
MODEL-DRIVEN SOFTWARE DEVELOPMENT
AND DISCRETE EVENT SIMULATION

Thomas Sandu, Nicolas Knaak, Bernd Page

1University of Hamburg, Department of Informatics
Vogt-Kölln-Strasse 30, 22527 Hamburg, Germany

thomas.sandu@itemis.de (Thomas Sandu)

Abstract

Model-driven software development (MDSD) is a current direction in software engineering that
stresses the importance of models in contrast to program code. Since models have always been
of large importance in simulation, some aspects of MDSD are especially helpful to support dis-
crete event simulation (DES) studies. In this paper we present a case study concerning the de-
velopment of an MDSD-compliant domain architecture for DES. This includes code generation
facilities for the object oriented simulation framework DESMO-J based on a new UML profile
for DES. The approach is supported by techniques and tools from MDSD such as the generator
framework openArchitectureWare and the test frameworks JUnit and FIT. On this foundation, a
larger teaching example from the domain of harbor logistics has successfully been implemented
as a reference model. On the basis of the gained experiences we discuss general prospects and
drawbacks of applying MDSD to the development of simulation models as well as interactive
simulation tools. In particular, we identify MDSD as an intermediate level between code-centric
simulation approaches and domain-specific graphical tools. On the one hand, MDSD can ease
the testing and implementation of large simulation programs. On the other hand, it provides
techniques and tools that aid the development and prototyping of graphical simulation systems.

Keywords: DES, MDSD, UML, process-oriented simulation, software engineering

Presenting Author’s Biography
Dipl.-Inform. Thomas Sandu received a diploma degree in Computer
Science from the University of Hamburg in 2007. The subject of his
diploma thesis is the model-driven development of discrete event simu-
lation programs. He currently works as a software developer for itemis
GmbH, a German software development and IT consulting company,
which is specialized on model-driven software development.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM



1 Introduction
The employment of model-driven software develop-
ment (MDSD) leads to a change of prevailing soft-
ware development practice. The application of MDSD
promises improvements by stressing the importance of
models in relation to pure program code. This leads
to a higher abstraction level compared to code-centric
approaches. The source code of the application is gen-
erated from models. In the ideal case it even does not
have to be manually adapted or extended. In order to
benefit from MDSD a domain-specific language (DSL)
needs to be designed that makes it possible to use ele-
ments of a previously crafted metamodel for describing
the needed application. In order to achieve a control-
lable complexity of graphical models and transforma-
tions, the assigned domain-specific modeling language
must support only a precisely defined domain.

The objective of discrete event simulation (DES) is to
illustrate the behavior of real systems in order to under-
stand them and make forecasts about them. Ever since
practitioners in this field have employed various kinds
of models. Simulation applications are often imple-
mented using graphical simulation environments, but
also by employing general purpose programming lan-
guages and simulation frameworks.

In this paper, we present a generative infrastructure for
the model-driven development of process-oriented dis-
crete event simulation programs. The platform consists
of our Java-based simulation framework DESMO-J, the
test frameworks JUnit and FIT and some specific helper
classes. The DSL is an extension of the Unified Mod-
eling Language (UML 2) that is specialized by defining
a simulation-specific profile. The DSL was designed
taking in account modeling techniques presented in [1].

Based on these practical experiences, we discuss gen-
eral prospects that the use of MDSD can provide for de-
veloping simulation programs and graphical simulation
tools. In both cases the use of MDSD changes the way
simulation software is constructed. In particular, we
show how to adapt the simulation modeling cycle to fit
MDSD. Using MDSD and an iterative approach to soft-
ware development can save valuable time by speeding
up the implementation phase. The role of conceptual
models in this context is also discussed. Since MDSD
has some similarities to graphical simulation tools, it
can possibly combine the user-friendly modeling facil-
ities of graphical simulation tools with the power and
flexibility of general purpose programming languages
and simulation frameworks. Another important aspect
is the support for simulation software testing by means
of MDSD techniques.

The paper is organized as follows: In Section 2 we in-
troduce foundations of MDSD and the chosen tools.
Section 3 reviews related work. Section 4 presents our
domain architecture for discrete event simulation in-
cluding the UML profile and a basic reference model.
In Section 5 we extend the scope towards a general dis-
cussion of prospects and drawbacks concerning the use
of MDSD in the DES domain. Section 6 concludes the

paper and provides an outlook to our future work.

