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Abstract  

The joint dynamics of fluid and structure, also known as Fluid-Structure Interaction, 
considered in this study, refers to piping systems conveying fluid transients. The question 
what is the influence of the flexible piping system on a fluid transient is not fully answered 
yet although it has been theoretically and experimentally widely investigated. This question is 
especially important for industries where transient appearance is feasible or even anticipated 
during the normal operation of the particular system and where failure of the piping system 
can cause severe accidents, releases of rare or dangerous substances or jeopardize human 
lives. The objective of this paper is to report new approach to simulations of the Fluid-
Structure Interaction in piping systems filled with single-phase fluid (water). The basic four 
equations model for description of the two-way interaction between the fast transient in the 
fluid and axial movement of the pipe, are improved with additional four Timoshenko beam 
equations for description of the flexural motion (rotation and deflection). The proposed model 
enables simulations of any arbitrarily shaped piping system in plane. The considered coupling 
procedure enables full two-way Poisson and junction coupling of the fluid and structure i.e. it 
is possible to analyze and evaluate influence of the flexible pipe on the single-phase fluid 
transient. Special attention is given to applied high resolution characteristic upwind numerical 
method, which is based on Godunov's method. The proposed method is verified with single-
phase rod impact benchmark experiment.  

Keywords: Fluid-Structure Interaction, Transient Structural and Fluid Dynamics, 
Numerical Modeling, Nonlinear System. 
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1 General 
Joint dynamics of the fluid and the structure, also 
known as Fluid-Structure Interaction (FSI), has been a 
very ‘hot’ topic in the last few decades as efficiency 
and safe operation of the piping systems became more 
important. The FSI is defined as exchange of energy 
between the moving fluid and flexible structure. The 
FSI is very general term covering numerous 
phenomena from the field of aeronautics, civil 
engineering, energy production, chemical and oil 
industry, and many more sciences like for instance 
music instruments or hemodynamics in the human 
body. The present paper is focused on the slender 
hollow piping structures with circular cross-section 
conveying single-phase transient flow in the fluid. 
Although FSI is less fatal in steady state flow, mainly 
because flutter and vibrations can be detected and 
limited with additional corrective actions, the 
detrimental effects of the FSI can become very 
important during the unanticipated transient 
conditions. The transient pipe flow can emerge due to 
the inappropriate valve operation, at stop or start-up of 
the pumps, if cold water is injected into steam, during 
the system temperature changes, during the rapid 
pressure or velocity changes in the fluid, especially 
accidental.  

It is estimated that 98% of piping systems are not 
subjected to significant influence of the fast transient 
in the fluid; however, Professor Wylie [1] was 
concerned with the fact that there is no reliable 
criterion, which would signify whether the FSI is 
relevant for the particular piping system. Therefore, in 
order to avoid significant damage or fatalities, Wylie 
recommends FSI analysis for all piping systems. The 
first who proposed reliable criterion for inspection of 
the FSI in pipes during the fluid transient were 
Lavooij and Tijsseling [2]. The proposed criterion was 
validated for inspection of the FSI in a single elbow 
piping system geometry. The criterion is based upon 
natural period of the structure, valve closure time and 
period of the water hammer waves. Casadei [3] 
indicated qualitative criterion based upon engineering 
judgement. Casadei always recommends FSI analysis 
in flexible piping systems (lower number of supports, 
thin walls) with sharp pressure waves in an 
incompressible single-phase liquid. The author’s 
experience with two-phase flow modeling [4] shows 
that maximal pressure in the fluid predicted with 
classical Joukowsky theory for single-phase flow [5] 
can be exceeded by as much as 60%, thus we believe 
it is possible that the effects of the two-phase flow can 
increase the detrimental effects of the FSI. However, 
with appropriate FSI analysis followed by appropriate 
design and definition of the optimal operating 
procedures, it is possible to control the energy transfer 
between the fluid and the structure and thus: (i) to 
control the maximal pressures and stresses in the 
system, (ii) to prevent fatigue or the ultimate failure of 

the piping system and (iii) to prevent fatigue or the 
ultimate failure of the support/restraint system.  

