

MODELING AND SIMULATION OF
MANUFACTURING SYSTEMS

S. Bogdan, Z. Kovačić, N. Smolić-Ročak

LARICS – Laboratory for Advanced Robotics and Intelligent Control Systems

Dept. Of Control and Computer Engineering, Faculty of EE&C
University of Zagreb, CROATIA

http://flrcg.rasip.fer.hr
stjepan.bogdan@fer.hr

Abstract

In this paper we present a methodology for modeling and simulation of dynamical discrete
event systems (DDES), predominantly flexible manufacturing systems (FMS). Proposed
technique is based on the matrix representation of a manufacturing system. Although
prerequisites that are required for an event to start are given by static model of DES, we are
not able to tell in which particular moment these prerequisites are met, i.e. we do not know
when the event actually starts. In real applications on actual manufacturing processes, we will
be sensing the completion of prerequisite jobs by either using sensors (e.g., proximity, tactile,
etc.) or via notification from the machines or resources. On the other hand, for the purpose of
computer simulation, we must find a way to keep track of time lapsed in the processing of
jobs. To keep track of jobs time durations, we incorporated the system dynamics into the
matrix model in a form of an extended lifetime. That is, a real number di, called a lifetime, is
associated with each task in an MS. Problem that we analyze in the paper is that when
described as a bill-of-material (BOM), or in some other engineering form, the job sequence
does not disclose potential difficulties that might develop when the structure of an MS, which
executes this particular sequence, is determined. In the paper we show how two of these
potential difficulties, conflict and deadlock, can be exposed by using static and dynamic
simulations of an MS. Based on the matrix model, these simulations provide a complete
insight in the system performance.

Keywords: Manufacturing Systems, Matrix-algebra, Modeling, Simulation

Presenting Author’s biography
Stjepan Bogdan received his Ph.D.E.E. in 1999, M.S.E.E. in 1993, and
B.S.E.E. in 1990 at the University of Zagreb, Croatia. He is currently an
assistant professor at the Department of Control and Computer Engineering,
Faculty of EE&C, University of Zagreb. His areas of interest are robotics,
discrete event systems, and autonomous and intelligent systems. He received
a Fulbright scholarship in 1996/97 and worked as a visitor researcher in the
Automation and Robotics Research Institute, University of Texas at
Arlington, with research group of Prof. Frank L. Lewis. He is a principle
investigator and a project leader of several R&D projects founded by industry and
government. He is a coauthor of three books and numerous papers published in journals and
presented at conferences. He is a member of KoREMA, the IEEE, Sigma Xi, and a vice-
president of Croatian Robotics Society.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

Today, virtual models provide a very inexpensive and
convenient way for complete factory design. Instead
of building real systems, a designer first builds new
factory layouts and defines resource configurations in
the virtual environment and refines them without
actual production of physical prototypes. Allowing
clear visualization of all potential problems caused
by the layout, virtual modeling and dynamic
simulation of manufacturing processes has traced a
completely new route to analysis and design of MSs
[1–3].

A factory layout design, physical modeling, control
synthesis, performance analysis, dynamic simulation
and visualization of robotized manufacturing systems
have become much easier and more effective with
specialized programs for virtual-factory modeling
and simulation. Some virtual-factory simulators
originated from the academia [4–6], but most of them
are sophisticated products of leading robot
manufacturers and independent companies.

In general, each of those MS simulators can be
partitioned in the following modules: virtual objects
designer, factory layout designer, trajectory
generator, and functional testing module. The aim of
this paper is to propose a method for MS analysis in
functional testing module. Described algorithm
represents a mathematical core of such a module.

Functional testing has a goal to connect a physical
setup with the plan of the simulated MS. Functional
testing is concerned with a job-sequence definition,
setting of MS parameters, conflict and deadlock
analysis at the local and global level (at the robot
workcell or robot station, and at the whole MS level),
synthesis of control logic, study of different job-
scheduling strategies, simulation and visualization of
dynamic phenomena during MS operation. Having a
plan of a manufacturing process and all necessary
MS data, functional testing should help the MS
designer to reach a reliable and objective MS
performance evaluation.

The paper is organized in the following way. In the
next chapter we present matrix representation of
discrete event systems. The system matrices and
logical equations are given and described. In
paragraph 3 a concept of extended lifetime is
explained and timed matrices are defined.
Implementation of proposed method is given in
paragraph 4 by using a simulation example.