2 Model-Driven Software Development
This section provides a brief introduction to model-
driven software development. Following the principles
of MDSD, we describe the characteristics and main
roles of a typical software development process in this
field.

2.1 Principle of MDSD

The principles of MDSD can be described with the aid
of Figure 1. The source code of every software that
is bound to a particular domain can be partitioned into
three parts. Following [2] these are:

• generic source code

• schematical, repetitive source code

• individual, application specific source code

Fig. 1 Identification of repetitive code adopted from [2]

The generic code remains the same for all applications
that belong to the particular domain. It becomes a part
of the MDSD platform. The platform supports the gen-
erated parts of an application constructed in a model-
driven fashion. The individual code is specific for every
application of the domain. It has to be written manually
and cannot be generated.

The objective of MDSD is to find a generative approach
for the construction of the schematical, repetitive source
code by employing models. This kind of code is not
identical for all applications, but has a common struc-
ture or follows the same design patterns. In order to
generate this part of the application code, an application
model is built by means of a domain-specific language
(DSL). Transformations designed for this DSL translate
the elements of the application model to code that can
be run on the MDSD platform. Being separated from
the generated code, the generic and individual code is
not overwritten in case of re-generation.

2.2 Characteristics of the Development Cycle

MDSD allows to separate the implementation of the
business logic from the technical infrastructure. As a

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM



result, the development consists of two parallel phases
illustrated in Figure 2. During the domain engineering
phase the DSL, the transformations from model to code
and the platform are built. They constitute the domain
architecture and the technical infrastructure.

Application engineering
(Iteration n)

Domain engineering
(Iteration n+1)

Integration
and feedbackFeedback

Fig. 2 Domain and application engineering with MDSD
adopted from [3]

The application engineers use the DSL to model the
needed functionality and business logic of the software
product. They cannot merely rely on the generated ar-
tifacts but have to extend them by manually written
code. Frequent feedback between the two phases leads
to a continuous improvement of the domain architec-
ture. Since the application engineering phase in the
context of MDSD is not accomplishable without a first
version of the DSL, it is necessary that the domain en-
gineering phase starts one iteration in advance.

Due to the use of graphical models and code genera-
tion, MDSD heavily relies on tool support. In our case
study described in the following, we chose the UML
editor MagicDraw 11.6 to create the graphical mod-
els and the Eclipse platform as an extensible devel-
opment environment. The Eclipse subproject UML2,
an EMF-based implementation of the UML 2.x meta-
model, was adopted as an implementation of the UML
metamodel. The MDSD framework openArchitecture-
Ware 4.1.2 (oAW) was used for creating the generator
and for other MDSD specific tasks. Details about these
tools and their application in our study are provided in
[4].

3 Related Work
Traditionally there is a close link between object ori-
ented modeling and the domain of (see also [1]). Cur-
rent approaches are frequently based on UML and
partly include code generation facilities. [5] e.g. present
a UML tool that is able to generate simulation code for
the process-oriented DES library JavaSim from class
and sequence diagrams. Other simulation world views
or diagram types are not supported, but the tool incor-
porates random variables and simulation statistics.

[6] apply modified UML 1.x activity diagrams to agent-
based simulation modeling. They incorporate a large
number of modeling elements like object nodes and
send-/receive-signal actions and define their own ex-
tensions for timed states and “emergency-rules” antic-
ipating some UML 2.0 elements. However, the ex-
tended notation can be handled and executed exclu-
sively by their graphical simulation tool SeSAm. [7]

employ class, statechart, collaboration and so called
story diagrams to model and simulate production sys-
tems with their UML case tool Fujaba. However, none
of the above approaches explicitly references MDSD
processes and techniques.

A more ’MDSD-like’ approach is the work of [8] who
use UML 2.0 component and statechart models for the
performance analysis of network systems. The UML
2.0 compatible case-tool Tau Telelogic is used as an ed-
itor. There is a code generator based on the Velocity
template engine that generates simulation programs for
the process-oriented SimmCast framework.

[9] describes the advantages of combining the OMG
standard Model-Driven Architecture (MDA) and DES.
MDA can be seen as a specialization of MDSD with
a strong focus on platform independence. This can be
achieved by using platform independent models (PIM)
that are transformed to platform specific models (PSM).
The authors use the proprietary tool SIMplicity for
modeling and transformation that can generate code for
the High Level Architecture (HLA). Unlike the open
source framework oAW, SIMplicity binds the user to a
HLA-compliant platform (the predecessor Distributed
Interactive Simulation (DIS) is also supported). The
transformations cannot be manipulated by the user. A
major advantage of our interpretation of MDSD is the
possibility to alter the domain architecture at any time.

In [10] MDSD and simulation are used to predict the
quality of service of models based on their architectural
design. A DSL for modeling component-based archi-
tectures allows not only the specification of structural
features but also of performance related information.
The system supports the use of random variables, so un-
certainty and nonpredictable behavior can be modeled.
After building and parameterizing all required models,
these are evaluated with a simulation program based on
DESMO-J. In contrast to our work, the scope of this
evaluation is to identify models with better quality of
service and not to construct arbitrary simulation pro-
grams. In our approach, the constructed programs can
be used for any simulation specific task depending on
the constructed models and the manually implemented
behavior.

4 Domain Architecture for Discrete Event
Simulation

In the following, we present an example of a domain
architecture for process-oriented DES. As a basis, we
refine a typical simulation modeling cycle for the use
with MDSD. We then present a DSL consisting of a
new UML profile for DES and show how to use this for
implementing a reference simulation model.

4.1 A Simulation Modeling Cycle Including
MDSD

The MDSD development phases can be merged with
a typical simulation modeling cycle such as that pre-
sented in [11]. If the domain architecture has not been
implemented yet, the phases of domain engineering and

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM



application engineering are both necessary. In this case,
the simulation-specific activities, like problem defini-
tion and data collection, become a part of the applica-
tion engineering phase. If the domain architecture is
already built and does not need improvement, the do-
main engineering phase can be omitted. The applica-
tion engineering phase can then be incorporated in the
simulation development process. In both cases the im-
plementation phase of the simulation development cy-
cle needs to be refined. A possible refinement is shown
in figure 3.

Fig. 3 Refinement of the simulation cycle from [11]

A more detailed discussion of the combination of
the MDSD and simulation development cycles can be
found in [4].

4.2 A DSL for Process-Oriented Simulation

In [4] we have developed a domain architecture for
process-oriented discrete event simulation. The ele-
ments of the DSL are displayed in Figures 4 and 5. The
DSL was created by defining a UML profile that partly
implements the simulation-specific extension stereo-
types proposed in [1].

The DSL supports two UML diagram types that we
deem most important for DES, i.e. class and activity di-
agrams. In a class diagram the classes representing the
simulation model and the processes can be marked with
the stereotypes <<Model>> and <<SimProcess>>.
The <<Platform>> stereotype indicates that a class
is part of the platform or manually implemented, so
nothing is generated from it. Operations can also be
marked by stereotypes. <<lifeCycle>> indicates
that an operation describes the behavior of a simulation
process. Stereotypes of attributes are shown in figure 5.
The stereotype <<location>>, for instance, marks
an attribute that describes the location of a simulation
entity within the model’s environment.

Activity diagrams are employed to describe the lifecy-
cle of simulation processes. Elements of activity dia-

<<profile>>

SimulationProfile

<<stereotype>>
Model
[Class]

−name : String
−description : String

<<stereotype>>
lifeCycle

[Operation]

<<stereotype>>
SimProcess

[Class]

<<stereotype>>
Platform
[Class]

<<stereotype>>
get location
[Operation]

oAW check
this.ownedOperation.typeSelect(DiscreteEventProfile::proc
essBehaviour).size == 1;

oAW check
this.attribute.select(e|e.name == 
"model").size == 1;

oAW check
this.ownedBehavior.typeSelect(
        uml::Activity).size == 1

<<metaclass>>
Class

<<metaclass>>
Operation

Fig. 4 First part of the DSL

<<profile>>

SimulationProfile

<<stereotype>>
queue

[CentralBufferNode]

#queueNameInModel : String

<<stereotype>>
NumberOfQueueLocations

[Property]

<<stereotype>>
ConstructorInitialized

[Property]

<<stereotype>>
hold

[CallBehaviorAction]

<<stereotype>>
AssociatedProcess

[Property]

<<stereotype>>
QueueRef
[Property]

<<stereotype>>
Array

[Property]

<<stereotype>>
location

[Property]

oAW check
this.name.endsWith("Queue") && this.name.length > "Queue".length;

<<metaclass>>
CallBehaviorAction

<<metaclass>>
CentralBufferNode

<<metaclass>>
Property

Fig. 5 Second part of the DSL

grams such as object nodes or send and receive signal
actions have been specialized with stereotypes accord-
ing to the terminology of process-oriented simulation.
The stereotype <<hold>> e.g. marks an action that
passivates a simulation process for a certain period of
time. An object node with the stereotype <<queue>>
represents a waiting queue.

To validate the well-formedness of models created with
the DSL, the UML profile includes constraints that have
to resolve to true, before the code is generated. One
example constraint shown in Figure 4 ensures that every
simulation process class is connected to the simulation
model class. Another constraint checks that every class
with the <<SimProcess>> stereotype has only one
operation marked with <<lifeCycle>>.

4.3 A Simulation Study Implemented with MDSD

As a reference model, we have chosen a teaching ex-
ample from [11] that was previously implemented in
the process- and event-oriented modeling styles. The
model was re-implemented by means of MDSD (see
[4]) to illustrate the possibilities of the constructed
domain architecture. According to the principles of
MDSD described in [2], we chose a straightforward, yet
typical example and implemented the reference model
in parallel to the domain architecture in order to ensure

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM



the appropriateness of the architecture and the quality
of the generated code.

In [11] the model is introduced as follows: Hamburg is
Germany’s principal seaport and largest overseas trade
and transshipment center. In this international seaport,
container bridges charge a multitude of so-called feeder
ships with containers for overseas transport, e.g. to fur-
ther ports within the Baltic Sea. The feeder ships suc-
cessively supply several Baltic Sea ports on different
routes. In each of the visited ports, container bridges
unload the containers destined to the respective port
from the feeder ships. The objective of the simulation
study is to gather information about bottlenecks con-
cerning the container bridges as well as about the ships’
lay days in each port.

In Figure 6 the classes of the simulation model
(ContainerShipmentModel) and the processes
(Ship and Crane) are defined. From this class dia-
gram, not only simulation classes are generated. The
code generation also comprises helper classes for the
realization of the simulation processes’ behavior as well
as test classes.

<<SimProcess>>
Crane

<<ConstructorInitialized>> <<location>>−harbour : int
−unloadingTime : double = 0

<<lifeCycle>>+lifeCycle()

<<SimProcess>>
Ship

−route : int
<<Array>>−numberOfContainers : int
<<ConstructorInitialized>>−underTest : boolean = false
−harbourFrom : int = 0
−travelTime : double = 0

<<lifeCycle>>+lifeCycle()

<<Platform>>
Passage

<<get location>>+getHarbour() : int

<<Model>>
ContainerShipmentModel

+init()
+doInitialSchedules()

<<ConstructorInitialized>>
#model

−createdCrane
1..*

<<ConstructorInitialized>>
#model

1

<<AssociatedProcess>>
#processingCrane

<<AssociatedProcess>>

#processedShip

−currentPassage

Fig. 6 Definition of the model class and the simulation
processes

Figure 7 illustrates the definition of the behavior of a
feeder ship process as an activity diagram. Elements
from the DSL are the Navigate to next port
action and the object nodes Ships and Cranes. The
object nodes are marked by <<queue>> and have a
tagged value named queueNameInModel. Tagged
values are attributes defined by stereotypes and provide
extra information for the correct generation of the code.
The value of queueNameInModel represents the at-
tribute name of the accessed queue as defined in the
model class.

From every action in the activity diagram, an abstract
action class is generated. It has to be subclassed to de-
fine the actual behavior of the respective action. To re-
alize the complete behavior of the simulation process,
instances of the subclasses are executed in the order im-
posed by the activity diagram. JUnit test classes are also
generated for every action class. They use mock objects
of their assigned simulation process and most of them
need to be subclassed for concrete implementations.

<<queue>>
Cranes

{queueNameInModel = idleCraneQueue}

<<queue>>
Ships

{queueNameInModel = shipQueue}

Determine number
 of ports

Compute number 
of container

Activate 
crane

Determine if
crane is available

Wait for end 
of loading

Compute travel
time

Insert into ship
waiting queue

Compute next 
destination

Remove crane
from queue

processingCrane : Crane

<<hold>>
Navigate to 
next port

 [at least one crane available]

 [no further ports]

Fig. 7 Lifecycle of a feeder ship process

After the code generation the application engineers are
informed which classes need to be subclassed and what
names these subclasses must be given. This information
is also generated and depends on the constructed UML
models. In the oAW framework, these hints are con-
tained in a so-called recipe file that can be interpreted
with the aid of a specific Eclipse plug-in.

5 Combination of MDSD and DES
Building DES programs in an MDSD style provides ad-
vantages but also drawbacks. In the following, we dis-
cuss the combination of both fields, based on the expe-
riences from constructing the above domain architec-
ture. In this discussion, we particularly identify poten-
tial benefits for the construction of graphical simulation
tools. A complementary discussion with a slightly dif-
ferent focus in the context of MDA can be found in [9].

5.1 Code Generation and Prototyping Save Time

MDSD makes it possible to generate all entities and
other important elements of a simulation program from
conceptual models. Once the initial effort of creat-
ing the code generation infrastructure is completed, the
designer of a simulation application can concentrate
on creating a good representation of the real system.
Changes in the conceptual models are synchronized
to changes in the source code. Only custom behav-
ior has to be implemented manually while common ac-
tions such as adding a new server to an existing queuing
model are performed automatically.

An argument against MDSD is the large effort in the
early stages of the simulation study. Before being able
to generate vital parts of the simulation, the DSL and
the transformations need to be constructed. In DES
understanding and studying the domain is traditionally
time-consuming and complex. However, the deep un-

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM



derstanding of the real system needed by a simulation
developer can help him create a good metamodel and
DSL. If a domain architecture can be re-used, the sim-
ulation developer can fully concentrate on the system
under study. Since many application parts are gener-
ated, the implementation phase becomes shorter.

Following [2], an MDSD project needs a manually cre-
ated reference implementation of important aspects of
the domain, i.e. one or two manually implemented sim-
ple use cases that should cover all elements of the DSL.
The transformations can be derived from this reference
implementation and the code generation is based on the
manually crafted code. In terms of quality this code
should be superior to the code generated by former
CASE tools. In simulation the reference implemen-
tation consists of a model representation lacking de-
tails compared to a productive simulation model. The
need of a reference implementation encourages the de-
signer to construct early prototypes, which supports an
early elimination of misunderstandings regarding the
real system. Summarizing, a reference implementation
and an iterative approach to MDSD lead to an improve-
ment of simulation software quality and can save valu-
able time.

5.2 Larger Importance of Conceptual Models

In code-centric simulation modeling, the formal MDSD
models replace the traditional conceptual models.
These models are of greater importance than their pre-
decessors, since they do not only illustrate the structure
and behavior of the real system, but are directly linked
to the simulation program. Without using MDSD the
conceptual models and the source code need to be syn-
chronized manually. Changes of the MDSD models re-
sult in a generative update of the simulation program.
After regenerating the application code, the application
developers implement the parts of the program which
need to be implemented manually. This workflow guar-
antees that the MDSD models always represent the lat-
est version of the source code and are not only em-
ployed for documentation or for the first steps of the
implementation.

5.3 Construction of Graphical Simulation Tools

The employed domain-specific language has to cover
the concepts and entities of the analyzed domain. This
can be done on a textual but also on a graphical ba-
sis. Choosing a graphical DSL has some well-known
advantages such as an easier understandability and val-
idation by domain experts and a higher level of abstrac-
tion. However, models built with a DSL become more
complex than mere conceptual models since the map-
ping from the elements of the DSL to code has to be
unambiguous.

MDSD has many strengths when combined with pow-
erful object oriented frameworks. The code gener-
ated from the models constructed with the DSL does
not directly implement the behavior of simulation el-
ements, but instantiates the predefined elements from
the used frameworks and takes care of the relations be-
tween these elements and their parameterization. A

DSL covering all aspects of the analyzed domain and
the assigned transformations can be regarded as a basic
graphical simulation tool for one particular domain. A
significant advantage over traditional simulation tools
is the result of the code generation: It is an object ori-
ented application, that can be modified and extended
manually.

An obvious disadvantage of MDSD is the fact, that
it often leads towards hard to use graphical languages
supported by rather general tools like UML editors (as
opposed to graphical simulation tools such as e.g. Ex-
tend [12]). More user friendly ways to design the ex-
ecutable simulation model and to set parameters of its
components have to be found. The GMF plug-in for
the Eclipse platform simplifies the creation of a special
purpose graphical editor for a DSL. The tool allows to
generate user friendly graph editors from the data struc-
tures describing the DSL metamodel. Thus the rapid
prototyping of graphical simulation tools is supported.
The resulting editors are Java applications and can be
extended manually in order to reach the usability level
of graphical simulation tools. Thereby simulation pro-
grammers can easily build specialized tools for domain
experts without a programming background.

Fig. 8 A simple GMF editor for modeling the behavior
of simulation processes

Figure 8 shows an editor generated with GMF. The in-
put data for the generation is a meta-model for describ-
ing the behavior of simulation processes. In general
GMF supports any kind of meta-model and could there-
fore be used to build graphical editors for other sim-

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM



ulation world-views as well (e.g. transaction-oriented
modeling). Without prior knowledge of GMF we man-
aged to generate this editor within three man-days of
work. The representation of the diagram is Eclipse
EMF which is also supported by the employed oAW
framework.

An MDSD domain architecture for discrete event sim-
ulation can furthermore be used as a basis for a
traditional domain-specific graphical simulation tool.
MDSD frameworks like oAW are very flexible and
powerful and allow to easily implement importers for
any kind of model representation. The generator can
create components used by the simulation tool during
its execution. Thereby, manufacturers of simulation
software can profit from the best practices of MDSD
and a change of platforms or modeling styles might be-
come easier.

5.4 Assistance for Model Testing

Following [13] model testing is a challenging task in
simulation. MDSD can ease the creation of software
tests significantly because the generative approach also
allows to generate test code. The generation of partially
implemented test classes already eases the development
of tests. Generated parts of the test classes show the in-
experienced user which part of the application should
be tested, and what test strategies should be used. Fur-
thermore, the use of MDSD allows to specify the ele-
ments to be tested in the conceptual models. The se-
mantics of this marking depends on the design of the
transformations. For example certain data collectors
can be marked to write debug reports or to be auto-
matically compared to real system data in operational
validation.

Besides unit tests, it is also possible to generate parts of
integration or acceptance tests. These black box tests
ensure that the overall application exhibits the expected
behavior. Therefore, they are quite appropriate to test
the behavior of complete simulation models. We have
made rather positive experiences with the FIT Frame-
work for Integration Tests by Ward Cunningham [14]
that are reported in detail in [4].

MDSD also eases the subsequent refactoring of exist-
ing applications towards better testability. This is due to
the fact, that the architecture of the constructed applica-
tion is encapsulated in the transformations. Therefore,
it can be refined more easily than in conventional ap-
plications, since it is only necessary to adapt the trans-
formations. A single change of the domain architec-
ture affects many generated artifacts. If the focus is on
better testability, the improvement of the architecture
towards a better testable structure can thereby be sim-
plified throughout the whole application.

6 Conclusions
In this paper, we have discussed the benefits and draw-
backs of applying model driven software development
in the domain of discrete event simulation. We have
implemented a domain architecture for DES and an
operational generative infrastructure. It comprises a

new UML profile for process-oriented simulation as the
domain-specific DSL and code generation facilities for
the object oriented simulation framework DESMO-J.
In this context, we have applied and evaluated several
MDSD-specific tools and technologies. We have also
successfully implemented an example from harbor lo-
gistics as a reference model.

Based on these experiences, we have drawn conclusions
on the general applicability of MDSD to DES. As a ben-
efit, the generative approach of MDSD can help saving
time during model development and further encourage
early prototyping in simulation. Additionally, MDSD
stresses the importance of models in code-centric simu-
lation approaches and provides support for model test-
ing.

However, due to its rather technical orientation, MDSD
cannot replace traditional domain-specific graphical
simulation tools. Instead, it provides an intermediate
level between code-centric and graphical model devel-
opment. On the one hand, MDSD supports the devel-
oper of large simulation programs in schematical rou-
tine tasks on the basis of models. On the other hand,
MDSD-related concepts and tools like GMF or oAW
can ease the rapid prototyping of graphical simulation
tools for domain experts.

In future work, the presented concepts should be ap-
plied in other and larger simulation studies, and the
presented DSL should be adapted accordingly. More
domain-specific editors for DESMO-J models can be
built based on the GMF framework. Another interest-
ing direction for future research is an investigation of
the applicability of MDSD to later phases of a simula-
tion study such as experimentation, result analysis, and
validation.

7 References
[1] Bernd Page and Nicolas Knaak. Applications

and Extensions of the Unified Modelling Lan-
guage UML 2 for Discrete Event Simulation. In
Y. Merkuryev, R. Zobel, and E. Kerckhoffs, edi-
tors, Simulation in Wider Europe - Proceedings of
the 19th European Conference on Modelling and
Simulation (ECMS 2005), Riga (Latvia), 2005.

[2] Thomas Stahl and Markus Völter. Modell-
getriebene Softwareentwicklung. Techniken, Engi-
neering, Management. dpunkt.verlag, Heidelberg,
2005.

[3] Jorn Bettin. Prozessauswirkungen von MDSD.
http://www.sigs.de/publications/os/2004/MDD/
bettin MDD 2004.pdf (in April 2007), 2004.

[4] Thomas Sandu. Modellgetriebene Entwicklung
von Simulationsprogrammen am Beispiel des
DESMO-J-Frameworks. Master’s thesis, Univer-
sity of Hamburg, 2007.

[5] L.B. Arief and N.A. Speirs. A UML Tool for an
Automatic Generation of Simulation Programs. In
WOSP 2000, Ontario, Canada, 2000.

[6] Christoph Oechslein, Franziska Klügl, Rainer
Herrler, and Frank Puppe. UML for Behaviour-

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM



Oriented Multi-Agent Simulations. In B. Dunin-
Keplicz and E. Nawarecki, editors, Proceedings
of the CEEMAS, number 2296 in Lecture Notes
in Artificial Intelligence, pages 217 – 226, Berlin,
2001. Springer.

[7] H.J. Köhler, U. Nickel, Jörg Niere, and Albert
Zündorf. Integrating UML Diagrams for Pro-
duction Control Systems. In Proc. of the 22nd
International Conference on Software Engineer-
ing (ICSE), pages pp. 241–251, Limerick, Ireland,
2000. ACM Press.

[8] Nico De Wet and Pieter Kritzinger. Using UML
Models for the Performance Analysis of Net-
work Systems. In Proceedings of the Workshop
on Integrated-reliability with Telecommunications
and UML Languages (WITUL), Rennes, Brittany,
France, 2004.

[9] Shawn Parr and Russell Keith-Magee. How To
Apply MDA To Simulation. In SimTecT 2004
Simulation Conference, 2004.

[10] Steffen Becker, Heiko Koziolek, and Ralf Reuss-
ner. Model-Based Performance Prediction with
the Palladio Component Model. In Workshop on
Software and Performance (WOSP 2007), 2007.

[11] Bernd Page and Wolfgang Kreutzer. The
Java Simulation Handbook. Simulationg Discrete
Event Systems with UML and Java. Shaker Ver-
lag, Aachen, 2005.

[12] Imagine That Inc. Extend.
http://www.imaginethatinc.com (in April 2007),
2007.

[13] C. M. Overstreet. Model Testing: Is it only a Spe-
cial Case of Software Testing. In E. Yücesan, C.-
H. Chen, J. L. Snowdon, and J. M. Charnes, ed-
itors, Proceedings of the 2002 Winter Simulation
Conference, pages 641-647, 2002.

[14] Ward Cunningham. Framework for Integrated
Test. http://fit.c2.com/wiki.cgi (in April 2007),
January 2007.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM


