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Abstract

In this paper we study a self-adaptive predictive functional control algorithm as an approach to
control of temperature in an exothermic batch reactor. The batch reactor is situated in a pharma-
ceutical company in Slovenia and is used in the production of medicines. Due to mixed discrete
and continuous inputs the reactor is considered as a hybrid system. The model of the reactor
used for the simulation experiment is explained in the paper. Next, we assumed an exothermic
chemical reaction that is carried out in the reactor core. The dynamics of the chemical reac-
tion that comply with the Arrhenius relation have been well documented in the literature and
are also summarized in the paper. Furthermore, the online recursive least-squares identifica-
tion of the process parameters and the self-adaptive predictive functional control algorithm are
thoroughly explained. We tested the proposed approach on the batch reactor simulation exam-
ple that included the exothermic chemical reaction kinetic model. The results suggest that such
implementation meets the control demands, despite the strongly exothermic nature of the chem-
ical reaction. The reference is suitably tracked, which results in a shorter overall batch-time.
In addition, there is no overshoot of the controlled variableT , which yields a higher-quality
production. Finally, by introducing a suitable discrete switching logic in order to deal with
the hybrid nature of the batch reactor, we were able to reduce switching of the on/off valves
to minimum and therefore relieve the wear-out of the actuators as well as reduce the energy
consumption needed for control.

Keywords: Self-adaptive control, Predictive functional control, Batch reactor, Exothermic
chemical reaction, Hybrid systems.
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1 Introduction
Batch reactors that are cooled and heated through a
water jacket are common in chemical, pharmaceuti-
cal, biotechnological and similar industries. Therefore,
many papers discussing temperature control of such
systems have been published. Dynamic systems that
involve continuous and discrete states are calledhybrid
systems. Most industrial processes contain both con-
tinuous and discrete components, for instance, discrete
valves, on/off switches, logical overrides, etc. The con-
tinuous dynamics are often inseparably interlaced with
the discrete dynamics; therefore, a special approach to
modelling and control is required. At first this topic was
not treated systematically [1]. In recent years, however,
hybrid systems have received a great deal of attention
from the computer science and control community. Due
to the mixed discrete and continuous inputs batch reac-
tors can also be regarded as hybrid systems.

Many times in industrial practice the dynamics of the
batch reactor are not known in advance. Furthermore,
often an exothermic (or endothermic) chemical reaction
is carried out in a batch reactor, which can result in a
thermal runaway. Such event can cause a loss of the
batch and even presents a risk for the plant and oper-
ators. For most reaction systems of industrial interest
detailed kinetic models are not known [2]. In rapidly
changing chemical business, there is often not enough
time or financial benefit in carrying out detailed kinetic
studies of the reactions.

What is more, sometimes the same reactor has to be
able to deal with different batches and thus different re-
action dynamics. This calls for special control strate-
gies. The most promising seem to be the concepts of
adaptive control [3], optimal control [4, 5, 6], and espe-
cially model predictive control schemes [7, 8, 9]. The
principle of model predictive control is based on fore-
casting the future behavior of a system at each sampling
instant using the process model.

One of the most frequently used approaches in prac-
tice is predictive functional control [10], which is also
treated in this paper. The main advantage of the ap-
proach is the analytical explicit expression of the con-
trol law, which does not require high computational ca-
pabilities and can therefore be implemented in real-time
using low-cost hardware on most systems.

The paper is organized as follows. In Section 2, the
batch reactor and its mathematical model are presented.
Section 3 summarizes the exothermic chemical reaction
dynamics. Next, the recursive least-squares identifica-
tion is explained in Section 4. In Section 5, the predic-
tive functional control algorithm is presented. Finally,
the simulation results and conclusions are discussed in
Section 6 and Section 7.

2 Batch Reactor
The batch reactor in the experiment is a simulation ex-
ample of a real batch reactor, which is situated in a phar-
maceutical company and is used in the production of
medicines. The goal is to control the temperature of the

ingredients stirred in the reactor core so that they syn-
thesize into the final product. In order to achieve this,
the temperature has to follow the reference trajectory
prescribed in the recipe as accurately as possible.
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Fig. 1 Scheme of the batch reactor.

