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Abstract 

This paper describes an approach for collaborative, automated process coverage for event 

handling in supply networks, based on the integration of an artificial intelligence method, 

simulation techniques and change planning strategies within an integrated force-feedback 

loop. The artificial learning system, based on Q-Learning and state abstraction, is introduced, 

learning state based rule sets for controlling application of change planning algorithm in an 

event situation. The state abstraction is using k-means clustering evaluating the discrete 

production plans using a combined weighted quantitative and structural distance function. 

Using the rule set the relevant scenarios, gained from possible alternative change planning 

strategies, can be selected automatically for simulation based process coverage. These 

scenarios will be analyzed through a material flow simulation. According to the specific 

requirements of real-time reaction to events, it will be discussed whether a dynamic 

simulation model, scaling based on the selected scenarios, could be used to optimize 

simulation time to speed or result reliability. Therefore actual research activities will be 

discussed. A Production Control Center architecture is introduced to integrate all components 

into a vision of a future control system. To position this paper and future work on one basis, 

the upcoming and here partly stressed problems of foresight and real-time event handling, 

implemented by a combined simulation-learning-optimization system, will be classified and 

structured into a system matrix. 
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1 Introduction 

In today‟s competition, automotive OEMs and their 

suppliers are confronted with the demand for shorter 

delivery times, product lifecycles and a higher number 

of variants in parts and products. The globalization 

enables new market chances, but also increases the 

pressure of competition on the European Automotive 

Industry. Outsourcing of human resources and 

processes from the OEMs to their suppliers or other 

service providers is one consequence; the 

concentration on core competences is elevating the 

impact of the efficiency in adding value and also of 

the efficiency of planning and control of the value 

chain. 

The result is an increasing reduction of the inter-

enterprise vertical range of manufacturing. The 

number of companies involved in the value adding 

processes of the supply chain increases and 

consequently the co-ordination processes handling the 

inter-enterprise material flow become more complex. 

The study FAST 2015 [1] stresses the potential in 

costs and delivery time, which arises from a decrease 

in process lead times and stabilization of planning and 

execution processes. Maximal delivery reliability must 

be enabled by a higher and more efficient 

collaboration between the companies in the 

automotive supply network. 

One main aspect in the collaborative supply network 

management is the clearing of events occurring during 

supply network execution. These clearing processes 

must be highly reliable to ensure the operation of the 

entire production network. Today, this is implemented 

by supply network control processes using change-

planning [2]. The predicted effects on production 

plans calculated by those change planning strategies 

are depending on the event scenario, the supply 

network configuration and the type of used change 

algorithm. Combined with a material flow simulation 

system like d³FACT insight [3], the different emerging 

scenarios using the different change planning 

strategies [4] can be simulated and analyzed to cover 

the change planning strategies. But processing these 

emerging scenarios by applying change planning 

algorithms with simulation methods is a challenging 

task. It will be more effective to cover only those 

scenarios regarded as most effective for clearing the 

event.  

The selection of those scenarios could be done 

manually e.g. by a production planner or simulation 

expert. In order to increase the efficiency in covering 

change planning strategies enabling near real-time 

reaction an automated selection of scenarios used for 

process coverage is suggested.  

This paper describes a concept using change planning 

algorithms for event handling scenario generation 

used in a simulation component for real-time process 

covering. The selection of the scenario will be done 

with an introduced artificial intelligence system 

module based on reinforcement learning, learning its 

rule set for controlling the change planning scenario 

generation by selecting the best algorithm for event 

handling. All modules are integrated into a force 

feedback loop. 

  

Fig. 1 Force-feedback loop for event management 

2 Problem definition 

Through occurrence of events, the validity and 

consistency of production schedules can change 

tremendously during supply chain execution. These 

changes can be for example: 

 Short-term changes of demand or supply 

values  

 Blackout of capacities caused by machine 

breakdowns  

 Material based loss of supplies caused by 

logistical delivery problems 

 ... 