2 Matrix representation of DES

Generally, the complete task plan could be given by
the system matrices Fv, Sv, Fr, Sr, which are specified
by higher-level planners, or may be written down in

manufacturing systems given the BOM or the
assembly tree plus resource-availability information
[7-11]. Additionally, these matrices can easily be
extracted from plans generated by typical planning
software, including hierarchical planners. Since each
matrix has a well-defined function for job
sequencing, resource assignment, and resource
release, they are straightforward to construct as well
as easy to modify in the event of goal changes,
resource changes, or failures; that is, they
accommodate task planning as well as task
replanning.

Denoting the discrete event iteration number with k,
we can calculate the logical state vector x each time
an event takes place, i.e. a job is completed, resource
becomes idle or part enters the system:

v c r c u() (1) (1) (1)k k k kΔ ∇ Δ ∇ Δ= − − −x v r uF F F (2.1)

where Fr is resource-requirements matrix, Fr(i,j) = 1
if resource j contributes to construction of the ith
component of the logical state vector, otherwise
Fr(i,j) = 0, Fv is job-sequencing matrix, Fv(i,j) = 1 if
job j contributes to construction of the ith component
of the logical state vector, otherwise Fv(i,j) = 0, Fu is
input matrix, Fu(i,j) = 1 if an input j contributes to
construction of the ith component of the logical state
vector, otherwise Fu(i,j) = 0, vc is a job-completed
vector, rc is called an idle-resource vector, and u is a
system input.

The equations describing the consequent parts of
rules can be rewritten in the same way:

s v

s r

y

() ()

() ()

() ()

k k

k k

k k

Δ

Δ

Δ

=

=

=

v x

r x

y x

S

S

S

 (2.2)

where Sv is job-start matrix, Sv(i,j) = 1 if the jth
component of the logical state vector is a prerequisite
to start job i, otherwise Sv(i,j) = 0, Sr is resource-
release matrix, Sr(i,j) = 1 if the jth component of the
logical state vector is a prerequisite to start the
release of resource i, otherwise Sr(i,j) = 0, Sy is
output matrix, Sy(i,j) = 1 if the jth component of the
logical state vector is a prerequisite for output i,
otherwise Sy(i,j) = 0.

In (2.1) and (2.2) operations are carried in so called
and/or algebra denoted and , where
multiplication is replaced by AND, and addition is
replaced by OR.

In order to be able to link recursive equations (2.1)
and (2.2) we have to relate a job-completed vector vc
with a job-start vector vs, and an idle-resource vector
rc with a resource-release vector rs. According to its

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

definition, the components of vector vc correspond to
completed operations, hence, each time a job is
completed, the number of parts held by this particular
job is increased. At the same time, if a job contributes
to a rule(s) that is fulfilled, an already processed
part(s) leaves the job and proceeds through the
system. In other words

T
c c v v

T
c v v

() (1) () ()

(1) ()

k k k k

k k

= − + −

= − + −⎡ ⎤⎣ ⎦

v v S x F x

v S F x
 (2.3)

where multiplications and additions are carried out in
the standard way.

By following the same reasoning one can find the
number of idle resources and the number of finished
products in step k as

T
c c r r

T
c r r

y

() (1) () ()

(1) ()

() (1) ()

k k k k

k k

k k k

=

=

− + −

= − + −

− +

⎡ ⎤⎣ ⎦
y

r r S x F x

r S F x

y S x

 (2. 4)

Equations (2.3) and (2.4) can be written in the
following form

0() (1) , (0)

() (1) ()T

k k

k k k

Δ= − =

= − + −⎡ ⎤⎣ ⎦

x m m m

m m S F x

F
 (2.5)

with

T
u u

T
v v cT

T
r r c

T
y y

()

()
, , ()

()

()

k

k
k

k

k

= = =

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

S F u

S F v
S F m

S F r

S F y

where [] []u y,= =S 0 F 0 are null-matrices required
for keeping matrix dimensions consistent. Usually,
matrix S is called the activity-start matrix, and matrix
F is called the activity-completion matrix.