A scheme of the batch reactor is shown in Fig. 1.
The reactor’s core (temperatureT ) is heated or cooled
through the reactor’s water jacket (temperatureTj). The
heating medium in the water jacket is a mixture of fresh
input water, which enters the reactor through on/off
valves, and reflux water. The water is pumped into
the water jacket with a constant flowφ. The dynam-
ics of the system depend on the physical properties of
the batch reactor, namely, the massm and the specific
heat capacityc of the ingredients in the reactor’s core
and in the reactor’s water jacket (here, indexj denotes
the water jacket).λ is the thermal conductivity,S is the
contact area andT0 is the temperature of the surround-
ings.

The temperature of the fresh input waterTin depends
on two inputs: the position of the on/off valveskH

and kC . However, there are two possible operating
modes of the on/off valves. In casekC = 1 and
kH = 0, the input water is cool (Tin = TC = 12 0C),
whereas ifkC = 0 andkH = 1, the input water is hot
(Tin = TH = 150 0C). Both on/off valves are con-
trolled by the signalkCH that is defined in the follow-
ing equation. Due to the mixed discrete and continuous
inputs the batch reactor is regarded as a hybrid system.

kCH =
{

+1, if kC = 0 and kH = 1
−1, if kC = 1 and kH = 0 (1)

The ratio of fresh input water to reflux water is con-
trolled by the third input, i.e. by the position of the
mixing valvekM . The value range of the mixing valve
is in [0,1].

2.1 Mathematical model of the batch reactor

We are dealing with a hybrid multivariable system with
three discrete inputs (kM , kH andkC) and two measur-
able outputs (T andTj).
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The temperature of the mixed water or the input jacket
temperature, which is denoted asT ∗jin, cannot be mea-
sured directly. However, it is possible to estimate it us-
ing the temperature of the input waterTin, the water
jacket temperatureTj , and the position of the mixing
valvekM (see Eq. (4)).T ∗jin is constrained in the range
betweenTC andTH (TC ≤ T ∗jin ≤ TH ).

Due to the nature of the system, the time constant of
the temperature in the water jacket is obviously much
shorter than the time constant of the temperature in the
reactor’s core. Therefore, the batch reactor is consi-
dered as a stiff system.

The mathematical model of the batch reactor is defined
by the following two differential equations and one al-
gebraic equation.

mjcj
dTj

dt
= kMΦcjTin + (1− kM )ΦcjTj−

ΦcjTj − λS(Tj − T )− λ0S0(Tj − T0)
(2)

mc
dT

dt
= λS (Tj − T ) + Qr (3)

T ∗jin = kMTin + (1− kM )Tj (4)

Here,mj = 200 kg stands for the mass of the water in
the jacket,cj = 4200 J kg−1 K−1 is the heat capacity
of the water in the pipes,Φ = 1.6 kg s−1 is the mass
flow in the pipes of the reactor,λ = 420 W m−2 K−1

stands for the thermal conductivity between the reactor
core and the jacket,λ0 = 84 W m−2 K−1 is the ther-
mal conductivity between the jacket and the surround-
ings. S = 2 m2 andS0 = 4 m2 denote the conduction
surfaces between the reactor core and the jacket and be-
tween the jacket and the surrounding, respectively. The
temperature of the surroundings is equal toT0 = 17oC.

The variablesm andc stand for the mass and the heat
capacity of the ingredients in the core of the reactor (see
Eqs. (15) and (17) in section 3).

Qr in Eq. (3) denotes the heat released due to exother-
mic nature of the reaction among the ingredients in the
core of the batch reactor (see Eq. (18) in section 3).

3 Exothermic chemical reaction model
The exothermic reaction considered in this experiment
is based on a dynamic model benchmark originally de-
veloped for the Warren Springs Laboratory [11, 2, 12].
A well-mixed liquid-phase reaction system is treated, in
which two reactions are modelled.

A + B → C (5)

A + C → D (6)

The concentration (number of moles) of components A,
B, C and D changes according to rates of production of

component C (R1) and D (R2) as given in the equations
below.

dMA

dt
= −R1 −R2 (7)

dMB

dt
= −R1 (8)

dMC

dt
= +R1 −R2 (9)

dMD

dt
= +R2 (10)

The rates of productionR1 andR2 depend on the reac-
tant concentrations and the rate constantsk1 andk2.