Within supply chain event management, these events 

are handled by a supply chain event management 

processor, which executes event-corresponding 

clearing actions. However, currently existing event 

handling software systems are only aligned to the use 

in simple supply chains, not in complex collaborative 

process environments (supply networks). 

The fast and reliable management of events in more 

dense and inter-enterprise automotive manufacturing 

networks demands for a new consideration of this 

topic regarding the influence of network based factors. 

It is obvious, that only more cooperation and 

collaboration implemented by efficient, overhead 

minimizing and robust processes will lead to an 

efficient event management in supply networks. 

The event management and clearing will be done by 

change planning strategies generating various 
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alternative event-cleared production plans, called 

scenarios. To ensure the reliability of these scenarios, 

they can be safeguarded by a material flow simulation, 

based on the current production network 

configuration. Based on the size of the network 

simulation model and the simulated time periods this 

task is highly computing intensive [5], increased by 

the number of scenarios being assessed. The number 

of scenarios to be assessed depends on the number of 

applied change planning strategies because every 

change planning strategy will generate a new 

alternative scenario which has to be covered by 

simulation. 

It can be summarized that using simulation for process 

coverage will increase the reliability of production 

plan scenarios but decrease the reaction time far from 

real-time event handling. Also the process starting 

with scenario selection, simulation model generation 

and at least simulation is interrupted by manual 

processes done by a production planner or simulation 

expert. To advance the reaction times for event 

handling, it is regarded helpful to optimize this 

manual process by using process automation and 

integrate the whole clearing process into a force-

feedback loop for processing events and covering 

changed plans as fast as possible. 

To fulfill this task several problems arise:  

1. A set of change planning algorithms is needed 

that can be applied on a production plan 

according to the change planning strategy. 

2. A measure is needed to reduce the possible 

scenarios for simulation to a processable number 

covering the most promising scenarios for event 

handling generated by the change planning 

stratgies. 

3. A simulation environment is needed to generate 

simulation models according to the scenarios that 

are dynamically configurable, regarding the time 

horizon offered for simulation. The level of detail 

of the simulation model must be adaptable to 

speed (rough model, fast processing, short time 

horizon for simulation) or reliability (detailed 

model, accurate processing, longer time horizon 

for simulation) 

4. A foresighted event handling module to increase 

the time period usable for scenario generation and 

process coverage by simulation. 

5. A real-time event detection system connected to 

the change planning system. 

6. A production control center as an umbrella 

integrating all modules. 

To enable real-time reaction to events by applying 

change planning strategies the used change planning 

algorithms must be designed lean and highly effective.  

The measure assessing the scenarios for selecting the 

most effective change planning algorithm could be 

implemented by a machine learning system like 

reinforcement learning (RL) [6]. RL is good for 

learning rule based decisions in complex models. But 

in the case of production network plans as the state 

model the RL must handle a high number of states that 

leads to extremely long processing times. Due to this, 

the state space must be reduced effectively by 

abstraction while preserving the characteristic features 

that enables assessing those abstracted states for 

applying change planning strategies. 

The simulator to be used must be able to process big 

models and offer a component to abstract the models 

according to the real-time constraints in real-time 

event handling. 

The following chapter 3 summarizes the state of the 

art and shows the gap, which is to be filled by the 

concepts of chapter 4. Chapter 5 summarizes the work 

already done and discusses in brief future activities. 

3 State of the Art 

Basis of every reaction within the event management 

is the identification and classification of the raised 

events, which are to be detected by monitoring 

mechanisms. In the following section, a possible event 

classification is presented, which can be enlarged for 

the described project of simulation-based process 

coverage for an effective change planning. This 

section is followed by a small extract from the state of 

the art within the area of application of material flow 

simulation method as a forecasting module in the 

operational level of a production system. The state-of 

the art is closed by a view on artificial intelligence 

methods used for change planning of production 

processes. 

3.1 Event classification (changed location) 

As a basis for event classification the supply network 

is modeled using MFERT (MFERT is described in 

detail in [7]). Based on this model an event 

classification scheme for supply network event 

management was defined as described in [4], based on 

the inter-company event classification scheme 

developed in [2]. 