3 A concept of extended lifetime

The matrix model derived in the previous paragraph
describes only logical (static) properties of an MS.
Under the assumption that there are no machine
failures, every task that starts will actually finish in a
finite time, hence:

() () ,

() () .
ci si vi

ci si rir

v t v t d

r t t d

=

=

−

−
 (3. 1)

where dvi and dri are lifetimes of operation vi and
resource release ri respectively.

The final goal of an MS modeling and analysis is to
prepare the ground for design of an appropriate
dispatching supervisor. The nature of this supervisor
is determined by its computer-based implementation,
usually in a form of a PLC. Since the execution of an
algorithm on a PLC is cyclic, the moment in which
the supervisor detects completion of an operation
does not necessarily coincide with the actual moment
in which an operation is finished. Therefore, from the
supervisor point of view, the operation lifetime is not
di but di + εi (Figure 2.1) [12, 13]. We can rewrite
(3.1) as

() () () ,

() () () .

()

()

s
ci s si s vi vi si vi s
s

ci s si s ri ri si ri s

v kT v kT d v k n T

r kT r kT d r k n T

ε

ε

=

=

− − = −

− − = −
 (3.

2)

where (1)i s i i sn T d n T≥ > − , Ts is the supervisor
sampling (cycle) interval, and ni is an integer
representation of the lifetime expressed in number of
sampling intervals . It is apparent that the sampling
interval should be small enough to provide an
accurate dynamic model.

Introduction of a shift (delay) operator q in (3.2)
gives the vector form as

() () () ,

() () () ,

c v

c r

q q q

q q q

=

=

v T x

r T x
 (3. 3)

where Tv and Tr are operations and resources release
delay matrices with elements representing operations
lifetimes. Delay matrices are obtained by replacing
each entry “1” in Sv and Sr with a shift operand
representation of corresponding lifetime.

Due to the existence of shared resources,
transformation of the second equation in (3.3)
requires additional explanation. Namely, each non-
shared resource in r has its corresponding operation
in v which is responsible for its release. In the same
time, a shared resource that is represented by one
component in vector r, has several operations in v it
could be released from. As release lifetimes
associated with these operations generally differ, the
row in Tr that corresponds to a shared resource could
have two or more different entries.

Conversion of equations (3.3) into recursive form,
suitable for simulation, can be done in the same way
as in the case of static recursive model (2.5).

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

1() () () () () ,T
c c v vqq q q q q−= + −v v T x F x (3. 4)

1() () () () () .s s T
c c r rqq q q q q−= + −r r T x F x (3. 5)

Finally, the dynamic matrix model of an MS is
obtained by including the shift operator q in logical
state vector equation:

1
0

1

() () , (0) ,

() () () () ,T

q q q

q q q q q

−
Δ

−

= =

= + −⎡ ⎤⎣ ⎦

x m m m

m m T F x

F
 (3. 6)

where

()
() .

()

u

v

r

y

q
q

q
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S

T
T

T

S

Figure 2.1. Extension of the operation lifetime for the

system dynamics modeling.

By comparing (2.5) with (3.6) one can notice that
the main difference between two models is in matrix
S which is replaced with delay matrix T(q). Before
we give an example of system dynamics modeling
based on (3.6), there are two issues that have to be
further discussed. The simulation of a dynamic model
is done in the way that each element T(q)(i,j) of
delay matrix, that is not equal to 0, is associated with
a clock, denoted C(i,j), containing the time passed
after the job has been started. All clocks are initially
set to zero. When the rule for starting a particular
task is satisfied, the corresponding clock is activated.
Then, in each sampling interval all active clocks are
checked. If some clock is found to be equal to or
greater than the corresponding task lifetime, defined
as an entry of the delay matrix, the particular task is

considered completed. In that case the entry of vector
m matching this task is incremented. Such realization
of model (3.6) is valid as long as there are no
resources that can process more than one part at a
time. If there exists such a resource, then simulation
algorithm must be modified in a straightforward
manner, by expanding the number of clocks for each
additional part processed simultaneously by the
resource. For example, if T(q)(i,j) = q-5 stands for
some task that lasts 5 sampling intervals and can
process 3 parts in the same time, then it is associated
with a so called multipart clock, that is, C(i,j,1),
C(i,j,2) and C(i,j,3). The first part entering the task
activates C(i,j,1), the second one C(i,j,2) and the third
part C(i,j,3). Having its own clock, each part can be
tracked separately.