R1 = k1MAMB kmol−1s−1 (11)

R2 = k2MAMC kmol−1s−1 (12)

The rate constantsk1 andk2 are dependent on the reac-
tion temperature through the Arrhenius relation.

k1 = exp(k1
1 − k2

1/(T + 273, 15 oC)) (13)

k2 = exp(k1
2 − k2

2/(T + 273, 15 oC)) (14)

The remaining physical variables are calculated as fol-
lows.

m = wAMA + wBMB + wCMC + wDMD (15)

M = MA + MB + MC + MD (16)

c =
cAMA + cBMB + cCMC + cDMD

M
(17)

Qr = −∆H1R1 −∆H2R2 (18)

The parameters of the reaction are given below:

molar weight of the components
wA = 30 kg kmol−1,
wB = 100 kg kmol−1,
wC = 130 kg kmol−1,
wD = 1600 kg kmol−1;

molar heat capacity of the components
cA = 75.31 kJ kmol−1 oC−1,
cB = 167.36 kJ kmol−1 oC−1,
cC = 217.57 kJ kmol−1 oC−1,
cD = 334.73 kJ kmol−1 oC−1;

reaction rate constants
k1
1 = 20.9057,

k2
1 = 10000 oC,

k1
2 = 38.9057,

k2
2 = 17000 oC;

heat of reaction
∆H1 = −41840 kJ kmol−1,
∆H2 = −25105 kJ kmol−1.
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4 Recursive least-squares identification
In our example the plant parameters are not known a
priori. What is more, the chemical reaction causes the
time-varying characteristics of the process. This is the
reason why the parameters of the plant are estimated
online. In our case we used the standard recursive esti-
mator with exponential forgetting. To obtain the model
in incremental form, the offset has to be eliminated,
which is realized by filtration and differentiation of the
measured signals.

The filtration and differentiation of the measured vari-
ables is realized by the filter transfer function defined
as

Gf (z) =
∆(z)
F (z)

, (19)

whereF (z) =
(
1− fz−1

)p
, the parameterf is defined

experimentally (in our examplef = 0.95, p = 3),
∆(z) = 1−z−1 is the differential operator and the sam-
pling time equalsTs = 20s. The behavior of the semi-
batch reactor which is in continuous form presented in
Eq. 2 and Eq. 3 is now transformed into the discrete-
time domain as follows.

T f
j (k) = θ11T

f
j (k − 1)+

θ12T
f (k − 1) + θ13T

f
jin(k − 1)

(20)

T f (k) = θ21T
f
j (k − 1) + θ22T

f (k − 1) (21)

Here, superscriptf stands for the filtered signals.

Defining the regression vectorψT
f1(k) ∈ R1×3,

ψT
f2(k) ∈ R1×2, the output variablesyf1 andyf2, and

the vectors of identified parametersθT
1 andθT

2 as fol-
lows;

ψT
f1(k) =

[
T f

j (k − 1) T f (k − 1) T ∗fjin(k − 1)
]
, (22)

ψT
f2(k) =

[
T f

j (k − 1) T f (k − 1)
]
, (23)

yf1(k) = T f
j (k), (24)

yf2(k) = T f (k), (25)

θT
1 = [ θ11(k) θ12(k) θ13(k) ] , (26)

θT
2 = [ θ21(k) θ22(k) ] , (27)

the following incremental model of the semi-batch re-
actor in is obtained.

yf1(k) = ψT
f1(k)θ1(k) (28)

yf2(k) = ψT
f2(k)θ2(k) (29)

The parameters of the model are estimated using the
recursive least-square identification algorithm.

σi(k) =

Pi(k − 1)ψfi(k)
(
γi + ψT

fi(k)Pi(k − 1)ψfi(k)
)−1

(30)

Pi(k) =
(
Ii − σi(k)ψT

fi(k)
)
Pi(k − 1)/γi (31)

θi(k) = θi(k − 1)+

σi(k)
(
yfi(k)− ψT

fi(k)θi(k − 1)
)
, i = 1, 2

(32)

Here,Pi(k), i = 1, 2 denotes the covariance matrix
(P1(k) ∈ R3×3, P2(k) ∈ R2×2), θi(k), i = 1, 2 de-
notes the vector of identified or estimated process pa-
rameter,γi, i = 1, 2 denotes the forgetting factor and
I1 ∈ R3×3 and I2 ∈ R2×2 are unity matrices. This
means that two recursive identification algorithms are
running in parallel to estimate the process parameters
θ1(k) andθ2(k).