 

Fig. 2: Event classification scheme 

An example for such an event classification is shown 

on the left hand side of Fig. 2. Each event can be 

mapped to a change in value (either of positive or 

negative nature) at a certain point in the model. The 

point in the model can be either before, behind or at a 
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node (two kinds of nodes exist in MFERT, capacity 

nodes and object nodes). 

An informal collection of events with industry 

representatives has been performed and these events 

have been mapped successfully to our event 

classification scheme. Thereby the relevance to 

practice has been demonstrated. The concepts 

described in this paper are based on the 

systematization of this event classification scheme. 

3.2 Reinforcement Learning in Production 

Network Change Planning 

Reinforcement learning has proven to be very 

successful in different practical domains. The most 

famous example is TD-Gammon [8], which has 

become the world‟s best backgammon computer 

program and is able to play as good as the best human 

players. Other famous and successful practical RL 

systems are the elevator dispatching system [9] by 

Crites and Barto and the job shop scheduling system 

by Zhang and Dietterich [10]. Stockheim et. al [11] 

present an approach for learning in supply chain 

management based on a very simple job acceptance 

decision. Riedmiller and Riedmiller are introducing a 

learning system for learning local dispatching policies 

[12], optimized for job scheduling on simple 

production systems. An approach for job control has 

been introduced by Stegheer [13]. The method is 

developed for planning and control of local production 

systems and does not use any state abstraction. 

Dangelmaier et. al. [14] present a general  approach 

for learning rules for controlling production networks 

but do not cover state abstraction and efficient 

training.  

In order to use state abstraction to explore the state 

space, several methods have been developed and 

applied. For example Sutton and Barto as well as 

Watkins [15],[16] developed a method called CMAC 

that partitions the state space into feature spaces. Also 

neuronal networks [17] have been used to approximate 

the policy value function. Another method for 

reducing state space complexity is state aggregation. 

State aggregation is generally based on distance 

function that assigns a state to a number of "similar" 

states while preserving the general features of a state 

and doing abstraction of the feature values. 

Mahadevan and Connell [18] aggregate the state space 

using the binary Hamming-Distance for robot control 

learning-system. Also several algorithms like G-Tree 

[19] or U-Tree [20] exist for state aggregation using 

successive aggregation of state space. These 

algorithms create a decision tree during the learning 

process that represents the Q-function in a compact 

way. Sing et al. [21] developed a more general 

concept (ASA) for state aggregation based on 

probabilities for state occurrence to be similar to a 

state cluster. Bertsekas and Tsitsikalis [22] have 

proofed that reinforcement learning will converge in 

an aggregated state space. The proof is based on the 

assumption that all usable actions have the same effect 

whether used on states or aggregated states and 

following the convergence could be transferred to 

learning on aggregated states. Döring et. al. [23] 

introduced an approach for state aggregation in supply 

networks using k-means based on a distance function 

representing the characteristic features of a supply 

network state. This approach will be used in this 

paper. 

3.3 Simulation-Based Forecasting 

Software tools like UGS Plant Simulation, Delmia‟s 

Quest or Taylor ED by Enterprise Dynamics [24],[25] 

are used for material flow simulation regularly. With 

these tools it is possible to create, to validate, to verify 

and to compute models of the focused production 

process. Although mostly traditional areas of 

application such as process planning and 

dimensioning are regarded today, there are existing 

prototypes, which use the method „material flow 

simulation‟ as a forecasting module within the 

production planning and control processes in the daily 

business [26] in order to enrich their production 

control. Based on a model of the actual production 

process and the actual production state as well as the 

intended production plan as an input data set for a 

simulation run, this allows the detection of upcoming 

disruptions within the production process as early as 

possible, in the ideal case before its incidence and, by 

that, gives the affected company the possibility to 

avoid these expectable events in the production 

process or react to them. 