The second issue that needs additional
clarification when one considers realization of the
dynamic matrix model is related to so called
“hidden” parts. Let us assume that rule xi, which has
job vi in its prerequisite part and job vj in its
consequent part, is satisfied in the sampling interval
k. Further on, let processing of the part in vj follows
immediately after processing in vi. Then, according to
(3.6), term FTx(k) removes the part from vi, i.e.
corresponding component of vector m is decreased.
Processing of the part in vj starts in the same
sampling interval k, but due to the operation lifetime,
the part will be completed nvj sampling intervals
later, i.e. the component of vector m that corresponds
with operation vj will be increased with delay.
Therefore, one is not able to tell where the part is if
only vector m(k) is tracked. However, the results of
system performance analysis in the sense of system
throughput, resources utilization, etc., are not
influenced by the existence of hidden parts.

4 A simulation example

Let us consider the system shown in Figure 4.1.

The lifetimes of work cell operations are given in
Table 1. Release of buffer BA, which lasts 2.75
seconds, is the shortest task in the work cell, thus, we
choose the simulation sampling interval to be Ts = 1
[s]. Extended lifetimes for this sampling interval are
specified in the third column of Table 4.1.

There are ten different tasks in the system, and
two of them can hold two parts simultaneously,
buffer operation BP and buffer release B.
Accordingly, simulation requires eight standard and
two multipart clocks. As in the case of the static
simulation, we assume that only one part enters the
system at the initial step and all resources are idle at
the beginning, consequently, m(0) = m0 = [1 0 0 0 0 0
1 1 2 1 0]T.

Results obtained by simulation are shown in Figure
4.2. Upon entering the system, the part has been
processed in machine A. After 76 sampling intervals
(graph MAP) the part is removed from the machine

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

into the buffer, which can be clearly seen on graph R
– robot is idle while the part is processed in machine
A, then it moves the part (10 sampling intervals) and
finally it is released (6 sampling intervals). The part
advances through the system and after 211 samples
(see graph RP2 that represents the last operation of
the system) it leaves the work cell.

Figure 4.1. The work cell layout for the assembly tree

in Figure 1.

Table 4.1. Lifetimes of the work cell tasks

Operation Lifetime di [s] Extended
lifetime

ni

MAP (drill) 76 76

RP1 (move 1) 10 10

BP (buffer) 3.5 4

MBP (grind) 113 113

RP2 (move 2) 7.5 8

release of MA 15 15

release of B 2.75 3

release of MB 10 10

release of R (after
RP1)

5.75 6

release of R (after
RP2)

4.25 5

In order to get a complete insight in the system
dynamic properties we have to simulate a situation
with several parts being processed simultaneously.
This situation is closer to the real conditions in which
the system is fed by parts with predetermined
frequency (or stochastically).Given that
manufacturing systems are generally designed to
work periodically, this kind of simulation provides
results that can be used for calculations of production
cycles, resources utilizations, bottleneck machines,
etc.

Graphical representation of results obtained in case a
new part is available each time robot R is idle, is
given in Figure 4.3.

Figure 4.2. Graphical representation of results obtained by

the dynamic simulation (one part processed).

Several observations regarding system performance
can be made from attained results. We see that the
first part leaves the system after 211 samples, same
as in the previous simulation when only one part has
been passed through the work cell. After that, the
time period between departures of two consecutive
parts from the system is equal to 123 sampling
intervals, which corresponds to the sum of processing
and release lifetimes of machine B (see Table 4.1).
Hence, simulation confirmed, as we expected, that
this machine is the system bottleneck since it is the
slowest one according to Table 4.1.

We conclude this discussion with a note on another
interesting phenomenon that is revealed by results of
the dynamic model simulation. From the graphical
representation of the first operation in the system,
MAP, it is evident that 10 parts have entered the
work cell. On the other hand, only 5 parts have
arrived at the output. The other 5 parts got trapped in
the system; all resources are occupied and none of
them can be released since they are all waiting for
each other. This condition is known as a circular
blocking and it is equivalent to already mentioned
deadlock. Analysis of graphs in Figure 4.3. can
clearly show how the system came into deadlock. In
sampling interval k = 806 machine A just finished
processing of 9th part. In the same time sample buffer
B is full (BP = 2 for k = 806), machine B is
processing 6th part and robot R is idle.

