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Abstract

There are often uncertainties in the properties of jointsctvsubsequently produce uncertain-
ties in the dynamic response of built-up structures. Linetg such as glued or continuously
welded joints, have spatially distributed uncertainty aad be modelled by a discretised ran-
dom field. Simulation techniques such as the commonly usedtdMonte Carlo simulation
(MCS) can be applied to approximate the output statistia@ntarbitrary degree of accuracy,
provided that a sufficient number of samples is used. Unfatiely, the computational cost of
this technique can be prohibitive for large-scale modelsis paper addresses how spatially
correlated uncertainties in joints might be included gtngforwardly in a mechanical finite ele-
ment model, with particular reference to approaches basdited interface (Craig-Bampton)
component mode synthesis and a stochastic reduced basisdndthe methods are reviewed
and an efficient way of implementation based on an exact xiakentity is proposed with a
significantly lower computational cost. Unlike perturloatibased methods, good accuracy can
be achieved even when the coefficients of variation of thatirmndom variables are large. A
numerical example of two line-coupled plates is invesgdab benchmark the accuracy and
calculation time. For the problem considered, the propdsedulation is an efficient and ef-
fective implementation of a stochastic reduced basis noethies seen that the method can be
up to orders of magnitude faster than direct Monte Carlo Etran, while providing results
of comparable accuracy. Furthermore, the proposed impitatien is more efficient the fewer
joints are affected by uncertainty.

Keywords: Uncertainty in joints, Random field, Component made synthesis, Stochastic
reduced basis method, Stochastic Krylov subspace.
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1 Introduction dom for each component separately, while the latter re-

. . , _duces the global stochastic algebraic equation to a much
When constructing numerical models of real-life engigmgier size, the size being the number of joint degrees

neering systems it is often assumed that the system ugy freedom, instead of retaining all of the system de-
der consideration is deterministic. In practice, howevergJrees of freedom
i .

some degree of uncertainty in the system properties a

operating environmentis inevitable, e.g. boundary corin the next sections CMS s briefly reviewed with fo-
ditions, material properties, etc. In such situations, agus on the fixed interface (Craig-Bampton) approach,
individual deterministic realisation of the system propsubsequently the modelling of joints with spatial cor-
erties and its environment might be undesirable, sind€lation in terms of a random field is described. The
this could lead to misleading response predictions. Aalculation of system response statistics by direct MCS
commonly used approach in engineering design is to iwith CMS and SRBM with CMS is described. Finally,
troduce safety factors to indirectly account for paramea numerical example is given.

ter uncertainty. However, this approach typically leads

to highly conservative designs and may not be appr¢  Component mode synthesis

priate for new lightweight materials and novel design _ ) ) _
concepts. CMS is a technique which can reduce the size of the

system matrices of built-up structures, in order to re-
With continuous growth in computing power and recenguce the computational cost of the dynamic response
development of sophisticated numerical techniques, realculation. The systems under considerations are as-
liable numerical simulations of systems with uncersumed to be built-up from a number of connected sub-
tainty can be obtained by quantifying input uncertainsystems. In this paper, the subsystems are modelled
ties to the model equations and propagating them to theith respect to their local modes. At this component
system response numerically. In contrast to determinievel the substructure is represented by an undamped
tic analysis, which only provides response predictionsE model that can be written in the form
at a single point in the ensemble corresponding to the
nominal values of the system parameters, this proba- M%) 4 Kx() = () 1)

bilistic approach provides a range of response values .
which ca%pbe valuea\ble in the des?gn procepss. whereM(*) andK*) are then x n mass and stiffness

matrices, an&(®) andf(®) then x 1 vectors of physical

Simulation techniques commonly used, such as diredisplacement coordinates and external forces acting on

Monte Carlo simulation (MCS), can be applied to apthe substructure/componentThe superscripts) will

proximate the output statistics to an arbitrary degree dife omitted for the rest of this section. The displacement

accuracy, provided that a sufficient number of samplezoordinatesc are partitioned intay; interior () andny

is used. Unfortunately, the computational cost of diboundary ) coordinates, where = n; +ny,, resulting

rect simulation technigues can be prohibitive for largein

scale models. There are three main approaches to re- M. M.

duce the computational cost of large models: (1) ad- {M“ Mlb} [.’.“}

vanced Monte Carlo methods, e.g. importance sam- bi bb] [Xb

pling, line sampling, etc., (2) perturbation-based meth- Ki Kl [x: f;

ods and (3) stochastic finite element methods. The lat- + [Kbi Kbb} [ } - {fb} @)

ter techniques offer computationally efficient alterna-

m/ae'ia t&gﬂf(i:rit?\?vg Z?z;ltiesggglnn\%(rjﬁéﬁgpg',ﬁ]detgyasﬁfr?)r“[_)lﬁerent CMS m_ethods exist for reducing the size Qf
Ee system matrices, e.g. [1, 2, 5]. Here the Craig-

Xb

sponse. Unlike perturbation-based methods, stochaslic : ; i
finite element methods, e.g. the stochastic reduced bt grrln?st?gngzv]vgjethod, outlined in the subsequent sec
sis method (SRBM), can achieve good accuracy even '
when the coefficients of variation of the random vari2.1 Craig-Bampton procedure

ables are large. i
g This method uses the normal modes of the components

There are typically uncertainties in the properties ofvith the boundary coordinates fixed in combination
joints in mechanical structures e.g. bolts, rivets, spawvith static constraint modes. The fixed interface nor-
welds, glue, etc., which subsequently produce uncemal modes of a single component are the natural modes
tainties in the dynamic response of built-up structuresif the component with all boundary coordinates fixed,
This paper addresses how such uncertainties might geven by the right-eigenvalue problem

included straightforwardly in a finite element model 9

of a structure, with particular reference to approaches (Kii — w/ M) ¢, = 0 3

based on fixed interface (Craig-Bampton) componerﬁerewl are then; eigenfrequencies of the fixed compo-

mode synthesis (CMS), see [1, 2]. The spatially dis: . . )
tributed uncertainty in the joints is modelled by a dis_ﬂgﬂtng:"ilsewgoc%r;?spondmg eigenvecipjsare mass
cretised random field [3]. As proposed here, the effi-

ciency of the SRBM [4] can be enhanced further by ¢,L,TMH¢,L, =1;, (4)
a combination of CMS and matrix algebra. The for- T ) 9 o 9
mer approach truncates the number of degrees of free- ¢, Kiig; = diag (wi,w3,...,w;,) (®)
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wherel;; is the identity matrix of sizex; x n;. The reduced size. First, the system matrices of the compo-
modal matrix with respect to all component modal conents are arranged in global system matrices
ordinatesx = [x/, xI]7 is composed from these Ritz

7

vectors as M, = diag (M(l)’ ... 7M(s)) 7
S R } _ m (6) K. = diag (K", KW),  (13)
fd = [f(l),T7 e 7f(5),T]T7

This set of modes is complemented by a set of static

constraint modes. Both sets are linearly independentith respect to the vector of all component coordinates
The static constraint modes chosen are the static dis-

placements of a component due to unit displacement q = [qgl)’T, q,()l)’T, e ,qgs)’T, ql(f)’T]T, (14)

of a single boundary coordinate while keeping all other

boundary coordinates fixed. The matrix of constrainivheres is the number of components ahd(®, K

modes is defined by are as defined in Eq. 11. The components are coupled
by enforcing displacement continuity along the inter-
KKy | [ face coordinates of two componentandp,
v= T RS (7)
xl(f) = xl()p ) or equivalently ql()s) = qlgp ) (15)

wherel,,;, is the unity matrix of sizex, x n; and the

upper part corresponds to a Guyan reduction ([6]). Thieading to linearly dependent global matrices in Eq. 13.
matrices in Eq. 6 and Eq. 7 define a transformation ok transformation between the linearly dependent com-
the physical coordinatesto component modal coordi- ponent modal coordinateg and the linearly indepen-

natesq defined by dent set of global component coordinagess intro-
duced,
X qi
=B , B=[® © 8 i 0 :
B oml) mem e amso- [ [2], o

A reduction in the size of the component matrices is
achieved by retaining only some of the fixed interfac
normal modes, i.e. those with the lowest eigenfreque
cies. If only the firstt modes are kept the transforma-
tion in Eg. 8 is approximated by

hereD is defined by the relations in Eq. 15. Since

rg)_nly interface coordinates are related in Eq. 15, the in-
terior coordinates are not affected by this transforma-
tion. Finally, the global system matrices with respect to
the global component coordinatpsire

B =[®x 7] ©) M =STM,S, K = STK,S, £ =S"t;, (17)
where®;, is the matrix of kept mode shapes. Applymg{eading to the global system
this transformation, the component matrices reduces 10

I My [,
M, = BIMB,, K = BIKB;, f, = BIf. (10) [ka% M’“} [gb}
The equations of motion in terms of physical coordi- n Awe O | |pi| _ |& (18)
nates in Eq. 2 is thus transformed to the modal system 0 K| [Py £y
L Mie| |G . . L
[M{C M] [db 3 Modelling uncertainty in joints

A 0 4 £ Uncertainty and variability are unavoidable. In this pa-
+ { (’]f’f K ] [qz} =B{ [4 (11) per the effects of uncertainties. are considered for the
ce] [9b b particular case of uncertainties in line joints, e.g. con-
_ _ _ ) tinuously welded or glued joints.
whereAy;, is a diagonal matrix of the eigenvalues. ) ] o o
The sub-matrices in Eq. 11 are expressed explicitly a* SPatial correlation of a joint property is introduced
and modelled as a random field defined by a correlation

My = ®7 (M + My ®,) fqnction R(r;a,0), where_ta2 i.s the _variancer is the

' distance between two points in the joint antthe corre-
Mee = My; + ML ®; + T M, + ¥ M; ¥, lation parameter. In the numerical example the specific
K. =Ky + KLU, (12) correlation function

7]

} (19)

. _ 2 _n
2.2 Synthesis of components. R(r;a,0) = o~ exp{ a

After the reduction at the component level, the comis used. Assuming an exponential dependency means
ponents are assembled into global system matrices thfat adjacent values of the uncertain parameter do not
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differ, on average, as much as values that are furthes assembled as in Eq. 18 for each sample leading to
apart. The continuous correlation function is discretised

at finite element coordinates yielding a covariance ma- m

trix. For small values of: the discretised covariance <<K{19}> —w? (M) + ZKTST{§}> u{;w} ="1.
matrix is close to a diagonal matrix leading to weak r=1

correlation in space. For large valuescothis matrix . (22_)
becomes almost fully occupied and the correlation iEOr @ dynamic system respona¢v;w}, the term in
strong. parentheses needs to be inverted at every frequency of

) ) ) . interest and for each sample. Instead of direct inver-
For a given covariance matrix the Karhunen-Loeve exsion an acceleration scheme is introduced. Solving the
pansion (or equivalently a Polynomial Chaos of first orglobal eigenproblem of the fully assembled system
der, see [7]) can be applied to model a spatially corre-

lated physical property as K{d}v; = w? (M) v;, (23)

d{9} = (d{0}) + i \/)\—rxrﬁr{ﬁ} (20) these system matrices can be diagonalised to
r=1

A{9} = VI{IIK{9}V{v},

whered is a parameter for the random subspéggede- I=VT{9IMV{9} (24)
notes the mean valug, are Gaussian variables with ’

mean 0 and standard deviation 1, akdand x, are  \yhereV consists of mass-normalised eigenvectors
the eigenvalues and eigenvectors of the covariance Mpre solution to Eq. 22 thus becomes

trix. In the numerical example below, only the Young's
modulusY and, consequently, the stiffness matrix of
the joint is considered to be uncertain. However, it is

straightforward to adapt the procedure to an arbitra

r _ _ . .
joint with uncertain stiffness and/or mass matrix. If the_KIOW only diagonal matrices need to be inverted, which
continuous joint is treated as a single component in tHg Much faster (for the example system in this paper this
CMS-model, its stiffness matrix can be written as corresponds to a reduction of about 33%) than inverting

the matrix in Eq. 22.

K(j)w} _ <K(j){ﬂ}> 1 zm:Ks_j)QWL 1) 3.2 Stochastic Reduced Basis Method
r=1 Recently, a stochastic reduced basis method (SRBM)

‘ . was developed in [4] based on [8] for solving systems
where (KW {¥}) and K'Y are deterministic compo- of linear random algebraic equations in space and the
nent matrices. random dimension as in Eq. 22. In contrast to the clas-
sical approach in [7], a set of basis vectors spanning a
preconditioned stochastic Krylov subspace is employed
MCS is a widely used numerical method for calculatto approximate the system response. Subsequent appli-
ing the statistics of a system’s response for nondetegation of the Galerkin scheme leads to a reduced-order
ministic system properties. For numerical calculatiomleterministic system of equations with a significantly
only a fraction of all possible property samples is conlower computational cost.
sidered at which the system model is evaluated repeit—

w{t;w} = V{} (A{9} — 1) VT {9}f. (25)

3.1 Monte Carlo Simulation

edly. According to Eq. 21, in this study each sampl ntroducing the abbreviation of the deterministic base-

consists of a set ofn random numbersg,. {¥}. The Ine system
accuracy of the method depends highly on the num-

ber of samples considered. If the number of samples is

large enough convergence towards the correct statistics _ .
is guaranteged, howe?/er, with an increasing number Gf'd premultiplying Eq. 22 byA =" {w} gives the pre-
property samples the simulation rapidly becomes timgonditioned, nonsingular algebraic equation
consuming. Instead of recalculating the global system m

matrices for each property sample, the concept of CMS < )u{ﬁ' )

Afw} = (K{0}) —w* (M), (26)

-1
is applied which has a twofold advantage. Firstly, only I+A™{w} Z K& {0}
the components with nondeterministic parameters need r=1
to be evaluated at each sample, while the deterministic =A"Hwif.  (27)
components are calculated only once. Secondly, the di-
mension of the global system matrices is reduced cotstead of inverting the term in parentheses as in the
siderably. previous section, the solution for the system response

) ) u{¥,w} is approximated in the preconditioned Krylov
The Ritz vectorsin Eq. 9 are recalculated for the nondegpspace, see [4], by

terministic joint components by applying Eqg. 21 while
the deterministic components are calculated only once. p
The reduced component matrices are derived for all  u{¥;w} ~ Zaj{w}uj{ﬁ;w} = U« (28)

components according to Eq. 11. Finally, the system =0
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where a; are deterministic coefficients and; are 3.3 Matrix identity
recursive stochastic basis vectors which forms th

columns ofU and are defined as The calculation procedures can be optimised further

by performing matrix algebra, as proposed in the fol-
up{w} = A{w} ', lowing. The general form of the Sherman-Morrison-
Woodbury matrix identity [9] is

wip{0w} = A{w} ) K E{0 i {dsw). (29)

r=1

(A+PCQ) '=A""

-1 -1 —1p\—1 -1
The inverse of the system matrix Eq. 26 is calculated —ATP(CTT+QAT'P) QAT (36)
by applying an acceleration scheme similar to Eq. 2

but now the eigenproblem of the deterministic baselin erein A andC are square matrices whilé andQ

are of rectangular shape. This identity is exact. If the

system ; ; ; h
2 ‘ matrix C has a much smaller dimension thAn this is
(K{0}) w; = wj (M) w, (30) much more efficient than inverting + UCV directly.
is solved, leading to the diagonal matrices By postmultiplying Eqg. 36 byA {w} the inverse of the

term in parentheses in Eq. 27 can be written as
A=WIKW, 1=WIMW. (31)

(I+ A {w}HTC{9}H) " =T (37)
— AY3H" (C {9} + HA {w}HT) ' H,

Finally, the inverse of the baseline system is given by
Alw}) ' =W (A-T) W' (32)

wher
In contrast to Eq. 25, Eq. 32 needs to be calculated only
once at each frequency. P
> K&{0}
r=1

To determine the deterministic coefficientsin Eq. 28
a Bubnov-Galerkin projection scheme [4] is applied

=H'C{y}H = i HTK"H¢ {9}, (38)

<UT <A{w} + i K,{,.{ﬂ}) U> a{w} r=1

=t T Here the dimension oK!" is the same as the number
=(U"f) (33) ofjoint coordinates while that &, equals the number
This deterministic algebraic equation is of sizethe global coo_rdlnat(_es. Usually the number of global s
) X tem coordinates is much larger than the number of joint
number of chosen basis vectors in Eq. 28. The P'%oordinates, so that the size K" is much smaller
value ofp. For mechanical systems, in general, onl fHan the_ size oK. The advantage of th? identity is
two or tff)r.ee basis vectors are needéd for accur,ate th_a t the inverse of the Ia_rg_e system mathixs already
AVailable from a deterministic eigenanalysis of the sys-

proximation to the preconditioned Eq. 27. Note that s em. On the right hand side of Eq. (37) the inversaof
far only the undamped system has been considered. i€'still needed, but is transformed B¥ to a fraction of

the proportio_nallydamped case (Rayleigh damping) thl‘? original size before inversion. Based on Eq. 37, new
system matrices become complex and the transpose Sfcursive stochastic basis vectsrsare defined by
U is replaced by the Hermitian transpose.

With the stochastic basis vectorsin Eq. 29 and the deter- v {9; w} = Z KY¢, VTug{w}, (39)
ministic coefficients from Eq. 33 the first two moments .

of the system response can be determined. The mean of . w T 1 )
the system response results in Vi {dw} = Z K, &0}V A{w} T Vv {tsw}

p . . .
9 _ w9 34) Which leads to smaller matrix operations compared to
(u{dswh) Zl aj {u{vsw}h) (34) the originally assembled system in Eq. 29. This method
= is referred here to as the enhanced stochastic reduced
and the covariance matrix in basis method (ESRBM).
(u{t; wha™{d;wh) 4 Comparison of calculation methods
p
= Z oo (w{d; wiui{v;w}). (35) A numerical example is presented to illustrate the ap-
st proach. The example is shown in Fig. 1. Two plates

are clamped on one edge and joined to each other on
Since the basis vectors in Eq. 29 are computed recuhe opposite edge. The parameters of the deterministic
sively the number of multiplications increases rapidlyplates and the nondeterministic joint are listed in Tab. 1.
with increasing values gf. However, the basis vectors The system is discretised using a mesh ok &0and
need never be calculated explicitly because only the8x5 thin isotropic plate elements [10] and the joints are
moments are of interest in Eqgs. 34 and 35. modelled by equidistant elastic elements. The stiffness
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for SRBM is not affected. So increasing the number of

Tab. 1 Physical and mesh parameters
samples for better accuracy of MCS even enhances the

plate1 plate2 joint units efficiency of SRBM according to Tab. 3. The main dif-
p 2700 2700 1350 kg/m ference between MCS and SRBM is the type of sam-
Y 7-107 7-107 35 kN/m? pling. While MCS uses samples with respect to the
v 0.3 0.3 - - stochastic subspac® SRBM uses samples with re-
L, 0.5/2 0.5 0.006 m spect to the frequeney.
L, 0.5 0.5 0.5 m
h 3 3 3 mm 5 Conclusions
z-elements 10 8 1 - )
y-elements 5 5 5 _ For the problem considered, the proposed formula-
r=1L,/5 o =20% tion is an efficient and effective implementation of a

of the line-coupling is uncertain and the Young’s mo
ulus is expressed by a random field with an assum
spatial correlation.

A typical frequency response between the points P1 and
P2 in Fig. 1 is shown in Fig. 2a. The baseline systerg
is plotted together with the envelopes of the system re-

stochastic reduced basis method.
d_RBM can be up to orders of magnitude faster than

CS, while providing results of comparable accuracy.

urthermore, the proposed implementation is more ef-
ficient the fewer joints are affected by uncertainty.

It is seen that ES-
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Firstly, the calculation times of one §amp|e using direGhamics Engineering; www.maduse.org) s gratefully ac-
MCS are compared for the full finite element mOdeknowIedged.

(FEM) and the reduced model (CMS). For CMS, the
first 15 modes of each plate are kept. The relative calcu;
lation times are summarised in Tab. 2, emphasising t
great advantage of applying CMS to reduce the numbe[l]
of interior coordinates of each deterministic component
while the constraint coordinates remain.

Secondly, the direct MCS with CMS is compared in (2]
terms of accuracy and computational efficiency with the
projection schemes SRBM with CMS and the proposed
ESRBM with CMS, both employing the preconditioned [3]
stochastic Krylov subspace. Since no approximation is
made from SRBM to ESRBM both methods lead to ex-
actly the same results. The mean values and covaril4]
ance of the frequency responses calculated by MCS and
SRBM are shown in Fig. 2b and c, respectively. The ac-[5]
curacy of SRBM depends on the number of considered
basis vectors in Eq. 29 or Eq. 39. The higher the value
of p the closer the results of SRBM are to those of MCS. [6]
However, for the minimum number= 2 as chosen in

this study, the accuracy of the first two statistical mo-[7]
ments is good and the characteristics of the distributions
are reproduced very well by SRBM. The overall calcu-
lation times for all three methods described in section 3rg
using CMS are summarised in Tab. 3 emphasising the
computational efficiency of SRBM and ESRBM. Note
that the calculation time of 100% corresponds to the[g]
calculation time using CMS, which is itself 3.1% the
time of the full FEM solution in Tab. 2.

On one hand, for a MCS the system response are caldd0]
lated repeatedly over the whole frequency range and the
statistics are obtained by postprocessing. Alternatively
for SRBM these statistics are calculated directly at a
fixed frequency and, consequently, the statistics at each
frequency are calculated independently. Hence, the cal-
culation time for MCS strongly depends on the num-
ber of samples considered while the calculation time
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65
Lz y Tab. 2 Comparison of calculation times for baseline sys-
x tem at 1000 frequency points
L - -
T matrix constr. relative
W ~ sizen DOF time
= §hM p1 FEM 324 36 100%
E z} - @ - CMS 56 36 3.1%
= P2 é] h =
— )ﬁ = Tab. 3 Comparison of calculation times using CMS
@ = relative
Ly method time

MCS with 1500 samples 100%
SRBM using 2 basis vectors 24.6%
ESRBM using 2 basis vectors 16.8%

Fig. 1 Plates coupled by a joint with spatially
distributed uncertainty

)
Q-L
S
o=
20
2 : : o ; : : : : :
1 2, 34 5 6 7 8 . 9 11 12
0 50 100 150 200 250 300
Hz

(a) Reference transfer mobility for system at mean valueuipde): full model (black) and CMS (red), and envelopes ofMC
with CMS (1500 samples) (dashed lines)

0 50 100 150 200 250 300

Hz

(b) Mean transfer mobility for MCS (black) and SRBM (red).

0 50 100 150 200 250 300
Hz

(c) First moment of transfer mobility for MCS (black) and SREred).
Fig. 2 Comparison of calculation procedures MCS with CMS 8R@BM with CMS
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