As a major deficit of this approach, it has to be 

pointed out, that the possibilities of simulation are not 

used entirely, because simulation gives no information 

about the optimal reaction on this forecasted event. 

This is due to the reasonable selection of possible 

reaction strategies, which depends on type and 

consequence of the foreseen event. By using a given 

event classification (cp. section 3.1), a pre-selection of 

reaction scenarios can be achieved by methods of 

artificial intelligence in order to simulate these 

scenarios for a simulation based benchmark. 

4 Concept and Implementation 

The approach establishes two time horizons for the 

methods to be developed: 

 In real-time event management only the 

current state of the supply network is 

examined. 

 In foresighted event management a time 

horizon of a certain time interval depending 

on the size of the network simulation model, 

e.g. one week, is examined. All methods 

begin with the current state of the system. 

The architecture of the system to be developed is 

shown in Fig. 3: 
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 On the data layer, standing and dynamic data 

is regarded. This information is condensed 

from the company‟s ERP system (e.g. SAP) 

and additional data stored by the special 

production planning and control system 

OOPUS-Web designed to integrate the 

methods described in this paper. 

 The user interfaces are designed to fit the 

requirements of effective control and the 

ability of fast reactions to occurring events. 

 The event management is divided into 

modules by the techniques used: simulation, 

optimization and artificial intelligence. These 

modules are closely integrated by process 

definitions. 

 

Fig. 3 System architecture 

In detail the following components implement the 

event management: 

  

Fig. 4 System matrix of research topics 

(1) Foresighted event detection, situated in the 

simulation module. Bottlenecks and probably 

occurring events are detected and resolved as 

necessary. 

(2) Foresighted event handling, situated in the 

optimization module. Standard planning 

algorithms are used to react to predicted 

events above a pre-defined probability 

threshold tA. 

(3) Foresighted definition of rule sets for event 

reaction, situated in the artificial intelligence 

module. Events below the pre-defined 

probability threshold tA but above the 

threshold tB are regarded here. Reaction 

measures fitting these events are developed 

in advance. 

(4) Real time event detection, situated in the 

simulation module. A continuous control of 

the system state and comparison to the plan 

detects events. A simulation determines the 

relevance of these events and the effected 

partners. 

(5) Real-time optimization using optimization 

methods.
1
 

(6) Real time event handling, situated in the 

artificial intelligence module. Either a pre-

defined reaction measure is selected (if 

existent) or a new one is created using 

methods of artificial intelligence. 

The realization of these components is described in 

4.1 (artificial intelligence module) and 4.2 (simulation 

module) in detail. 

4.1 State aggregation and rule learning for 

supporting simulation scenario selection 

The basis for learning rules in production networks is 

an aggregated state space to ensure the convergence of 

the learning algorithm. For this, a feature based state 

abstractor will be introduced. The reinforcement 

learning system based on Q-Learning [6],[15] will 

operate on the aggregated states called clusters. The 

learning task itself will be done offline based on a 

given product network representation. Fig. 4 shows 

the basic architecture of the learning module. 

.  

Fig. 5 Learning system architecture 

4.1.1 State abstractor 

The clustering is needed to accelerate the learning 

process based on which will now work on a 
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characteristic state space of the production network 

with less states to observe. Every production network 

and its plans for each partner is characterized by its 

interconnections, associated policies and procurement 

strategy and their local production system restrictions 

like order penetration point. Based on this framework, 

a specific interaction of the partners and thereby 

specific characteristics in the individual production 

plans will emerge. Based on this assumption the state 

space can be reduced to its characteristic states. 

For training the clustering algorithm and the simulator 

generates the specific states based on real data or 

generated data gained by representative production 

plans generated by a specific algorithm using the 

above mentioned frame conditions. The Centroids of 

the clusters are defined as characteristic production 

plans according to the specific features of the states 

the production network could reach normalized over 

the inventory of the periods.  