Prerequisites of rule x2, MAP is completed and robot
R is idle, are met, thus, task in the consequent part,
RP1, is started. Since buffer is full, robot cannot
complete RP1. A part that is supposed to leave the
buffer and make room for a new one is blocked by
the part in machine B which waits to be cleared by

robotmachine A

machine B

buffer

parts in

parts out

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

robot R that is already holding a part. Resources wait
for each other, the system is deadlocked and parts
cannot proceed through the line.

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

2

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

2

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

1

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

5

0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Figure 4.3. Results obtained by simulation based on
dynamic matrix model (several parts processed).

At the end of the example, let us reorder the job
sequence in the work cell by exchanging positions of
machines A and B, i.e. instead of drill the first
operation in the sequence is grind. The dynamic
matrix model is changed correspondingly and
simulation results are shown in Figure 4.4. It can be
noticed that deadlock is avoided and the system has
cyclic activities. Parts are leaving the work cell with
a period of 123 sampling intervals. Operational time
of particular resource can be easily determined from
graphs corresponding to its idleness and activity. For
example, graph B clearly shows that buffer is
underutilized as it never accommodates more than 1
part, i.e. the system could work correctly with a 1-
slot buffer. As expected, the slowest machine is
operational 100 % of time (graphs MBP and MB),
while activity periods of other two resources are
approximately 24 % for robot (graphs RP1, RP2 and
R) and 74 % for machine A (graphs MAP and MA).

Figure 4.4. Results obtained by simulation based on
dynamic matrix model (reordered job sequence).

References

[1] Viswanadham N, Narahari Y. Performance Modeling of
Automated Manufacturing Systems. New Jersey: Prentice
Hall, 1992.

[2] Vince J. Virtual Reality Systems. Reading, MA:
Addison-Wesley, 1995.

[3] Mayr H. Virtual Automation Environments –
Design, Modeling, Visualisation, Simulation. New
York Basel: Marcel Dekker, 2002.

[4] Ge S S, Lee T H, Gu D L, Woon L C. A One Stop
Solution in Robotic Control System Design, IEEE Rob.
Aut. Mag. 2000;7:3:42–54.

[5] Corke P. Robotic Toolbox for Matlab, CSIRO
Manufacturing Science and Technology,
http://www.cat.csiro.au/cmst/, visited 2005.

[6] Choi B, Park B, Ryu H Y. Virtual Factory
Simulator Framework For Line Prototyping, J. of
Advanced Man. Sys., World Scientific Publishing
Company 2004;3:1:5–20.

[7] Tacconi DA, Lewis FL. A New Matrix Model for
Discrete Event Systems: Application to Simulation, IEEE
Control Systems Magazine 1997;17;5:62-71.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

[8] Lewis FL, Gurel A, Bogdan S, Docanalp A,
Pastravanu OC. Analysis of Deadlock and Circular
Waits using a Matrix Model for Flexible
Manufacturing Systems, Automatica
1998;34:9:1083-1100

[9] Gurel A, Bogdan S, Lewis FL. Matrix Approach
to Deadlock-Free Dispatching in Multi-Class Finite
Buffer Flowlines, IEEE Transactions on Automatic
Control 2000;45;11:2086-2090

[10] Mireles J, Lewis FL. Intelligent Material Handling:
Development and Implementation of a Matrix-Based
Discrete Event Controller, IEEE Transactions on Industrial
Electronics 2001;48;6.

[11] Mireles J, Lewis FL, Gurel A. Deadlock Avoidance
for Manufacturing Multipart Reentrant Flow Lines Using a
Matrix-Based Discrete Event Controller, Int. J. Production
Research 2002;40;13:3139-3166.

[12] Smolic-Rocak N, Bogdan S, Kovacic Z, Reichenbach
T, Birgmajer B. Dynamic modeling and Simulation of FMS
by using VRML, CD Proceedings of 15th IFAC World
Congress 2002.

[13] Bogdan S, Lewis FL, Gurel A, Kovacic Z. Timed
matrix-based model of flexible manufacturing systems,
Proceedings of the IEEE International Symposium on
Industrial Electronics 1999;3:1373-1378

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