The most important literature dealing with the FSI in 
piping systems is that of Païdoussis [6] who 
performed exhaustive summary over the FSI field 
with emphasize on a steady state flow induced flutter, 
vibration and resonance. Wiggert and Tijsseling 
[1,7,8] performed several systematic reviews of the 
experimental and theoretical FSI research of the 
transient pipe flow. One of the important differences 
between the FSI models described by Wiggert and 
Tijsseling is in the number of equations i.e. in the 
number of the tracked stress and pressure waves that 
travel along the pipe or water and interact with each 
other. According to the interactions between the 
waves in piping systems, it is possible to distinguish 
distributed Poisson and friction coupling, and the local 
junction coupling [1]. The Poisson coupling describes 
interaction of pressure waves in the fluid with axial 
and radial waves in the structure (pipe breathing), the 
junction coupling describes interaction of waves at 
geometric changes like elbows, cross-section changes, 
valves, junctions, pipe ends, etc., and finally the 
friction coupling describes forces initiated due to the 
difference between the fluid and the structure velocity. 
The friction coupling is usually negligible comparing 
to intensity of the junction and Poisson coupling. 
There have been several attempts to evaluate dynamic 
forces of the fluid on the structure known also as one-
way coupling, but there are only a smaller number of 
them that takes into account also forces of the 
structure on the fluid. These methods are known as 
two-way coupling methods [1]. 

2 Mathematical system of equations 
2.1 Eight-equation model 

The mathematical model is similar to the PDEs system 
described by Valentin, Philips and Walker [9] who 
introduced four Timoshenko beam equations into 
classical four-equation model defined by Skalak [10]. 
Tijsseling, Vardy and Fan [11] presented the system 
of equations with identical convective part but 
different source terms. Their mathematical model 
enables simulations of the FSI in two straight sections 
with constant properties. The sections are connected 
with additional relations (boundary conditions). Hu 
and Philips [12] and De Jong  [13] analyzed similar 
system to Tijsseling, Vardy and Fan [11] in the 
frequency domain. The system of eight 1st order linear 
PDEs enables two-way FSI coupling and takes into 
account Poisson and junction coupling mechanisms, 
while the friction coupling can be easily implemented. 
Among the several types of the waves that 
characterize FSI, the eight-equation model is able to 
describe axial, rotational and flexural stress waves in 
the pipe and pressure waves in the fluid. The piping 
system is considered as one-dimensional (pipe's 
internal radius << pipe's length). The cross-section is 
circular and not necessary uniform along the pipe. The 
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applied source terms enable modeling of the planar 
arbitrarily shaped piping systems. The stress-strain 
relations are linear elastic in accordance with the 
Hooke's law. If the transient occurs and remains in an 
adiabatic single-phase liquid flow at the room 
temperature T = 295 K, with pressure change within 1 
and 40 bar, then the fluid density alters for about 0,18 
% and the corresponding speed of sound alters for 
about 0,44% (Fig. 1). Figure 2 shows that density 
change in single-phase conditions is almost 
diminutive, therefore, it is assumed that the density is 
constant. Figures 1 and 2 show that this assumption is 
correct but note that only a minor part of real 
transients occur in pure single-phase. 
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Fig. 1: Characteristic velocity of the pressure waves, 

i.e. the speed of sound in infinite fluid with sharp 
discontinuity at phase change [14].  
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Fig. 2: Fluid density with sharp discontinuity at phase 

change [14]. 
 

The fluid part of the considered eight-equation model 
contains two 1D linear 1st order PDEs, which are 
energy conserving (no damping and friction), single-
phase (no cavitation), valid for pressure waves with 
low frequency (long wavelength approximation). The 
momentum equation reads: 

 0f
v pρ + =
t x

∂ ∂
∂ ∂

 (1)         

where v stands for fluid velocity, p for fluid pressure, t 
stands for the time, x for the axial position and ρf for 
the (constant) fluid density. The continuity equation 
reads: 

 1 2  ν ∂∂ ∂ −
∂ ∂ ∂

yx

t p

uNp v+ =
K' t x EA t R

 (2) 

where 

 ( )21 1 2 1R= +
K' K Ee

ν−  (3)  (

with Nx as axial force, uy as lateral pipe velocity, R as 
the internal radius of the pipe, d as the pipe thickness, 
ν as the Poisson's ratio, E as the Young's elasticity 
modulus and K as the fluid bulk modulus.  

Two equations are used for description of the 
propagation of the axial stress waves in the straight, 
thin-walled, linearly elastic pipe of circular cross-
section. The 1D first order PDEs are derived from the 
axial wave equation for the pipe where the equation of 
motion is: 

 1 yx x

t p

uN u νR p =
EA t x Ee t R

∂ ∂ ∂− − −
∂ ∂ ∂

 (4)  

with ux as axial pipe velocity. The general constitutive 
equation governing axial stresses: 

 yx x
t t

p

Qu Nρ A =
t x R

∂ ∂− −
∂ ∂

 (5)  

with Qy as shear force, and ρt as pipe wall density. 
Additional two generalized constitutive equations 
governing the transverse shear force and the bending 
moment are: 

 1 y y x
z

t p

Q u u=
kA G t x R

ϕ
∂ ∂

− −
∂ ∂

 (6)  

 1 0z z

t

M =
EI t x

ϕ∂ ∂−
∂ ∂

 (7)  

and two equations of motion: 

 ( ) y y x f
f f t t

p

u Q N pA
ρ A + ρ A =

t x R
∂ ∂ −

−
∂ ∂

 (8)  

 z z
t t y

MI ρ = Q
t x

ϕ∂ ∂−
∂ ∂

 (9)  

where Mz stands for bending moment, ϕz for rotational 
velocity of the pipe, At for the area of pipe's wall cross 
section and It for the moment of inertia. Eqs. 6-9 are 
also known as the Timoshenko's beam equations [15].  

 

2.2 Vectorial form of the equations 

The system of eight linear PDEs can be written in the 
following vectorial form: 
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 S
t x

ψ ψ∂ ∂+ =
∂ ∂

A B  (10) 

where all temporal and spatial derivatives are 
collected on the left hand side (convective terms) and 
all non-differential terms are collected on the right 
hand side (source terms). The vector ψ ={v ,p, ux, Nx, 
uy, Qy, ϕz, Mz} is a vector of eight basic independent 
variables. Matrices A and B are matrices of the 
system. The first two rows of this system belong to the 
continuity and the momentum balance equation of the 
fluid, the third and the fourth row to the wave 
equation of the axial motion of the structure and the 
last four rows to the Timoshenko's beam equations for 
the lateral and the rotational motion. The parameters 
of the matrices A and B could be assumed as constant 
with time and space (constant coefficient system). 
This is necessary for use of the Method of 
Characteristics and it is valid only for some certain 
problems where changes of the fluid properties or 
geometry are actually diminutive. 

2.3 Characteristic form of equations 

The vectorial form can be rearranged into: 

 1 1 0S
t x

ψ ψ− −∂ ∂+ − =
∂ ∂

A B A  (11) 

and considering -1 -1A B = C = LΛL and 1R = S−−A  
the characteristic form of the equations yields: 

 0R
t x

ψ ψ∂ ∂+ + =
∂ ∂

-1LΛL  (12) 

The eight-equation system is hyperbolic because the 
Jacobian matrix C  with dimension eight has eight 
real eigenvalues Λ  and has a corresponding set of 
eight independent eigenvectors L . The eight 
eigenvalues of the Jacobian matrix are actually 
characteristics, which represent speed of the eight 
distinct pressure or stress waves traveling inside the 
fluid and structure. The characteristic form of the 
equations represents the basis for the applied 
Godunov’s numerical scheme. With additional matrix 
operations and introduction of the modified 
characteristic variables: 

 1 1R xδξ δψ δ− −= +-1L Λ L  (13) 

one can get very elegant modified characteristic form 
of the Eq. 10 that is used for evaluation of the flux 
(slope) limiters:   

 0ξ ξ+ =
t x

∂ ∂
∂ ∂

Λ  (14) 

2.4 Source terms 

The vector S  is vector of the source terms: 

 
-

, 0, - , - , , - , , 0y y y x fT x
z y

p p p p p

u Q u N pA uS Q
R R R R R

ϕ
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

(15) 

The source term vector in this form enables junction 
coupling of the fluid transient and the axial movement 
with the lateral and the rotational movement for each 
section of the pipe where the pipe's curvature radius 
Rp is reasonable. For cases where pipe's curvature 
radius Rp approaches infinity (straight pipes), the 
vector of the source terms reduces to the source terms 
described by Tijsseling, Vardy and Fan [11]: 

 { }0,0,0,0,0, 0T
z yS = ,Q ,ϕ−  (16) 

With this set of the source terms it is possible to 
simulate straight sections of the pipe connected by 
relatively short elbows.  

2.5 Boundary conditions 

For rod impact experiment described in Section 4, the 
following relations are used as boundary conditions of 
the computational domain (junction coupling 
included): 

• Beginning: closed pipe, no support, rod 
impact in the axial direction of the pipe:  

 
( )0, , 

=0 , =0
x x f rod x rod

y z

v = u N A p +Y u v

Q M

= −
  (17) 

where Yrod = Arod (Erod ρrod)1/2 is admittance 
or impedance of the rod and v0,rod impact 
velocity of the rod [11].  

• End: closed pipe, no support:  

 ,  , 0 , 0x f x y zv = u A p = N Q = M =   (18) 

 

3 Numerical method 
Typical numerical methods developed for linear 
conservation laws are valid for smooth solutions, but 
these methods are not sufficient for description of the 
multiple sharp pressure or stress waves that are 
traveling along the pipe during the transient pipe flow. 
It is known that first-order accurate numerical 
methods like Lax-Friedrichs or Upwind give smeared 
solutions near the wave, especially on coarse grids 
[16] that is known as numerical dissipation. The 
second-order accurate numerical methods like Lax-
Wendroff or Beam-Warming do not suffer due to the 
numerical dissipation but give unstable solutions in 
the vicinity of the sharp waves. Oscillations are 
typical for all second-order accurate methods [17].  

3.1 Characteristic upwind method  

Characteristic upwind method is an advanced upwind 
first-order, explicit and 2-level numerical method for 
linear and nonlinear hyperbolic systems [16]. It is 
based on Godunov’s methods, which enables 
appropriate splitting between the wave propagation to 
the left and to the right (superscripts – and +, 
respectively) and it thus enables proper handling for 
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systems of equations where the waves propagate in 
both directions. The discretisation of the Eq. 14 yields: 

 

( ) ( )

1

1 1
1/ 2 1/ 2 0

n n
j j

n n n n
n nj j j j
j j

t

=
x x

ξ ξ

ξ ξ ξ ξ

+

− ++ −
− +

−
+

Δ
− −

+
Δ ΔΛ Λ

 (19) 

where ( )+ +
1 8= ...diag λ , ,λ+Λ , ( )- -

1 8= ...diag λ , ,λ-Λ . 

Subscripts j and  j±1 denote grid points of the spatial 
discretisation that are located in the middle of each 
control volume and subscripts j±1/2 denote values in 
the midpoint of two grid points. The Δx  denotes 
distance between the two neighboring grid points, and 
the Δt  denote time step interval between time levels n 
and n+1. The appropriate splitting between positive 
and negative waves is obtained by multiplication of 
the eigenvalues with correction factors: 

 + += pp pλλ f⋅   and  - -= pp pλλ f⋅  (20) 

where index p is running over all eight eigenvalues of 
the system and fp is the correction factor: 

 + = 0, + -1
2

p p
pp

p

λ Δtλf max
λ Δx

φ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (21-a) 

 - = 0, - -1
2

p p
pp

p

λ Δtλf min
λ Δx

φ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (21-b) 

The first term of the correction factors is the 
Godunov’s first-order upwind discretisation, and the 
second term with the flux limiters φp is the second-
order correction.  

The eigensystem is evaluated from the Jacobian 
matrix where C+

j-1/2 corresponds to the waves that 
travel to the right with the positive characteristic 
velocities and C-

j+1/2 corresponds to the waves that 
travel to the left with the negative characteristic 
velocities. These matrices are correlated with Jacobian 
matrix C with the relation:  

 ( )
+ -

1/2 1/2 1/21/21j j jj = +− − −+−=C C C C  (22) 

The Jacobian matrix shall be evaluated between two 
adjacent control volumes at points j±1/2. A simple 
upwind average of the variables is used: 

 1+
1/ 2 2

j j
j =

ψ ψ ++
−

+⎛ ⎞
⎜ ⎟
⎝ ⎠

C C  (23) 

Gallouet and Masella used this approach and showed 
that this type of averaging gives very accurate results 
for Euler equations [18]. This is actually the most 
important property of the proposed numerical method 
– the propagation velocity of the each of the eight 
acoustic waves that travel along the pipe can change 
with time and position. That means that the proposed 

numerical method enables introduction of the 
nonlinearities like pressure dependent density, two-
phase flow, convective term, ovalization effects, 
variable geometry properties etc. This method is 
applicable for linear and nonlinear systems; the only 
required condition is hyperbolicity of the system.  

The Courant-Friedrichs-Levy condition [17] is 
necessary and sufficient condition for the stability of 
the integration domain i.e. the explicit scheme is 
stable for time step Δt  defined with condition: 

 ( ) < 
p

ΔxΔt CFL
max λ

⋅  (24) 

The recommended value for the CFL factor is 
approximately 0.9. 

3.2 Second-order correction 

LeVeque described high-resolution method to solve 
the accuracy problem near discontinuous or sharp 
pressure and stress waves [17]. It is based on the 
characteristic upwind Godunov's method and includes 
a combination of the smearing first and the oscillatory 
second-order accurate discretisations. The eigenvalues 
in Eq. 20 are multiplied by correction factors defined 
in Eq. 21 where the first part of the correction factors 
is the first-order upwind discretisation, and the second 
part of the second-order discretisation is determined 
by the flux limiters φp, which "measure" the 
smoothness of the pressure or stress waves. If the 
waves are smooth, larger part of the second-order 
discretisation is used; otherwise larger part of the first-
order discretisation is used. The high-resolution flux 
limiters φp are calculated using one of the following 
functions [17]: 

 

( )( )

( ) ( )( )
( )( )

= 0, 1,

= + /( +1)

= 0, 2 1 2

= 0, (1 ) / 2 2,2

p p

p pp p

p p p

p p p

max min θ

θ θθ

max min θ , ,min θ ,

max min +θ , θ

φ

φ

φ

φ

 (25) 

where θp measures “smoothness” of the modified 
characteristic variable in Eq. 14 near the point j+1/2. 
The ratio of the left and right gradients of the 
corresponding modified characteristic variable at the 
considered point is evaluated as: 

 1
1/ 2

1

-
=  

-
p, j+ m p, j m

p, j+
p, j+ p, j

ξ ξ
θ

ξ ξ
− −  (26) 

where m = λp / |λp| and p = 1,..,8. For a certain values 
of the flux limiters one can get some linear 
characteristic numerical schemes:  
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upwind (first order):                        =0

Lax-Wendroff (second order):        =1

Beam-Warming (second order):     =

p

p

p p

φ
φ
φ θ

 (27) 

The transformation of the Eq. 19 back into the basic 
variables yields the following explicit finite difference 
scheme [16, 17]: 

 ( ) ( )

**

* * * *
1/ 2 1/ 21 1

* *
1/ 2 1/ 2 1/ 2 1/ 2 0

n
j j

j jj j j j

j j j j

t t
x x

R t R t

ψ ψ

ψ ψ ψ ψ+ −
− +− +

+ −
− − + +

= −

Δ Δ− −− −
Δ Δ
Δ − Δ =

C C

D D

(28) 

where F+ and F- are diagonal matrices that contain 
correction factors defined in Eqs. 21: 

 ( )+
1/2 1/2j j

=− −

+ -1D LF L and ( )-
1/2 1/2j+ j+

= - -1D LF L (29) 

The iteration starts with: * n
j j=ψ ψ . 

Under certain conditions the source terms become stiff 
because the characteristic time scale of the source 
terms is much slower than the time step defined with 

the CFL condition in Eq. 24. Simple implicit iterative 
predictor-corrector numerical procedure is applied 
where the predicted variables in Eq. 28 are accepted 
and 1n

jψ +  = **
jψ   if:  

 
* **

*
j j

j

ψ ψ
ε

ψ
−

≤  (30) 

Else, the solutions are corrected/re-predicted with new 
iteration, using Eq. 28. Typically, there are less than 
two iterations needed, except in the presence of very 
sharp discontinuities in the source terms. 

4 Rod impact experiment 
4.1 The experimental setup 

The rod impact experiment performed at University of 
Dundee by Tijsseling, Vardy and Fan [11] consisted 
of a single elbow piping system test setup (Fig. 3) 
hanging on long, thin, vertical steel wires, so it could 
move freely in a nearly horizontal plane. All geometry 
and state properties for the piping system, water and 
impact rod used in simulation are collected in Tab. 1. 
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Fig. 3: Geometry and nodalization of the input model. 

 

Tab. 1: Piping system, water and impact rod properties 
Piping system Water Impact rod 
L = 5.85 m (4.50m + 1.35m) ρf = 999 kg/m3 Lrod = 5.0 m 
R = 0.02601 m K = 2.14 GPa Rrod = 0.02537 m 
e = 0.003945 m p = 20 bar Erod = 200 GPa 
E = 168 GPa v = 0 m/s ρrod = 7985 kg/m3 
ρt = 7985 kg/m3 T = 20 °C v0,rod = 0.809 m/s 
ν = 0.29  Yrod = 80109.7 kg/s 

 

Tab. 2: Position of the measuring equipment from the impact end 
Label Position [m] Volume [N] Variable Equipment 
P1 0.02 1 Pressure Piezoelectric pressure transducer 

P2 0.57 13 Axial velocity 
Axial strain 

Laser-Doppler vibrometer 
Strain gauges (4 records) 

P3 4.64 103 Pressure Piezoelectric pressure transducer 

P4 5.25 117 Axial strain Strain gauges (4 records) 

P5 5.85 130 Pressure Piezoelectric pressure transducer 
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The longer section of the piping system was horizontal 
and the shorter section was vertical. The piping 
system was closed at both ends and filled with a 
pressurized tap water. Tijsseling et al. systematically 
performed several experiments with variable initial 
pressure, but only the case with sufficiently high 
initial pressure to prevent cavitation in the fluid was 
simulated. The stress waves in the pipe wall and 
pressure waves in the water were generated 
simultaneously by the axial impact of a solid steel rod 
on a free end of the horizontal part of the piping 
system. Fig. 3 shows the input model for simulation 
that consists of computational grid with 130 
computational nodes and has the corresponding 
centerline curvature radius at the elbow Rp=0.085 m. 

The piping system was extensively instrumented [11]. 
Table 2 shows summary of the instrumentation needed 
to obtain data used in the simulation. The axial force 
was not measured but it is related to the cross-
sectional averaged axial strain and pressure: 

 x x
RN E p
e

ε ν⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (31) 

The bending momentum is related to the top and 
bottom axial stresses: 

 
( ) ( ),1 ,32

t
x xz

EIM
R e

ε ε+=
+

 (32) 

4.2 Results 

Figures from 4 to 6 show comparison between the 
calculated and measured pressure and Fig. 7 shows 
calculated pressure surface on pipe length-time plane. 
The former figures show excellent agreement of the 
calculation with measurement, and the later figure 
clearly shows pressure history at all positions of the 
pipe. The pressure in the fluid is controlled by axial 
velocity of the pipe (Fig. 9). At the beginning of the 
transient, the pipe almost uniformly moves in 
direction of the impact rod. Due to the junction 
coupling at the impact end the pressure is very high 
and at the remote end the pressure is very low. The 
high and low pressure waves are added up in the 
middle. The situation turns at 5 milliseconds and the 
low pressure can be encountered at the impact end and 
high pressure at the remote end. Note that axial stress 
waves travel with speed of sound in steel that is 
approximately 3 times faster than speed of sound in 
fluid that is close to the characteristic traveling 
velocity of the pressure waves. Fig. 9 shows also that 
axial velocity in vertical part of the pipe is few times 
smaller that axial velocity in horizontal part of the 
pipe. Fig. 10 shows that maximal axial force is 
encountered at the beginning of the transient after the 
strike of the impact rod. Later on, the axial force 
oscillates around initial value. The bending 
momentum surface in Fig. 14 shows that maximal 
bending momentum (peaks) appears in the vicinity of 
the elbow (position x=4,5 m). 
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Fig. 4: Pressure history in P1. 
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Fig. 5: Pressure history in P3. 
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Fig. 6: Pressure history in P5. 

 
Fig. 7: Pressure in pipe. 
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Fig. 8: Axial velocity history in P2. 

 
Fig. 9: Axial velocity in pipe. 
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Fig. 10: Axial force history in P2. 

 
Fig. 11: Axial force in pipe. 

0 0.005 0.01 0.015 0.02

-0.3

-0.2

-0.1

0

0.1

0.2

M
om

en
t i

n 
P

2 
[k

N
m

]

Time [s]

Experiment
Calculation

 
Fig. 12: Momentum history in P2. 
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Fig. 13: Momentum history in P4. 

 
Fig. 14: Momentum in pipe. 
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Fig. 15: Pressure history in P1, grid refinement. 
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The axial velocity, axial force and bending momentum 
at different positions along the pipe are compared to 
the measurement and the agreement between 
measurement and calculation is excellent especially in 
a view of complexity of the phenomena. Tijsseling et 
al. [11] and Lavooij and Tijsseling [2] who used 
similar mathematical system for description of the 
sharply connected straight sections and MOC 
numerical method obtained the same degree of 
agreement. The comparison validates and confirms the 
proposed model in the field of the considered FSI 
problems. 

4.3 Grid refinement study 

Fig. 15 shows grid refinement study. The results 
converge with grid refinement and computational 
effort penalties are very low and depend on number of 
computational volumes. The numerical scheme is 
explicit thus the time step is defined with standard 
Courant-Friedrichs-Levy condition (Eq. 24). For 
simulation of the first 20 milliseconds of the rod 
impact experiment (130 comp. nodes) less than 2 
minutes on 3.0 GHz P IV processor are needed. 

4.4 Nonlinear system of equations 

Convective part in the fluid momentum balance 
equation is very small and it was thus initially 
neglected: 

 1      0v vv v =
x x

∂ ∂<< →
∂ ∂

 (33) 

This term can be included into the fluid momentum 
equation to demonstrate the ability of the 
characteristic upwind numerical method to solve 
nonlinear hyperbolic systems. Figure 16 shows how 
the first four eigenvalues of the nonlinear system of 
equations varies with time and position (other four 
eigenvalues are not influenced by the convective 
term). The ability to simulate nonlinear systems or 
systems with variable material and geometry 
properties along piping system or parameters that are 
variable with time is very important property, which 
one can address as advantage of the characteristic 
upwind numerical scheme in comparison to 
conventionally used numerical methods. Figure 17 
shows and confirms that the influence of the 
convection is actually negligible for the experiment 
considered in the present paper. 

4.5 Von Mises stress 

Von Mises stress is a scalar function of the 
components of the stress tensor that gives an 
appreciation of the overall magnitude of the tensor. In 
terms of a local coordinate system the Von Mises 
stress can be expressed as: 

 ( ) ( )2 2 2 2 2 21 3
2v xy yz zx xy yz zxσ σ σ σ τ τ τ= ++ + + +  (34) 

where (next page):  
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Figure 16: Eigenvalues history in point P4. 
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Figure 17: Pressure history in P5 – nonlinear system. 

 
Figure 18: Mises stress in pipe – upper part 

 
Figure 19: Mises stress in pipe – below part. 
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 ( )22 and , , ,i jij i j x y zσ σσ −= =  (35) 

Fig. 18 shows Mises stress in the top point of the pipe 
cross-section and Fig. 19 shows Mises stress in botom 
point of the pipe cross-section. These figures are very 
illustrative, because it is evident that critical section of 
the pipe with maximal load is section in vicinity of the 
elbow, further the maximal stresses are less than 60 
MPa (typical yield stress for stainless steel is some 
250 MPa), and duration of the maximal stresses is 
very short – pulsations.  

5 Conclusions 
The eight-equation system for description of the joint 
dynamics of the fluid and arbitrarily shaped piping 
structure was numerically solved with the second-
order characteristic upwind numerical scheme. The 
most important advantages of the proposed model are 
efficiency, robustness, stability and accuracy. The 
proposed model enables advanced analyses of the 
fluid transients; the results can significantly improve 
experimental data due to high conformance between 
measurement and calculation; the results can also 
serve as very reliable tool for design of new piping 
systems. The weak points of the proposed model are 
limitation on plane piping systems and single-phase 
flow. The former limitation of the model can be 
avoided with trivial extension of the Timoshenko 
beam equation for out-of-plane direction and with 
inclusion of equations for torsional motion. The 
extension of the model to two-phase flow is an 
important issue and the model is under development.  
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