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Abstract

Scan statistics studies maximal clusters of random points on an interval (or a map) I ⊂ Rn, n ≥ 1,
determined by a scan window which is moving on the whole I.This paper considers the problem
of simulating a bivariate uniform binomial process (BUBP) on I, with the purpose of estimating
the critical value of a scan test. The first section defines and studies BUBP in analogy with
the bivariate uniform Poisson process (BUPP) and introduces the bivariate scan statistics on
a rectangle. The second section presents details on simulating a BUBP, based on known algo-
rithms for simulating binomial and normal variates. The third section gives the implementation
of algorithms and compares estimated distributions of the scan statistics for BUBP and BUPP,
concluding that these distribitions are approximately the same for a large I. Finally is presented
a practical application of the simulated bivariate scan statistics to a problem of healthcare.
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1 Basic notions

The aim of this paper is to study a bivariate
scan statistic and to approximate (by simula-
tion) the critical value of a scan test.
In [8] is considered a scan statistics for a bi-
variate uniform Poisson process (BUPP) of the
intensity λ. Here, in a similar manner, we will
consider a discrete bivariate uniform binomial
process (BUBP) of the parameters p, λ,
I, p ∈ (0, 1), λ ∈ R, I ⊂ R2, defined as

Definition 1 Let I be the bivariate interval I =
[0, T ] × [0, W ], 0 < T, W < ∞ and n = [λ ×
mes(I))], mes(I) = T ×W, ([x]− integer part)
a positive integer. Let p be a given probability,
0 < p < 1. Let X1, X2, ... , XN be a set of ran-
dom points, uniformly distributed on I where
N is an integer random variable having a bino-
mial distribution of parameters (n, p) (denoted
Bin(n, p)). The set of points X1, X2, ..., XN is
called a trajectory of the bivariate uniform bi-
nomial process of parameters(p, λ, I) on I (de-
noted BUBP (p, λ, I)) if:

1). Points X1, X2, ..., XN are stochastically
independent;

2). For any bivariate disjoint intervals Bi =
[α1i, β1i]×[α2i, β2i], 1 ≤ i ≤ k, αmi,βmi ∈ R,m =
1, 2 and every finite k, the number of points Ni

falling in Bi is distributed as Bin(ni, p), ni =
[λ(β1i − α1i)(β2i − α2i)], and N1, N2, ..., Nk are
independent random variables. The constant λ
will be also called the intensity of the process.

This binomial process has a property of stability
similar to a Poisson process, namely

Theorem 1 If B1, B2, .., Bk are disjoint sub-
sets in the interval I = [0, T ]×[0, W ] and {Xt} is
BUBP (p, λ, I), t ∈ N then the processes {Xi(t)},
t ∈ N , are BUBP (p, λ, Bi) and Xi is indepen-
dent of Xj, i 6= j. Particularly, if B ⊂ I then
Xk is BUBP (p, λ, B), k = [λmes(B)]. On the
other hand if I = B1 ∪ B2 ∪ ... ∪ Bm, Bi ∩
Bj = ∅, i 6= j and {Xt} is BUBP (p, λ, Bi)
then XB1 +XB2 +...+XBm is a BUBP (p, λ, I).

Proof. The proof can be easily done using the
characteristic function of the binomial distribu-
tion. Thus, for the binomial distribution (X is
Bin(n, p)) the characteristic function is

ϕ(t) = E[eitX ] = (p + qeit)n, t ∈ R, (1)

q = 1− p.

Let us consider the random variables XBi , 1 ≤
i ≤ m which are independent (points defining
XBi

beeing uniformly distributed on Bi), and
XBi

is Bin([λmes(Bi)], p). Then the random va-
riable Y = XB1 +XB2 + ...+XBm has the char-
acteristic function of Bin(n, p) distribution, i.e.

ϕY (t) =
m∏

i=1

ϕXBi
(t) =

m∏
i=1

(p + qeit)ni =

(p + qeit)n, n =
m∑

i=1

ni, ni = [λmes(Bi)].

The last formula gives the end of the proof.

Definition 2 Let I = [0, T ]× [0, W ] be a two-
dimensional interval and u, v > 0 two posi-
tive numbers such as 0 < u < T < ∞, 0 <
v < W < ∞. (The numbers u, v define a
two-dimensional scan window with dimensions
u and v). Assume that in the interval I there
are N points {X1, X2, ..., XN} which are uni-
formly distributed on I. Denote νt,s = νt,s(u, v)
= the number of points which fall in the scan-
ning window [t, t + u] × [s, s + v]. Then the
bivariate scan statistic is

S = S((u, v), T, W ) =

= max
0≤t≤T−u, 0≤s≤W−v

νt,s. (2)

The points Xi, 1 ≤ i ≤ N could be a trajectiry
of a BUBP or BUPP. The probability of interest
is:

P (S((u, v), T, W ) ≥ k) = Pk((u, v), T, W ).
(3)

The probability distribution (3) is hard to cal-
culate. Therefore a simulation procedure is the
simplest way to estimate it. In [2] is introduced
a method for estimating the probability distri-
bution (3) using the simulation of conditional
scan statistics and relation between this and ac-
tual scan statistics.
We estimate the probability distribution (3) us-
ing the simulation of scan statistic described by
the following algorithm [8]:

Algorithm SIMSCAN

•Input W, T, u, v, N, m;
1. for j = 1 to m do
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begin
• generate X1, X2, ..., XN , N points
uniformly distributed on
I = [0, T ]× [0, W ];
•Determine S(u,v), take Kj =
S(u,v);

end;

(In the Section 3 we describe the implementa-
tion of the algorithm SIMSCAN which deter-
mines S(u,v), denoted there by nw).

2. Determine the empirical distribution of
the sample K1, ..., Km as follows:

•Determine the order statistics K(1) < K(2) <
... < K(r), r < m;

• Determine the frequencies fi,
1 ≤ i ≤ r, fi = number of sampling values K ′s
equal to K(i), 1 ≤ i ≤ r,

∑r
i=1 fi = m;

• Determine the relative frequencies (i.e.
sampling probabilities) πi = fi

m
. Stop

(In fact, step 2 builds-up a histogram of the scan
statistics).

If m is large enough, then the sampling distri-
bution converges to (3) (according to the con-
sistency property of the estimates πi).
Given a probability α, 0 < α < 1 one can de-
termine the critical test value kα of the scan
statistics defined as

P (S(u,v) > kα) = α. (4)

The number N of random points uniformly dis-
tributed on I = [0, T ] × [0, W ] is assumed to
have a binomial distribution and therefore X1, X2,
..., XN is a trajectory of a bivariate uniform bi-
nomial process.

In the next section we discuss the simulation of
such a trajectory. Some methods for simulating
binomial and normal distributions are used.

2 Algorithms for the simu-

lation of a bivariate uni-

form binomial process

The Definition 1 leads to the following algo-
rithm for simulating a trajectory of N points of

the bivariate uniform binomial process of the
intensity λ:

Algorithm SIMBIN2

•i = 0,input λ, W, T, p, 0 < p < 1;
•calculate n = [λ×W × T ];
•Generate N a sampling value
of Bin(n, p);
repeat
•Generate U uniform [0, T ] and
V uniform [0, W ];
(This can be done as follows:
-Generate U1 uniform (0, 1);
Take U = U1T ;
-Generate U2 uniform (0, 1);
Take V = U2W ;)
• i := i + 1,; take Xi = (U, V );

until i = N .Stop

The algorithm produces the trajectory X1, X2,
..., XN of the BUBP (p, λ, I). Now, using the
algorithm SIMSCAN for the bivariate case, we
can determine an empirical distribution of the
scan statistics (i.e. a histogram) and then, es-
timate the critical value kα.

The simulation of the random variable X which
is binomially distributed with the parameters
p, n, 0 < p < 1, n ∈ N+, can be done in vari-
ous ways (see [8]). For large n,we use the fact
that X := Bin(n, p) ≈ N(np,

√
npq), q = 1− p

i.e. X is normally distributed. Therefore, the
algorithm to simulate X is the following [7]

Algorithm BINCL

• Input n, p; Calculate m = np, σ =
√

npq;
•Generate Z normal N(0, 1);
• Calculate X = m + Zσ;
• Take N = round(X). Stop

The function round(x) means the closest posi-
tive integer to x.

Simulation of a normal deviate Z := N(0, 1)
can be done in several ways; two methods will
be presented in short in the following. The first
one is based on Central Limit Theorem (CLT)
[5,6,7].

Algorithm CLNORM (simulates Z normal
N(0, 1) based on CLT)

• Z = 0;
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• for i := 1 to 12 do begin
Generate U uniform (0, 1);
Z := Z + U ;

end; Stop

Another algorithm combines a rejection (en-
veloping) and a discrete composition method
[6,7]. It looks as follows:

Algorithm RJNORM

repeat
• Generate U1 as uniform(0, 1);
• Generate Y Exp(0, 1);

(This can be done by the inverse method as
follows:

• Generate U uniform(0, 1);
while U ≤ 0.0000001 do Generate U uni−

form(0, 1);
• Y := − log(U));

until U1 ≤ e−
Y 2

2
+Y−0.5;

• Take Z1 := Y ;
• Generate U uniform (0, 1);
• if U ≤ 0.5 then s := 1

else s := −1; (s is a random sign);
• take Z := sZ1. (Z is N(0, 1)).Stop

In the following section we give some results
on the implementation of the algorithm SIM-
SCAN for producing the empirical distribution
of the scan statistics when the points (Ti, Wi),
1 ≤ i ≤ N are realizations of a bivariate uni-
form binomial process on [0, T ] × [0, W ] with
intensity λ. Comparisons with the results of
Alm [1] and with the results of Haiman and
Preda [2], in the case of BUPP process, are pre-
sented.In order to compare the results with the
bivariate uniform binomial process, we use the
fact that the binomial distribution Bin(n, p),
with n large is approximated by a Poisson dis-
tribution Poisson(λ), λ = np. When we re-
fer to the BUPP (λ, I) process and to the bi-
nomial BUBP (p, λ′, I) process, both on I =
[0, T ]×[0, W ], we must distinguish betweem the
intensities λ (for Poisson) and λ′ (for binomial).
In fact, for n large, we must have

λWT = λ′pWT (5)

which gives

λ′ =
λ

p
. (5′)

3 Implementation and

test results
In this implementation we use one of the pro-
grams presented in [8], namely the algorithm
called SCAN2, which derives from SIMSCAN.
The discrete process used in this implementa-
tion is either BUPP or BUBP according to
SIMBIN2.

In the following, we underline the main ideas
of SCAN2 (see [8]). Fig.1 gives some hints on
the construction of SCAN2. In the figure are
represented: the map, the scan window and
some points to illustrate the scan process;it shows
also different positions of the scan window. The
first position is on the top-right corner; it moves
down until covers the vertical band; then moves
to the left,then moves on the new corerspond-
ing vertical band, and so on. Some details are
explained bellow.

We suppose that the scan surface (i.e the map)
and the scanning window are rectangles with
the sides parallel with the horizontal and verti-
cal axes, having dimensions (T, W ) respectively
(u, v).

Furthermore we suppose that both the scan sur-
face and the scanning window are defined by
two of their corners: the upper right corner and
the lower left corner.

We denote these corners by Sright and Sleft

for the surface, and Wright and Wleft for the
window. Initially Sright = (T, W ) and Sleft =
(0, 0).

After generating the points (Ti, Wi), 1 ≤ i ≤
M , realizations of an bivariate uniform bino-
mial process on [0, T ]× [0, W ] with intensity λ,
we begin the scanning process.

First we order the simulated points with respect
to coordinates Ti.
Assume that this was already done. Then, let
us assume that the first position of the scanning
window is characterized by the coordinates:

Wright = (T, W ), Wleft = (T − u, W − v),

i.e. on the top-right corner (see Fig 1a).
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Fig.1. Hints for scanning algorithm:
(Sl = Sleft, Sr = Sright..etc for W )
a) initial pozition of scan window;
b) moving down the scan window;
c) moving window to the left.

The scanning window moves as we specified.
If we assume that the window is characterized
by the coordinates Wright = (xr, yr), Wleft =
(xl, yl), then the following position of the scan
window will be: Wright = (xr, yr − d), Wleft =
(xl, yl − d) where d = min{yr − ymax, yl} and
ymax is the biggest coordinate y from the band
which is smaller than yr. (See Fig 1 b).

After a band was entirely scanned, the scan-
ning window is moved on the next band in the

following way: if the last position on the previ-
ous band was characterized by Wright = (xr, yr),
Wleft = (xl, yl), then the present position is
characterized by: Wright = (xr−h, ymax), Wleft =
(xr − h − u, ymax − v) where h = min{xr −
xmax, xl}, xmax is the biggest coordinate x smaller
than xr, and ymax is the maximum value of Wi

for the points which have xr − h − u ≤ Ti ≤
xr − h. We use this method of scan because
the simulated pointshave the coordinates Ti in
increasing order (see Fig 1 c).

For each position of the window there is counted
the number of points that are in the window
and is stored the largest number nw of points
found during the scan process. This maximum
nw is a simulation value of the bivariate scan
statistics, (i.e. nw = Sw = S in the notation of
Section 1). By repeating the algorithm SCAN2
for N runs or iterations (N−large), one deter-
mines the empirical distribution of the scan sta-
tistics.

The following tables (Tab.1,Tab.2) contain test
results. In each table there are also mentioned
for comparison, simulated results produced by
Alm [1] and approximations produced by a spe-
cial method due to Haiman and Preda [2]. (Some
of the tables are reproduced fron [8]). On the
top of each table are mentioned particular val-
ues of the input data used, namely:

• λ intensity of the bivariate Poisson process;
• W, T dimensions of the rectangle;
• u, v dimensions of the scanning window;
• N number of simulation runs;
• p and λ′ refer to different values of parame-
ters of binomial processes corresponding to the
approximate parameter of the Poisson process
(determined according to (5),(5’)).
• k is the value of scan statistics for which is
calculated empirical probability;
• H&P in the table refers to the results from
”Haiman and Preda” [2].
• P refers to BUPP; A refers to Alm; B refers
to BUBP; The entries in the following tables
represent probabilities P (S ≤ k) where S =
S((u, v), T , W ) is the bivariate scan statistics
from Definition 1.
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The results in the tables show a good agreement
between the distributions of scan statistics for
all the compared cases (i.e. Poisson, Alm, H&P
and binomial). For values of k of practical in-
terest (see bellow), the values of P (S ≤ k) are
almost equal for both BUPP and BUBP.

Tab.1.Simulated results.Comparisons.

λ = 0.05, W = T = 10, u = v = 1,
N = 10000, p = 0.1, λ′ = 0.5

k P H&P A B(p, λ′)
2 0.9859 0.9854 0.9905 0.8547
3 0.9998 0.9996 0.9997 0.9798
4 1.0000 0.9999 0.9999 0.9982

λ = 0.1, W = T = 50, u = v = 1,
N = 10000, p = 0.01, λ′ = 10

k P H&P A B(p, λ′)
3 0.8762 0.8761 0.9052 0.8719
4 0.9957 0.9957 0.9966 0.9944
5 1.0000 0.9998 0.9999 0.9998

λ = 0.5, W = T = 10, u = v = 1,
N = 10000, p = 0.1, λ′ = 5

k P H&P A B(p, λ′)
4 0.7865 0.7938 0.8343 0.7932
5 0.9692 0.9707 0.9759 0.9680
6 0.9968 0.9970 0.9974 0.9971
7 0.9999 0.9997 0.9997 0.9999

λ = 1, W = T = 10, u = v = 1,
N = 10000 p = 0.1,λ′ = 10

k P H&P A B(p, λ′)
6 0.8396 0.8248 0.8603 0.8335
7 0.9695 0.9468 0.9732 0.9690
8 0.9956 0.9691 0.9959 0.9954

The following tables compare only our results
with the results from the implementation of

Alm for BUPP. The estimated frequencies (es-
timated probability distribution) shown in ta-
bles refer only to some interesting values of the
bivariate scan statistics. These tables are re-
produced from [8].

Tab.2. Further comparisons.

λ = 2, W = T = 20, u = v = 1, N = 10000
p1 = 0.01, λ′1 = 200, p2 = 0.1, λ′2 = 20

k A B(p1, λ
′
1) B(p2, λ

′
2)

7 0.0004 0.0002, 0.0001
9 0.5283 0.5100 0.5119
11 0.9640 0.9692 0.9653

Tab2.(continued)

λ = 5, W = T = 20, u = v = 1, N = 10000
p1 = 0.01, λ′1 = 500, p2 = 0.1, λ′2 = 50

k A B(p1, λ
′
1) B(p2, λ

′
2)

13 0.0040 0.0002 0.0005
15 0.2535 0.2645 0.2610
17 0.8442 0.8509 0.8457

During various runs it resulted a convergence of
the frequencies to the probabilities calculated
by Haiman and Preda [2]. The number of runs
N = 10000 considered in the tables seems to
be large enough to ensure a good estimate of
the probability distribution of the scan. Any
N > 10000 will be recomended.

On the other hand, it was observed that con-
vergence is ensured for large values of the map
(i.e. W, T ) with respect to the scan window
(i.e. u, v); a large ratio of WT/(uv), increases
the convergence, for the same N . The tests
done here legitimate both assumptions (Pois-
son or binomial) for defining, via simulation,
the critical value of the scan test. Therefore,
in the next section (application) we will use the
Poisson process. (Runs for BUBP are time con-
suming!).

BUBP and BUPP processes may be used as
equal alternatives in various applications where
discrete random (uniform) events can occur on
some surface of material or geographic area.
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4 An Application to

Healthcare

Here we present an application of scan statistics
to analyze the cancer disease for children under
age 16 in the region North Pas de Callé (north
of France). The region consists of two depart-
ments, each department contains some arondis-
ments and an arondisment consists of cantons.

The data consisted in the number of diseased
children in each canton (considered the scan
window). The total population in the region is
about 573500 inhabitants and total number of
ill children is N = 497. In one canton of the
first department was found the largest num-
ber of ill children as beeing 9 from a popu-
lation of π1 = 1600 and in other canton of
the second department were found 7 ill chil-
dren from a population of π2 = 2300 inhabi-
tants. These two cantons contain the largest
figures of ill children.Administrative authorities
want to know if these large figures are natural
or they are determined by some environmental
fators of cantons.(The whole region is a min-
ing region!). Therefore, under the natural hy-
pothesis (denoted H0) we asume that number
of diseased children in the region is a BUBP
(or BUPP) process and we must test the hy-
potheses H01 and H02 that the numbers of 9 re-
spectively 7 ill children are considered normal
or dangerous events from the healthcare point
of view. Therefore we are in the theoretical sit-
uation discussed in the previous sections.

The collection of data for our application fol-
lows from the procedure used in [3,4] which
defines the dimensions of the hypothetic geo-
graphic region (i.e. the map) taking into con-
sideration the seize of population in the region
and defines the scan window using the size of
population in the cantons with the largest num-
ber of ill children. As the geographical map of
the region is not a regular one, we consider it
as a square [0, W ] × [0, T ] with W = T =

√
P

where P is the seize of population of the re-
gion (in our case P = 573500), hence W =
T = 757.3. Similarly, the scan windows lengths
are u1 = v1 =

√
π1 =

√
1600 = 40, u2 =

v2 =
√

π2 =
√

2300 = 47.95. The intensity of
the Poisson process (over the region) is λ =
N
P

= 0.0008666 and the parameters for Pois-
son processes for the two cantons are Λ1 =
λπ1 = 1.384, Λ2 = λπ2 = 1.9918. To use the
bivariate uniform binomial processes, we need
to estimate parameters p1, p2. These are sim-
ply defined as p1 = 7

N
= 0.014, p2 = 9

N
=

0.018. Hence, according to (1.5’) we have for
BUBP the parameters: λ′1 = Λ1/p1 = 99,λ′2 =
Λ2/p2 = 110.6. (For BUBP thesefigures are not
used).

In order to test the mentioned hypotheses H01,
H02 we use the simulation procedure presented
in the previous sections. We use also the prop-
erty of the scan statistics which says that

S = S((u, v), W, T ) = S((1, 1), W/u, T/u).

Hence, for the first canton W1 := W/u1 = T1 :=
T/v1 = 747/40 = 18.93, W2 := W/u2 = T :=
T/47.35 = 757.3/ 47.35 = 15.77.

The results of simulation for data under Poisson
hypothesis, are resumed in the tables (Tab.3,
Tab.4) which contain the values of S = k and
corresponding frenquences f for the two can-
tons:

Tab.3.Results for canton 1.

W = T = 18.93, u = v = 1, Λ = 1.3865,
N = 100000 = iterations, f=frequensy of

S = k.
k 6-8 9 10 11-13
f 82137 14302 3006 555

Tab.4. Results for canton 2.

W = T = 15.77, u = v = 1, Λ = 1.99318,
N = 100000 = iterations, f=frequency of

S = k.
k 7-8 9 10 11-16
f 23364 44235 23462 7929

From the first table one can see that P (S ≤
9) ≈ 0.96439. Therefore H01 can be accepted
with a risk of α = 0.03561. (Hence kα = 9 and
the critical region of the scan test is C = {k|k >
kα}).
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From the second table one can see that P (S ≤
10) ≈ 0.91071. The hypothesis H02 is also ac-
cepted with α = 0.09929, kα = 10, and the crit-
ical region C = {k|k > kα}. Since in the second
case (the canton 2) there are 7 ill children, and
this is the second large value in the region, the
frequencies in the second table must be moved
one step to the left. Therefore for the second
large value (i.e. k = 7) the critical region is
C = {k|k > kα}, kα = 11, α = 0.01946 and this
gives a better reason to accept the hypothesis
H02.

In conclusion, the figures of ill children (k =
9, k = 6) are natural. There are no problems for
authorities, concerning the cancer healtcare.
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