner
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