 

Fig. 6 Example cluster with normalized characteristic 

plan over 20 planning periods 

The characteristics are gained from the specific 

restriction violations that occur after an event, their 

distance in the plan and the proportion of inventory in 

the periods. The full concept and results are presented 

by Döring et. al. in [23].  

4.1.2 Learning and rule generation 

The whole learning process is done by a Q-Learner. 

For this, a reward function has been developed that 

calculates rewards based on the weighted sum of 

restriction violation quantities in a normalized 

interval. The reward will be calculated based on states 

(1) while the Q-value will be (2) associated to the 

cluster that is associated with state t. 

 

Fig. 7 Illustration of the learning system principles 

As fig. 6 shows, the main learning task is to learn the 

decision (3) whether to execute a global or a local 

planning strategy. Secondly it has to determine 

whether during global or local planning a specific 

change planning action a is the best algorithm for this 

characteristic production network state could be 

expressed as  

max( ( , )) for all assoziated

i i tr t a a C
. 

This quantified sorting by Q-values mapped to those 

actions at that are executable in a plan state of cluster 

Ct is the numerical representation of the rules that are 

needed to select the best actions in the specific 

characteristic scenarios.  

For integration of the learned rules into the event 

handling system see fig. 6. After an event occurred, 

the analyzer maps the system scenario to a cluster. 

The best x change planning algorithms are selected 

based on the rule set. Then the change planning 

strategy will be executed on the event scenario 

bringing x new plans with cleared events. For process 

coverage, the simulation will simulate the clearing 

scenarios according to the actual network status and 

the scenarios to take out specific effects that could 

happen in the operative production execution using 

the specific plan. 

 

Fig. 8 Integrating learning, rules, scenarios and 

simulation in real-time event handling  

4.2 Simulation 

During the real-time event handling process the 

simulation time will be fixed by a certain anticipation 

horizon which defines the time period from now until 

the event will probably take direct effect to the 

production system or systems in the supply network. 
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The simulation must be based on a rough detail level 

optimized to processing speed using the best 

promising scenario based on the sorted rule set for this 

state. Therefore, a method for a dynamic adjustment 

of the simulation models level of detail during or 

before the start of the simulation run have been 

worked out [26]. Core insight of this solution is the 

decrease in computation time, if the level of detail of a 

simulation model is reduced. 

Three technologies form the basis for dynamically 

detailed simulation. First, a hierarchy is needed, which 

assigns all existing building blocks to a certain level in 

the simulation model, and defines which building 

block represents others on a higher level of detail, and 

by whom it is represented on a less detailed level of 

degree. In each simulation step, a special 

configuration within this hierarchy is active, and leads 

to an executable simulation model, which can cover 

different levels of detail on the different areas of a 

simulation model. 

 

Fig. 9 Construction of a dynamic detailing simulation 

model with its cross-hierarchical links 

Secondly, indicators decide which parts of the 

simulation model are to be executed on a higher or 

lower level of detail. There are, e.g., indicators 

existing, which decide by different geometrical 

aspects, for example the position and the user‟s line of 

sight within the immersive, virtual environment. 

Dependant on the user‟s avatar position in the virtual 

scene, the level of detail is adopted within the 

simulation kernel. Moreover, there are indicators, 

which are based on the logical connections between 

the building blocks. Especially for real-time event 

handling by a simulation model, the use of these 

indicators are strongly recommended, to be able to 

define those areas in the simulation model, which are 

affected by the identified event. 

If deactivated model elements are reactivated by the 

decision of an indicator, they don‟t have a regular 

state for this simulation time, as it exists in the 

building block, activated directly before. In order to 

keep consistency within the simulation, thirdly, the 

current states for the activating building blocks are to 

be computed again. Within the developed method, 

several techniques have been implemented, starting 

from a recalculation of this building block up to a 

generated mapping by special event functions. 

