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Abstract

There are often uncertainties in the properties of joints, which subsequently produce uncertain-
ties in the dynamic response of built-up structures. Line joints, such as glued or continuously
welded joints, have spatially distributed uncertainty andcan be modelled by a discretised ran-
dom field. Simulation techniques such as the commonly used direct Monte Carlo simulation
(MCS) can be applied to approximate the output statistics toan arbitrary degree of accuracy,
provided that a sufficient number of samples is used. Unfortunately, the computational cost of
this technique can be prohibitive for large-scale models. This paper addresses how spatially
correlated uncertainties in joints might be included straightforwardly in a mechanical finite ele-
ment model, with particular reference to approaches based on fixed interface (Craig-Bampton)
component mode synthesis and a stochastic reduced basis method. The methods are reviewed
and an efficient way of implementation based on an exact matrix identity is proposed with a
significantly lower computational cost. Unlike perturbation-based methods, good accuracy can
be achieved even when the coefficients of variation of the input random variables are large. A
numerical example of two line-coupled plates is investigated to benchmark the accuracy and
calculation time. For the problem considered, the proposedformulation is an efficient and ef-
fective implementation of a stochastic reduced basis method. It is seen that the method can be
up to orders of magnitude faster than direct Monte Carlo simulation, while providing results
of comparable accuracy. Furthermore, the proposed implementation is more efficient the fewer
joints are affected by uncertainty.

Keywords: Uncertainty in joints, Random field, Component mode synthesis, Stochastic
reduced basis method, Stochastic Krylov subspace.
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1 Introduction

When constructing numerical models of real-life engi-
neering systems it is often assumed that the system un-
der consideration is deterministic. In practice, however,
some degree of uncertainty in the system properties and
operating environment is inevitable, e.g. boundary con-
ditions, material properties, etc. In such situations, an
individual deterministic realisation of the system prop-
erties and its environment might be undesirable, since
this could lead to misleading response predictions. A
commonly used approach in engineering design is to in-
troduce safety factors to indirectly account for parame-
ter uncertainty. However, this approach typically leads
to highly conservative designs and may not be appro-
priate for new lightweight materials and novel design
concepts.

With continuous growth in computing power and recent
development of sophisticated numerical techniques, re-
liable numerical simulations of systems with uncer-
tainty can be obtained by quantifying input uncertain-
ties to the model equations and propagating them to the
system response numerically. In contrast to determinis-
tic analysis, which only provides response predictions
at a single point in the ensemble corresponding to the
nominal values of the system parameters, this proba-
bilistic approach provides a range of response values,
which can be valuable in the design process.

Simulation techniques commonly used, such as direct
Monte Carlo simulation (MCS), can be applied to ap-
proximate the output statistics to an arbitrary degree of
accuracy, provided that a sufficient number of samples
is used. Unfortunately, the computational cost of di-
rect simulation techniques can be prohibitive for large-
scale models. There are three main approaches to re-
duce the computational cost of large models: (1) ad-
vanced Monte Carlo methods, e.g. importance sam-
pling, line sampling, etc., (2) perturbation-based meth-
ods and (3) stochastic finite element methods. The lat-
ter techniques offer computationally efficient alterna-
tives to MCS and have been widely applied to approxi-
mate the first two statistical moments of the system re-
sponse. Unlike perturbation-based methods, stochastic
finite element methods, e.g. the stochastic reduced ba-
sis method (SRBM), can achieve good accuracy even
when the coefficients of variation of the random vari-
ables are large.

There are typically uncertainties in the properties of
joints in mechanical structures e.g. bolts, rivets, spot
welds, glue, etc., which subsequently produce uncer-
tainties in the dynamic response of built-up structures.
This paper addresses how such uncertainties might be
included straightforwardly in a finite element model
of a structure, with particular reference to approaches
based on fixed interface (Craig-Bampton) component
mode synthesis (CMS), see [1, 2]. The spatially dis-
tributed uncertainty in the joints is modelled by a dis-
cretised random field [3]. As proposed here, the effi-
ciency of the SRBM [4] can be enhanced further by
a combination of CMS and matrix algebra. The for-
mer approach truncates the number of degrees of free-

dom for each component separately, while the latter re-
duces the global stochastic algebraic equation to a much
smaller size, the size being the number of joint degrees
of freedom, instead of retaining all of the system de-
grees of freedom.