The dynamical behavior of the plant variablesT f
j (k)

and T f (k) according to the input jacket temperature
T f

jin(k) is given by the transfer functionsGmj(z) and
Gm(z), which are obtained by transforming Eq. 28 into
Z-domain and explicitly expressing the given relations,
which are then described as follows.

Gmj(z) =
T f

j (z)

T ∗fjin(z)
=

b1jz − b0j

z2 − a1z − a0
(33)

Gm(z) =
T f (z)

T ∗fjin(z)
=

b0

z2 − a1z − a0
(34)

Here, b0j = θ22θ13, b1j = θ13, b0 = θ21θ13, a1 =
θ22 + θ11, a0 = θ12θ21 − θ11θ22 andθ23 = 0. The
parameterθ23 equals zero (θ23 = 0) because there is no
relation between variablesT f (k) andT ∗fjin(k).

Assuming the observability of the process plant, both
transfer functions,Gmj(z) andGm(z), can be trans-
formed to the observable canonical form.

Using the recursive least-squares algorithm we are al-
ways faced with the problem of the singularity of the
covariance matrixPi(k), i = 1, 2. The covariance
matrix is exponentially increasing in the case ofγi <
1, i = 1, 2. The problem is solved by calculating the
recursive algorithm only in the case of a satisfied dead-
zone criterion.

ψT
fi(k)Pi(k−1)ψfi(k) > kDZ(1−γi), i = 1, 2 (35)

Here,kDZ denotes the factor of the dead-zone, which
is defined heuristically.

5 Predictive functional control algorithm

In this section the well-known basic algorithm of pre-
dictive functional control is introduced [10], [13]. In
this instance, the prediction of the plant output is given
by its model in the state-space domain.

The behavior of the closed-loop system is defined by
a reference trajectory, which is given in the form of a
reference model. The control goal, in general, is to de-
termine the future control action so that the predicted
output trajectory coincides with the reference trajec-
tory. The coincidence point is called a coincidence hori-
zon and it is denoted byH. The prediction is calcu-
lated assuming of constant future manipulated variables
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(u(k) = u(k + 1) = . . . = u(k + H − 1)). This stra-
tegy is known as mean-level control. The H-step-ahead
prediction of the plant output is estimated in Eq. (36).

ym(k + H) = Cm(AH
mxm(k)+

(AH
m − I)(Am − I)−1Bmu(k))

(36)

Here,I ∈ R2×2 is unity matrix.

The reference model is given by the following differ-
ence equation.

xr(k + 1) = arxr(k) + brw(k)
yr(k) = crxr(k) (37)

Here,w stands for the reference signal. The reference
model parameters should be chosen to fulfil the follow-
ing equation

cr (1− ar)
−1

br = 1, (38)

which results in a unity gain and wherecr = 1 andbr

has to be equal to1− ar. This enables reference trajec-
tory tracking without the control error (the asymptotic
reference tracking).

The prediction of the reference trajectory is then written
in the following form

yr(k + H) = aH
r yr(k) +

(
1− aH

r

)
w(k), (39)

where a constant and bounded reference signal (w(k +
i) = w(k), i = 1, ...,H) is assumed. The main goal of
the proposed algorithm is to find a control law that en-
ables the controlled signalyp(k) to track the reference
trajectory.

To develop the control law, (39) is first rewritten as

w(k + H)− yr(k + H) = aH
r (w(k)− yr(k)) . (40)

Taking into account the main idea of the proposed con-
trol law, the reference trajectory tracking (yr(k + i) =
yp(k + i), i = 0, 1, ..., H), is given by

yp(k + H) = w(k + H)− aH
r (w(k)− yp(k)) . (41)

The idea of PFC is introduced by the equivalence of
the objective increment vector∆p and the model output
increment vector∆m, i.e.,

∆p = ∆m. (42)

The former is defined as the difference between the pre-
dicted reference signal vectoryr(k + H) and the actual
output vector of the plantyp(k).

∆p = yr(k + H)− yp(k) (43)

Substituting Equation (41) into (44) yields

∆p = yp(k + H)− yp(k) =

w(k + H)− aH
r (w(k)− yp(k))− yp(k).

(44)

The model output increment vector∆m is defined by
the following formula.

∆m = ym(k + H)− ym(k) (45)

By substituting Equations (44) and (45) into (42) and
making use of Equations (41) and (36) the following
control law can be obtained:

u(k) = η−1((1− aH
r )(w(k)− yp(k))+

ym(k)− CmAH
mxm(k)),

(46)

where,

η = Cm

(
AH

m − I
)
(Am − I)−1

Bm. (47)

Note that the control law (46) is realizable ifη 6= 0.
This condition is true if the plant is stable, controllable
and observable. This means that the PFC control law
in its common form can be implemented only for open-
loop stable systems. It can also be proven that the con-
trol law is integrative and the stability conditions can
also be given [13]. The sensitivity to the parameter un-
certainties is by introducing the integrative action into
the control law reduced and also the asymptotic track-
ing of the reference variable is achieved. In [13] it
is shown that a stable control law can always be ob-
tained for open-loop stable systems, when the coinci-
dence horizonH is greater or equals to the relative or-
der of the controlled systemρ (H ≥ ρ) as proposed.

The control algorithm in the case of the batch reactor
should provide a fast referenceTref (k) tracking of the
temperature in the reactor’s coreT (k). It is also very
important that the number of on/off valve switchings
should be as small as possible.

The position of the on/off valves (kCH(k)) is defined
on supervisory level by introducing the decision logic
which is as follows.

if Tref (k)− T (k) < δe then kCH(k) = −1
else kCH(k) = 1

(48)

Here,δe defines the switching threshold (δe = −10C).
This approach is a rather straightforward way of dealing
with the hybrid nature of the batch reactor.

The position of mixing valvekM (k), which acts as the
direct control variable, is calculated in the next step
from Eq. (4).

kM (k) =
T ∗jin(k)− Tj(k)
Tin(k)− Tj(k)

(49)

Here,Tin(k) is defined with the position of the on/off
valves.

6 Results
The control algorithm has been verified on the batch re-
actor simulation example. Simulation work in [11] con-
cerning the reaction described in section 3 suggests that
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an equimolar initial charge of the ingredients A and B
yields the best results. In addition, the optimal reaction
temperature is95 oC.

Therefore, we have established the reference trajectory
Tref as a step function that drops from95 oC to 25 oC
so as to cool the ingredients down after the reaction has
settled.

The initial charge of the ingredients A and B wasMA =
MB = 2 kmol. The initial temperature wasT = Tj =
T0 = 17 oC.

In the simulation the following initialization of the iden-
tification algorithm parameters was made: the signals
were sampled with the sampling timeTs = 20s, the
initial covariance matrices are equal toP1(0) = 100I3

and P2(0) = 100I2. The vectors of estimated pro-
cess parameters were initialized asθ11 = θ22 = 1 and
the other parameters were equal to zero. The forget-
ting factors of the identification algorithms were set to
γ1 = γ2 = 0.995., and the factor of the dead-zone
was set tokDZ = 0.01. The initialization of the gener-
alized predictive control algorithm was the following:
H = 10 andar = 0.925. Noise at the batch reactor
outputs has also been presumed in the simulation.
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Fig. 2 Temperature trajectories and valve input signals

Fig. 2 shows the control signals, i.e. the reference tra-
jectoryTref , the temperature in the reactor coreT and
the temperature in the reactor water jacketTj .

Fig. 3 depicts the chemical reaction dynamics, i.e. the
concentrations of the ingredientsMA, MB , MC , MD

and the heat generation trajectory.

Fig. 4 and Fig. 5 show the identified process parameters
θ.

7 Conclusion

In this study we justified the usability of the self-
adaptive predictive functional control algorithm. We
tested the algorithm on a batch reactor simulation ex-
ample that included a well-known exothermic chemical
reaction kinetic model.
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Fig. 3 Concentration trajectories and heat generation
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Fig. 4 The identified parameters

The results suggest that such implementation meets the
control demands, despite the strongly exothermic na-
ture of the chemical reaction. The reference is suitably
tracked, which results in a shorter overall batch-time. In
addition, there is no overshoot of the controlled variable
T , which yields a higher-quality production.

Finally, by introducing a suitable discrete switching
logic in order to deal with the hybrid nature of the batch
reactor, we were able to reduce switching of the on/off
valves to minimum and therefore relieve the wear-out
of the actuators as well as reduce the energy consump-
tion needed for control.
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