Based on the actual production state as well as the pre-

selected scenarios, the simulation has to be calculated 

and evaluated according to defined indices, so that the 

generated result of the scenario simulation can be 

compared on an objective level and, by that, the ideal 

reaction strategy can be selected automatically. As a 

technical basis for the implementation, the material 

flow simulator d³FACT insight [27] is used and 

enhanced in those interface parts, which deal with the 

analysis connecting to the additional modules of the 

production control umbrella. Fig. 9 shows the modular 

structure of d³FACT insight: 

 

Fig. 10 Modules of d³FACT insight 

During foresighted event handling there will be much 

more time for simulation. In this case the simulation 

model can be simulated on a higher level of detail. By 

the use of distributed simulation methods, the 

generated forecasting simulation results can be 

enlarged and validated on a statistic level, if not a 

single simulation run is taken into account but a set of 

simulation runs in a simulation experiment. 

By augmenting the simulation from the real-time 

reaction benchmark to the forecasting level, the 

process coverage effects can also be shifted from the 

“emergency” reaction operational planning level to a 

tactical process coverage form a future time period, 

and thereby accretes the time horizon for a reaction 

and selection of the ideal re-planning scenario. 

5 Conclusion 

This paper introduces a specific concept for an 

integrated control center using simulation and 

artificial intelligence methods, powering force 

feedback loops for an automated event handling of 

production processes. Detailed problems, that arise 

during the realization of these concepts are solved for 

themselves, but yet not integrated: 

 A solution for learning a rule set for 

optimizing change planning by selecting 

scenario based change planning algorithms 

on effective and efficient abstraction and Q-

learning have been introduced. 

 A simulator, suitable for material flow 

simulation is available. 
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 A matrix to classify and structure the related 

research topics has been developed. 

Future work will combine all components to one force 

feedback loop. For this main research field, the 

dynamic scaling of simulation models as well as the 

optimization of the actual status of the learning system 

is essential. Actually, all processes are not integrated 

into a “real” system. Also learning is actually an 

offline process and will be improved by pushing an 

online learning strategy, which adapts to network 

configuration changes automatically. 

6 References 

[1] Mercer Management Consultants; Fraunhofer 

Gesellschaft. (2004). Future Automotive Industry 

Structure (FAST) 2015. 

[2] J. Heidenreich (2006). Adaptive Mengen- und 

Kapazitätsplanung in kollaborativen 

Produktionsnetzwerken der Serienfertigung. 

Dissertation Universität Paderborn: HNI 

Verlagsschriftenreihe. 

[3] C. Laroque (2007). Ein mehrbenutzerfähiges 

Werkzeug zur Modellierung und 

richtungsoffenen Simulation von wahlweise 

objekt- und funktionsorientiert gegliederten 

Fertigungssystemen. Dissertation, Universität 

Paderborn. 

[4] W. Dangelmaier, A. Döring, T. Timm & B. 

Klöpper (2006). Collaborative Event Networking 

(CEN) - Automatisierte Absicherung der 

operativen Materialflussplanung in Supply 

Networks der Automobilindustrie. In 12. 

Magdeburger Logistiktagung: Sicherung von 

Prozessketten (S. 182-193). Magdeburg. 

[5] W. Dangelmaier, M. Aufenanger; D. Huber, C. 

Laroque (2007): Ideen zur Entwicklung der 

Ablaufsimulation. In: Simulation und 

Visualisierung 2007, S. 3-14, 8. - 9. Mrz. 2007 

SCS – Europe. 

[6] T. M. Mitchell (1997) Machine Learning. Mac 

Graw-Hill Book Co, New York. 

[7] U. Schneider (1996). Ein formales Modell und 

eine Klassifikation für die Fertigungssteuerung. 

Dissertation Paderborn: HNI-

Verlagsschriftenreihe. 

[8] G. Tesauro (1995). Temporal Difference 

Learning and TD-Gammon. Communications of 

the ACM 38(3), pp. 58-68. 

[9] R. H. Crites, A. G, Barto (1996). Improving 

Elevator Performance Using Reinforcement 

Learning. In: Touretzky, D. S.; Moser: M. C.; 

Hasselmo, M. E.: Advances in Neural 

Information Processing Systems 8. Cambridge, 

Mass., MIT Press. 