In the next sections CMS is briefly reviewed with fo-
cus on the fixed interface (Craig-Bampton) approach,
subsequently the modelling of joints with spatial cor-
relation in terms of a random field is described. The
calculation of system response statistics by direct MCS
with CMS and SRBM with CMS is described. Finally,
a numerical example is given.

2 Component mode synthesis
CMS is a technique which can reduce the size of the
system matrices of built-up structures, in order to re-
duce the computational cost of the dynamic response
calculation. The systems under considerations are as-
sumed to be built-up from a number of connected sub-
systems. In this paper, the subsystems are modelled
with respect to their local modes. At this component
level the substructure is represented by an undamped
FE model that can be written in the form

M(s)ẍ(s) + K(s)x(s) = f (s) (1)

whereM(s) andK(s) are then × n mass and stiffness
matrices, andx(s) andf (s) then×1 vectors of physical
displacement coordinates and external forces acting on
the substructure/components. The superscript(s) will
be omitted for the rest of this section. The displacement
coordinatesx are partitioned intoni interior (i) andnb

boundary (b) coordinates, wheren = ni +nb, resulting
in

[

Mii Mib

Mbi Mbb

] [

ẍi

ẍb

]

+

[

Kii Kib

Kbi Kbb

] [

xi

xb

]

=

[

fi
fb

]

(2)

Different CMS methods exist for reducing the size of
the system matrices, e.g. [1, 2, 5]. Here the Craig-
Bampton [2] method, outlined in the subsequent sec-
tion, is followed.

2.1 Craig-Bampton procedure

This method uses the normal modes of the components
with the boundary coordinates fixed in combination
with static constraint modes. The fixed interface nor-
mal modes of a single component are the natural modes
of the component with all boundary coordinates fixed,
given by the right-eigenvalue problem

(

Kii − ω2
l Mii

)

φl = 0 (3)

Hereωl are theni eigenfrequencies of the fixed compo-
nent and the corresponding eigenvectorsφl are mass-
normalised so that

φ
T
i Miiφi = Iii, (4)

φT
i Kiiφi = diag

(

ω2
1 , ω

2
2 , . . . , ω

2
ni

)

(5)
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whereIii is the identity matrix of sizeni × ni. The
modal matrix with respect to all component modal co-
ordinatesx = [xT

i , xT
b ]T is composed from these Ritz

vectors as

Φ =

[

φ1 φ2 · · · φni

0

]

=

[

Φi

0

]

(6)

This set of modes is complemented by a set of static
constraint modes. Both sets are linearly independent.
The static constraint modes chosen are the static dis-
placements of a component due to unit displacement
of a single boundary coordinate while keeping all other
boundary coordinates fixed. The matrix of constraint
modes is defined by

Ψ =

[

−K−1
ii Kib

Ibb

]

=

[

Ψi

Ibb

]

(7)

whereIbb is the unity matrix of sizenb × nb and the
upper part corresponds to a Guyan reduction ([6]). The
matrices in Eq. 6 and Eq. 7 define a transformation of
the physical coordinatesx to component modal coordi-
natesq defined by

[

xi

xb

]

= B

[

qi

qb

]

, B = [Φ Ψ] (8)

A reduction in the size of the component matrices is
achieved by retaining only some of the fixed interface
normal modes, i.e. those with the lowest eigenfrequen-
cies. If only the firstk modes are kept the transforma-
tion in Eq. 8 is approximated by

Bk = [Φk Ψ] (9)

whereΦk is the matrix of kept mode shapes. Applying
this transformation, the component matrices reduces to

Mk = BT
k MBk, Kk = BT

k KBk, fk = BT
k f . (10)

The equations of motion in terms of physical coordi-
nates in Eq. 2 is thus transformed to the modal system

[

Ikk Mkc

MT
kc Mcc

] [

q̈i

q̈b

]

+

[

Λkk 0
0 Kcc

] [

qi

qb

]

= BT
k

[

fi
fb

]

(11)

whereΛkk is a diagonal matrix of the eigenvaluesω2
k.

The sub-matrices in Eq. 11 are expressed explicitly as

Mkc = ΦT
k (Mib + MiiΨi) ,

Mcc = Mii + MT
ibΨi + ΨT

i Mib + ΨT
i MiiΨi,

Kcc = Kbb + KT
ibΨi. (12)

2.2 Synthesis of components.

After the reduction at the component level, the com-
ponents are assembled into global system matrices of

reduced size. First, the system matrices of the compo-
nents are arranged in global system matrices

Md = diag
(

M(1), · · · ,M(s)
)

,

Kd = diag
(

K(1), · · · ,K(s)
)

, (13)

fd = [f (1),T , · · · , f (s),T ]T ,

with respect to the vector of all component coordinates

q = [q
(1),T
i , q

(1),T
b , · · · ,q

(s),T
i , q

(s),T
b ]T , (14)

wheres is the number of components andM(i), K(i)

are as defined in Eq. 11. The components are coupled
by enforcing displacement continuity along the inter-
face coordinates of two componentss andp,

x
(s)
b = x

(p)
b or equivalently q

(s)
b = q

(p)
b , (15)

leading to linearly dependent global matrices in Eq. 13.
A transformation between the linearly dependent com-
ponent modal coordinatesq and the linearly indepen-
dent set of global component coordinatesp is intro-
duced,

q = Sp =

[

Iii 0ib

D

] [

pi

pb

]

, (16)

whereD is defined by the relations in Eq. 15. Since
only interface coordinates are related in Eq. 15, the in-
terior coordinates are not affected by this transforma-
tion. Finally, the global system matrices with respect to
the global component coordinatesp are

M = ST MdS, K = ST KdS, f = ST fd, (17)

leading to the global system
[

Ikk Mkc

MT
kc Mcc

] [

p̈i

p̈b

]

+

[

Λkk 0
0 Kcc

] [

pi

pb

]

=

[

fi
fb

]

(18)

3 Modelling uncertainty in joints
Uncertainty and variability are unavoidable. In this pa-
per the effects of uncertainties. are considered for the
particular case of uncertainties in line joints, e.g. con-
tinuously welded or glued joints.

A spatial correlation of a joint property is introduced
and modelled as a random field defined by a correlation
functionR(r; a, σ), whereσ2 is the variance,r is the
distance between two points in the joint anda the corre-
lation parameter. In the numerical example the specific
correlation function

R(r; a, σ) = σ2 exp{−|r|
a
} (19)

is used. Assuming an exponential dependency means
that adjacent values of the uncertain parameter do not
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differ, on average, as much as values that are further
apart. The continuous correlation function is discretised
at finite element coordinates yielding a covariance ma-
trix. For small values ofa the discretised covariance
matrix is close to a diagonal matrix leading to weak
correlation in space. For large values ofa this matrix
becomes almost fully occupied and the correlation is
strong.

For a given covariance matrix the Karhunen-Loève ex-
pansion (or equivalently a Polynomial Chaos of first or-
der, see [7]) can be applied to model a spatially corre-
lated physical propertyd as

d{ϑ} = 〈d{ϑ}〉 +
m
∑

r=1

√

λrχrξr{ϑ} (20)

whereϑ is a parameter for the random subspace,〈·〉 de-
notes the mean value,ξr are Gaussian variables with
mean 0 and standard deviation 1, andλr and χr are
the eigenvalues and eigenvectors of the covariance ma-
trix. In the numerical example below, only the Young’s
modulusY and, consequently, the stiffness matrix of
the joint is considered to be uncertain. However, it is
straightforward to adapt the procedure to an arbitrary
joint with uncertain stiffness and/or mass matrix. If the
continuous joint is treated as a single component in the
CMS-model, its stiffness matrix can be written as

K(j){ϑ} =
〈

K(j){ϑ}
〉

+
m
∑

r=1

K(j)
r ξr{ϑ}, (21)

where
〈

K(j){ϑ}
〉

andK
(j)
r are deterministic compo-

nent matrices.

3.1 Monte Carlo Simulation

MCS is a widely used numerical method for calculat-
ing the statistics of a system’s response for nondeter-
ministic system properties. For numerical calculation
only a fraction of all possible property samples is con-
sidered at which the system model is evaluated repeat-
edly. According to Eq. 21, in this study each sample
consists of a set ofm random numbersξr{ϑ}. The
accuracy of the method depends highly on the num-
ber of samples considered. If the number of samples is
large enough convergence towards the correct statistics
is guaranteed, however, with an increasing number of
property samples the simulation rapidly becomes time
consuming. Instead of recalculating the global system
matrices for each property sample, the concept of CMS
is applied which has a twofold advantage. Firstly, only
the components with nondeterministic parameters need
to be evaluated at each sample, while the deterministic
components are calculated only once. Secondly, the di-
mension of the global system matrices is reduced con-
siderably.

The Ritz vectors in Eq. 9 are recalculated for the nonde-
terministic joint components by applying Eq. 21 while
the deterministic components are calculated only once.
The reduced component matrices are derived for all
components according to Eq. 11. Finally, the system

is assembled as in Eq. 18 for each sample leading to

(

〈K{ϑ}〉 − ω2 〈M〉 +

m
∑

r=1

Krξr{ϑ}
)

u{ϑ; ω} = f .

(22)
For a dynamic system responseu{ϑ; ω}, the term in
parentheses needs to be inverted at every frequency of
interest and for each sample. Instead of direct inver-
sion an acceleration scheme is introduced. Solving the
global eigenproblem of the fully assembled system

K{ϑ}vj = ω2
j 〈M〉vj , (23)

these system matrices can be diagonalised to

Λ{ϑ} = VT {ϑ}K{ϑ}V{ϑ},
I = VT {ϑ}MV{ϑ}, (24)

whereV consists of mass-normalised eigenvectorsvj .
The solution to Eq. 22 thus becomes

u{ϑ; ω} = V{ϑ}
(

Λ{ϑ} − ω2I
)

−1
VT {ϑ}f . (25)

Now only diagonal matrices need to be inverted, which
is much faster (for the example system in this paper this
corresponds to a reduction of about 33%) than inverting
the matrix in Eq. 22.

3.2 Stochastic Reduced Basis Method

Recently, a stochastic reduced basis method (SRBM)
was developed in [4] based on [8] for solving systems
of linear random algebraic equations in space and the
random dimension as in Eq. 22. In contrast to the clas-
sical approach in [7], a set of basis vectors spanning a
preconditioned stochastic Krylov subspace is employed
to approximate the system response. Subsequent appli-
cation of the Galerkin scheme leads to a reduced-order
deterministic system of equations with a significantly
lower computational cost.

Introducing the abbreviation of the deterministic base-
line system

A{ω} = 〈K{ϑ}〉 − ω2 〈M〉 , (26)

and premultiplying Eq. 22 byA−1{ω} gives the pre-
conditioned, nonsingular algebraic equation

(

I + A−1{ω}
m
∑

r=1

Krξr{ϑ}
)

u{ϑ; ω}

=A−1{ω}f . (27)

Instead of inverting the term in parentheses as in the
previous section, the solution for the system response
u{ϑ, ω} is approximated in the preconditioned Krylov
subspace, see [4], by

u{ϑ; ω} ≈
p
∑

j=0

αj{ω}uj{ϑ; ω} = Uα (28)
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where αj are deterministic coefficients anduj are
recursive stochastic basis vectors which forms the
columns ofU and are defined as

u0{ω} = A{ω}−1f ,

uj+1{ϑ; ω} = A{ω}−1
m
∑

r=1

Krξr{ϑ}uj{ϑ; ω}. (29)

The inverse of the system matrix Eq. 26 is calculated
by applying an acceleration scheme similar to Eq. 25,
but now the eigenproblem of the deterministic baseline
system

〈K{ϑ}〉wj = ω2
j 〈M〉wj (30)

is solved, leading to the diagonal matrices

Λ = WTKW, I = WTMW. (31)

Finally, the inverse of the baseline system is given by

A{ω}−1 = W
(

Λ − ω2I
)

−1
WT . (32)

In contrast to Eq. 25, Eq. 32 needs to be calculated only
once at each frequency.

To determine the deterministic coefficientsαj in Eq. 28
a Bubnov-Galerkin projection scheme [4] is applied
〈

UT

(

A{ω} +
m
∑

r=1

Krξr{ϑ}
)

U

〉

α{ω}

=
〈

UT f
〉

(33)

This deterministic algebraic equation is of sizep, the
number of chosen basis vectors in Eq. 28. The pro-
jection scheme guarantees convergence with increasing
value ofp. For mechanical systems, in general, only
two or three basis vectors are needed for accurate ap-
proximation to the preconditioned Eq. 27. Note that so
far only the undamped system has been considered. For
the proportionally damped case (Rayleigh damping) the
system matrices become complex and the transpose of
U is replaced by the Hermitian transpose.

With the stochastic basis vectors in Eq. 29 and the deter-
ministic coefficients from Eq. 33 the first two moments
of the system response can be determined. The mean of
the system response results in

〈u{ϑ; ω}〉 =

p
∑

j=1

αj 〈uj{ϑ; ω}〉 (34)

and the covariance matrix in

〈u{ϑ; ω}u∗{ϑ; ω}〉

=

p
∑

j,k=1

αjα
∗

k 〈uj{ϑ; ω}u∗

k{ϑ; ω}〉 . (35)

Since the basis vectors in Eq. 29 are computed recur-
sively the number of multiplications increases rapidly
with increasing values ofp. However, the basis vectors
need never be calculated explicitly because only their
moments are of interest in Eqs. 34 and 35.

3.3 Matrix identity

The calculation procedures can be optimised further
by performing matrix algebra, as proposed in the fol-
lowing. The general form of the Sherman-Morrison-
Woodbury matrix identity [9] is

(A + PCQ)−1 = A−1

− A−1P
(

C−1 + QA−1P
)

−1
QA−1. (36)

HereinA andC are square matrices whileP andQ
are of rectangular shape. This identity is exact. If the
matrixC has a much smaller dimension thanA, this is
much more efficient than invertingA+UCV directly.
By postmultiplying Eq. 36 byA{ω} the inverse of the
term in parentheses in Eq. 27 can be written as

(

I + A−1{ω}HTC{ϑ}H
)−1

= I (37)

− A−1{ϑ}HT
(

C−1{ϑ} + HA−1{ω}HT
)

−1
H,

where

p
∑

r=1

Krξr{ϑ}

= HTC{ϑ}H =

p
∑

r=1

HTKW
r Hξr{ϑ}. (38)

Here the dimension ofKW
r is the same as the number

of joint coordinates while that ofKr equals the number
global coordinates. Usually the number of global sys-
tem coordinates is much larger than the number of joint
coordinates, so that the size ofKW

r is much smaller
than the size ofKr. The advantage of the identity is
that the inverse of the large system matrixA is already
available from a deterministic eigenanalysis of the sys-
tem. On the right hand side of Eq. (37) the inverse ofA
is still needed, but is transformed byH to a fraction of
its original size before inversion. Based on Eq. 37, new
recursive stochastic basis vectorsvj are defined by

v0{ϑ; ω} =
∑

r

KW
r ξrV

T u0{ω}, (39)

vj+1{ϑ; ω} =
∑

r

KW
r ξr{ϑ}VTA{ω}−1Vvj{ϑ; ω}

which leads to smaller matrix operations compared to
the originally assembled system in Eq. 29. This method
is referred here to as the enhanced stochastic reduced
basis method (ESRBM).

4 Comparison of calculation methods
A numerical example is presented to illustrate the ap-
proach. The example is shown in Fig. 1. Two plates
are clamped on one edge and joined to each other on
the opposite edge. The parameters of the deterministic
plates and the nondeterministic joint are listed in Tab. 1.
The system is discretised using a mesh of 10×5 and
8×5 thin isotropic plate elements [10] and the joints are
modelled by equidistant elastic elements. The stiffness
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Tab. 1 Physical and mesh parameters

plate 1 plate 2 joint units
ρ 2700 2700 1350 kg/m3

Y 7 · 107 7 · 107 35 kN/m2

ν 0.3 0.3 – –
Lx 0.5

√
2 0.5 0.006 m

Ly 0.5 0.5 0.5 m
h 3 3 3 mm

x-elements 10 8 1 –
y-elements 5 5 5 –

r = Ly/5 σ = 20%

of the line-coupling is uncertain and the Young’s mod-
ulus is expressed by a random field with an assumed
spatial correlation.

A typical frequency response between the points P1 and
P2 in Fig. 1 is shown in Fig. 2a. The baseline system
is plotted together with the envelopes of the system re-
sponses calculated by MCS. The frequency range of in-
terest covers the first 12 modes of the structure with
equally distributed frequency points.

Firstly, the calculation times of one sample using direct
MCS are compared for the full finite element model
(FEM) and the reduced model (CMS). For CMS, the
first 15 modes of each plate are kept. The relative calcu-
lation times are summarised in Tab. 2, emphasising the
great advantage of applying CMS to reduce the number
of interior coordinates of each deterministic component
while the constraint coordinates remain.

Secondly, the direct MCS with CMS is compared in
terms of accuracy and computational efficiency with the
projection schemes SRBM with CMS and the proposed
ESRBM with CMS, both employing the preconditioned
stochastic Krylov subspace. Since no approximation is
made from SRBM to ESRBM both methods lead to ex-
actly the same results. The mean values and covari-
ance of the frequency responses calculated by MCS and
SRBM are shown in Fig. 2b and c, respectively. The ac-
curacy of SRBM depends on the number of considered
basis vectors in Eq. 29 or Eq. 39. The higher the value
of p the closer the results of SRBM are to those of MCS.
However, for the minimum numberp = 2 as chosen in
this study, the accuracy of the first two statistical mo-
ments is good and the characteristics of the distributions
are reproduced very well by SRBM. The overall calcu-
lation times for all three methods described in section 3
using CMS are summarised in Tab. 3 emphasising the
computational efficiency of SRBM and ESRBM. Note
that the calculation time of 100% corresponds to the
calculation time using CMS, which is itself 3.1% the
time of the full FEM solution in Tab. 2.

On one hand, for a MCS the system response are calcu-
lated repeatedly over the whole frequency range and the
statistics are obtained by postprocessing. Alternatively,
for SRBM these statistics are calculated directly at a
fixed frequency and, consequently, the statistics at each
frequency are calculated independently. Hence, the cal-
culation time for MCS strongly depends on the num-
ber of samples considered while the calculation time

for SRBM is not affected. So increasing the number of
samples for better accuracy of MCS even enhances the
efficiency of SRBM according to Tab. 3. The main dif-
ference between MCS and SRBM is the type of sam-
pling. While MCS uses samples with respect to the
stochastic subspaceϑ, SRBM uses samples with re-
spect to the frequencyω.

5 Conclusions
For the problem considered, the proposed formula-
tion is an efficient and effective implementation of a
stochastic reduced basis method. It is seen that ES-
RBM can be up to orders of magnitude faster than
MCS, while providing results of comparable accuracy.
Furthermore, the proposed implementation is more ef-
ficient the fewer joints are affected by uncertainty.
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Fig. 1 Plates coupled by a joint with spatially
distributed uncertainty

Tab. 2 Comparison of calculation times for baseline sys-
tem at 1000 frequency points

matrix
sizen

constr.
DOF

relative
time

FEM 324 36 100%
CMS 56 36 3.1%

Tab. 3 Comparison of calculation times using CMS

method
relative

time
MCS with 1500 samples 100%

SRBM using 2 basis vectors 24.6%
ESRBM using 2 basis vectors 16.8%
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(a) Reference transfer mobility for system at mean value (1 sample): full model (black) and CMS (red), and envelopes of MCS
with CMS (1500 samples) (dashed lines)
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(b) Mean transfer mobility for MCS (black) and SRBM (red).
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(c) First moment of transfer mobility for MCS (black) and SRBM (red).

Fig. 2 Comparison of calculation procedures MCS with CMS andSRBM with CMS
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