[10] W. Zhang, T. G. Dietterich (1996). A 

Reinforcement Learning Approach to Job Shop 

Scheduling. Technical Report, Department of 

Computer Science. Oregon State University. 

[11] T. Stockheim, M. Schwind, & W. A. Koening, 

(2003). Reinforcement Learning Approach for 

Supply Chain Management, 1st European 

Workshop on Multi-Agent Systems Proceedings. 

[12] S. Riedmiller, M. A. Riedmiller (1999). A neural 

reinforcement learning approach to learn local 

dispatching policies in production scheduling, 

Proceedings of the International Joint 

Conference on Artificial Intelligence (IJCAI´99), 

p. 764-771. 

[13] T. Stegherr (2000). Reinforcement-Learning zur 

dispositiven Auftragssteuerung in der 

Variantenreihenproduktion, Herbert Utz Verlag. 

[14] W. Dangelmaier, A. Döring, T. Rust, & B. 

Klöpper (2006). A reinforcement learning 

approach for learning coordination rules in 

Production Networks. In International 

Conference on Intelligent Agents, Web 

Technologies. IEEE Computer Society Press. 

[15] R. S. Sutton, A. G. Barto.(1998). Reinforcement 

Learning: An Introduction, MIT Press, 1998  

[16] C. J. Watkins (1989). Learning from Delayed 

Rewards, University of Cambridge. 

[17] S. Russell, P. Norvig, (2003). Artificial 

Intelligence: A Modern Approach Planning 

Prentice Hall. 

[18] S. Mahadevan, J. Connell. (1992). Automatic 

programming of behavior-based robots using 

reinforcement learning Artificial Intelligence, 

Elsevier Science Publishers Ltd., 311-365. 

[19] D. Chapman, L. P. Kaelbling (1991). Input 

generalization in delayed reinforcement learning: 

an algorithm and performance comparisons, 

Proceedings of the 1991 International Joint 

Conference on Artificial Intelligence, 726-731. 

[20] W. T. B. Uther, M. M. Veloso (1998). Tree 

based discretization for continuous state space 

reinforcement learning, IAAI '98: Proceedings of 

the tenth conference on Innovative Applications 

of Artificial Intelligence, American Association 

for Artificial Intelligence, 769-774. 

[21] S. P. Singh, T. Jaakkola & M. Jordan (1995). In: 

G. Tesauro, D. Touretzky, & T. Leen. (ed.): 

Reinforcement Learning with Soft State 

Aggregation, Advances in Neural Information 

Processing Systems, The MIT Press, 7, 361-368. 

[22] D. P. Bertsekas, & J. N. Tsitsiklis.(1996). Neuro-

Dynamic Programming, Athena Scientific. 

[23] A. Döring, W. Dangelmaier & C. Danne (2007). 

Using k-means for clustering in complex 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM



automotive production systems to support a Q-

learning-system, ICCI 2007 - The 6th IEEE 

International Conference on Cognitive 

Informatics, Accepted for publishing, August 

2007. 

[24] A. M. Law, W. D. Kelton (2000). Simulation 

Modeling and Analysis; Boston; Third Edition; 

McGRAW-Hill International Series. 

[25] VDI-Richtlinie 4499 (2007): Digitale Fabrik - 

Grundlagen; Stand, Januar 2007; VDI Verlag 

Düsseldorf. 

[26] B. Mueck (2005). Eine Methode zur 

benutzerstimulierten detaillierungsvarianten 

Berechnung von diskreten Simulationen von 

Materialflüssen, HNI-Verlagsschriftenreihe, 

Paderborn. 

[27] W. Dangelmaier, D. Huber, C. Laroque,  & B. 

Mueck (2005). d³FACT insight - An immersive 

material flow simulator with multi-user support. 

In: Bruzzone, Agostino; Williams, Edward 

(Eds..) Proceedings of the 2005 Summer 

Computer Simulation Conference, Simulation 

Series, Band 37, S. 239-242. 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM


