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Abstract  

In this paper we present a methodology for modeling and simulation of dynamical discrete 
event systems (DDES), predominantly flexible manufacturing systems (FMS). Proposed 
technique is based on the matrix representation of a manufacturing system. Although 
prerequisites that are required for an event to start are given by static model of DES, we are 
not able to tell in which particular moment these prerequisites are met, i.e. we do not know 
when the event actually starts. In real applications on actual manufacturing processes, we will 
be sensing the completion of prerequisite jobs by either using sensors (e.g., proximity, tactile, 
etc.) or via notification from the machines or resources. On the other hand, for the purpose of 
computer simulation, we must find a way to keep track of time lapsed in the processing of 
jobs. To keep track of jobs time durations, we incorporated the system dynamics into the 
matrix model in a form of an extended lifetime. That is, a real number di, called a lifetime, is 
associated with each task in an MS. Problem that we analyze in the paper is that when 
described as a bill-of-material (BOM), or in some other engineering form, the job sequence 
does not disclose potential difficulties that might develop when the structure of an MS, which 
executes this particular sequence, is determined. In the paper we show how two of these 
potential difficulties, conflict and deadlock, can be exposed by using static and dynamic 
simulations of an MS. Based on the matrix model, these simulations provide a complete 
insight in the system performance. 
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1    Introduction 
 
Today, virtual models provide a very inexpensive and 
convenient way for complete factory design. Instead 
of building real systems, a designer first builds new 
factory layouts and defines resource configurations in 
the virtual environment and refines them without 
actual production of physical prototypes. Allowing 
clear visualization of all potential problems caused 
by the layout, virtual modeling and dynamic 
simulation of manufacturing processes has traced a 
completely new route to analysis and design of MSs 
[1–3]. 
 
A factory layout design, physical modeling, control 
synthesis, performance analysis, dynamic simulation 
and visualization of robotized manufacturing systems 
have become much easier and more effective with 
specialized programs for virtual-factory modeling 
and simulation. Some virtual-factory simulators 
originated from the academia [4–6], but most of them 
are sophisticated products of leading robot 
manufacturers and independent companies. 
 
In general, each of those MS simulators can be 
partitioned in the following modules: virtual objects 
designer, factory layout designer, trajectory 
generator, and functional testing module. The aim of 
this paper is to propose a method for MS analysis in 
functional testing module. Described algorithm 
represents a mathematical core of such a module.  
 
Functional testing has a goal to connect a physical 
setup with the plan of the simulated MS. Functional 
testing is concerned with a job-sequence definition, 
setting of MS parameters, conflict and deadlock 
analysis at the local and global level (at the robot 
workcell or robot station, and at the whole MS level), 
synthesis of control logic, study of different job-
scheduling strategies, simulation and visualization of 
dynamic phenomena during MS operation. Having a 
plan of a manufacturing process and all necessary 
MS data, functional testing should help the MS 
designer to reach a reliable and objective MS 
performance evaluation. 
 
The paper is organized in the following way. In the 
next chapter we present matrix representation of 
discrete event systems. The system matrices and 
logical equations are given and described. In 
paragraph 3 a concept of extended lifetime is 
explained and timed matrices are defined. 
Implementation of proposed method is given in 
paragraph 4 by using a simulation example. 
 
2    Matrix representation of DES 
 
Generally, the complete task plan could be given by 
the system matrices Fv, Sv, Fr, Sr, which are specified 
by higher-level planners, or may be written down in 

manufacturing systems given the BOM or the 
assembly tree plus resource-availability information 
[7-11]. Additionally, these matrices can easily be 
extracted from plans generated by typical planning 
software, including hierarchical planners. Since each 
matrix has a well-defined function for job 
sequencing, resource assignment, and resource 
release, they are straightforward to construct as well 
as easy to modify in the event of goal changes, 
resource changes, or failures; that is, they 
accommodate task planning as well as task 
replanning. 
 
Denoting the discrete event iteration number with k, 
we can calculate the logical state vector x each time 
an event takes place, i.e. a job is completed, resource 
becomes idle or part enters the system: 

v c r c u( ) ( 1) ( 1) ( 1)k k k kΔ ∇ Δ ∇ Δ= − − −x v r uF F F (2.1)

where Fr is resource-requirements matrix, Fr(i,j) = 1 
if resource j contributes to construction of the ith 
component of the logical state vector, otherwise 
Fr(i,j) = 0, Fv is job-sequencing matrix, Fv(i,j) = 1 if 
job j contributes to construction of the ith component 
of the logical state vector, otherwise Fv(i,j) = 0, Fu is 
input matrix, Fu(i,j) = 1 if an input j contributes to 
construction of the ith component of the logical state 
vector, otherwise Fu(i,j) = 0, vc is a job-completed 
vector, rc is called an idle-resource vector, and u is a 
system input.  
 
The equations describing the consequent parts of 
rules can be rewritten in the same way: 
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where Sv is job-start matrix, Sv(i,j) = 1 if the jth 
component of the logical state vector is a prerequisite 
to start job i, otherwise Sv(i,j) = 0, Sr is resource-
release matrix, Sr(i,j) = 1 if the jth component of the 
logical state vector is a prerequisite to start the 
release of resource i, otherwise Sr(i,j) = 0, Sy is 
output matrix, Sy(i,j) = 1 if the jth component of the 
logical state vector is a prerequisite for output i, 
otherwise Sy(i,j) = 0. 
 
In (2.1) and (2.2) operations are carried in so called 
and/or algebra denoted  and , where 
multiplication is replaced by AND, and addition is 
replaced by OR. 
 
In order to be able to link recursive equations (2.1) 
and (2.2) we have to relate a job-completed vector vc 
with a job-start vector vs, and an idle-resource vector 
rc with a resource-release vector rs. According to its 
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definition, the components of vector vc correspond to 
completed operations, hence, each time a job is 
completed, the number of parts held by this particular 
job is increased. At the same time, if a job contributes 
to a rule(s) that is fulfilled, an already processed 
part(s) leaves the job and proceeds through the 
system. In other words 

T
c c v v

T
c v v

( ) ( 1) ( ) ( )

( 1) ( )

k k k k

k k

= − + −

= − + −⎡ ⎤⎣ ⎦
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 (2.3)

where multiplications and additions are carried out in 
the standard way. 

 
By following the same reasoning one can find the 
number of idle resources and the number of finished 
products in step k as 
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Equations (2.3) and (2.4) can be written in the 
following form 
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where [ ] [ ]u y,= =S 0 F 0  are null-matrices required 
for keeping matrix dimensions consistent. Usually, 
matrix S is called the activity-start matrix, and matrix 
F is called the activity-completion matrix. 
 
3    A concept of extended lifetime 
 
The matrix model derived in the previous paragraph 
describes only logical (static) properties of an MS. 
Under the assumption that there are no machine 
failures, every task that starts will actually finish in a 
finite time, hence: 
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 (3. 1)

where dvi and dri are lifetimes of operation vi and 
resource release ri respectively. 
  
The final goal of an MS modeling and analysis is to 
prepare the ground for design of an appropriate 
dispatching supervisor. The nature of this supervisor 
is determined by its computer-based implementation, 
usually in a form of a PLC. Since the execution of an 
algorithm on a PLC is cyclic, the moment in which 
the supervisor detects completion of an operation 
does not necessarily coincide with the actual moment 
in which an operation is finished. Therefore, from the 
supervisor point of view, the operation lifetime is not 
di but di + εi (Figure 2.1) [12, 13]. We can rewrite 
(3.1) as 
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where ( 1)i s i i sn T d n T≥ > − , Ts is the supervisor 
sampling (cycle) interval, and ni is an integer 
representation of the lifetime expressed in number of 
sampling intervals . It is apparent that the sampling 
interval should be small enough to provide an 
accurate dynamic model. 
 

Introduction of a shift (delay) operator q in (3.2) 
gives the vector form as 

( ) ( ) ( ) ,

( ) ( ) ( ) ,

c v

c r

q q q

q q q

=

=

v T x

r T x
 (3. 3)

where Tv and Tr are operations and resources release 
delay matrices with elements representing operations 
lifetimes. Delay matrices are obtained by replacing 
each entry “1” in Sv and Sr with a shift operand 
representation of corresponding lifetime. 

Due to the existence of shared resources, 
transformation of the second equation in (3.3) 
requires additional explanation. Namely, each non-
shared resource in r has its corresponding operation 
in v which is responsible for its release. In the same 
time, a shared resource that is represented by one 
component in vector r, has several operations in v it 
could be released from. As release lifetimes 
associated with these operations generally differ, the 
row in Tr that corresponds to a shared resource could 
have two or more different entries. 

Conversion of equations (3.3) into recursive form, 
suitable for simulation, can be done in the same way 
as in the case of static recursive model (2.5). 
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1( ) ( ) ( ) ( ) ( ) ,T
c c v vqq q q q q−= + −v v T x F x  (3. 4)

1( ) ( ) ( ) ( ) ( ) .s s T
c c r rqq q q q q−= + −r r T x F x  (3. 5)

Finally, the dynamic matrix model of an MS is 
obtained by including the shift operator q in logical 
state vector equation: 
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Figure 2.1.  Extension of the operation lifetime for the 

system dynamics modeling. 

By comparing (2.5) with (3.6) one can notice that 
the main difference between two models is in matrix 
S which is replaced with delay matrix T(q). Before 
we give an example of system dynamics modeling 
based on (3.6), there are two issues that have to be 
further discussed. The simulation of a dynamic model 
is done in the way that each element T(q)(i,j) of 
delay matrix, that is not equal to 0, is associated with 
a clock, denoted C(i,j), containing the time passed 
after the job has been started. All clocks are initially 
set to zero. When the rule for starting a particular 
task is satisfied, the corresponding clock is activated. 
Then, in each sampling interval all active clocks are 
checked. If some clock is found to be equal to or 
greater than the corresponding task lifetime, defined 
as an entry of the delay matrix, the particular task is 

considered completed. In that case the entry of vector 
m matching this task is incremented. Such realization 
of model (3.6) is valid as long as there are no 
resources that can process more than one part at a 
time. If there exists such a resource, then simulation 
algorithm must be modified in a straightforward 
manner, by expanding the number of clocks for each 
additional part processed simultaneously by the 
resource. For example, if T(q)(i,j) = q-5 stands for 
some task that lasts 5 sampling intervals and can 
process 3 parts in the same time, then it is associated 
with a so called multipart clock, that is, C(i,j,1), 
C(i,j,2) and C(i,j,3). The first part entering the task 
activates C(i,j,1), the second one C(i,j,2) and the third 
part C(i,j,3). Having its own clock, each part can be 
tracked separately. 

The second issue that needs additional 
clarification when one considers realization of the 
dynamic matrix model is related to so called 
“hidden” parts. Let us assume that rule xi, which has 
job vi in its prerequisite part and job vj in its 
consequent part, is satisfied in the sampling interval 
k. Further on, let processing of the part in vj follows 
immediately after processing in vi. Then, according to 
(3.6), term FTx(k) removes the part from vi, i.e. 
corresponding component of vector m is decreased. 
Processing of the part in vj starts in the same 
sampling interval k, but due to the operation lifetime, 
the part will be completed nvj sampling intervals 
later, i.e. the component of vector m that corresponds 
with operation vj will be increased with delay. 
Therefore, one is not able to tell where the part is if 
only vector m(k) is tracked. However, the results of 
system performance analysis in the sense of system 
throughput, resources utilization, etc., are not 
influenced by the existence of hidden parts.    

4    A simulation example 
 
Let us consider the system shown in Figure 4.1. 

The lifetimes of work cell operations are given in 
Table 1. Release of buffer BA, which lasts 2.75 
seconds, is the shortest task in the work cell, thus, we 
choose the simulation sampling interval to be  Ts = 1 
[s]. Extended lifetimes for this sampling interval are 
specified in the third column of Table 4.1. 

There are ten different tasks in the system, and 
two of them can hold two parts simultaneously, 
buffer operation BP and buffer release B. 
Accordingly, simulation requires eight standard and 
two multipart clocks. As in the case of the static 
simulation, we assume that only one part enters the 
system at the initial step and all resources are idle at 
the beginning, consequently, m(0) = m0 = [1 0 0 0 0 0 
1 1 2 1 0]T. 
 
Results obtained by simulation are shown in Figure 
4.2. Upon entering the system, the part has been 
processed in machine A. After 76 sampling intervals 
(graph MAP) the part is removed from the machine 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM



into the buffer, which can be clearly seen on graph R 
– robot is idle while the part is processed in machine 
A, then it moves the part (10 sampling intervals) and 
finally it is released (6 sampling intervals). The part 
advances through the system and after 211 samples 
(see graph RP2 that represents the last operation of 
the system) it leaves the work cell. 

 

 
Figure 4.1.  The work cell layout for the assembly tree 

in Figure 1. 

Table 4.1.  Lifetimes of the work cell tasks 

Operation Lifetime di [s] Extended 
lifetime 

ni 

MAP (drill) 76 76 

RP1 (move 1) 10 10 

BP (buffer) 3.5 4 

MBP (grind) 113 113 

RP2 (move 2) 7.5 8 

release of MA 15 15 

release of B 2.75 3 

release of MB 10 10 

release of R (after 
RP1) 

5.75 6 

release of R (after 
RP2) 

4.25 5 

 
In order to get a complete insight in the system 
dynamic properties we have to simulate a situation 
with several parts being processed simultaneously. 
This situation is closer to the real conditions in which 
the system is fed by parts with predetermined 
frequency (or stochastically).Given that 
manufacturing systems are generally designed to 
work periodically, this kind of simulation provides 
results that can be used for calculations of production 
cycles, resources utilizations, bottleneck machines, 
etc. 
  
Graphical representation of results obtained in case a 
new part is available each time robot R is idle, is 
given in Figure 4.3. 

 
Figure 4.2.  Graphical representation of results obtained by 

the dynamic simulation (one part processed). 

Several observations regarding system performance 
can be made from attained results. We see that the 
first part leaves the system after 211 samples, same 
as in the previous simulation when only one part has 
been passed through the work cell. After that, the 
time period between departures of two consecutive 
parts from the system is equal to 123 sampling 
intervals, which corresponds to the sum of processing 
and release lifetimes of machine B (see Table 4.1). 
Hence, simulation confirmed, as we expected, that 
this machine is the system bottleneck since it is the 
slowest one according to Table 4.1. 
 
We conclude this discussion with a note on another 
interesting phenomenon that is revealed by results of 
the dynamic model simulation. From the graphical 
representation of the first operation in the system, 
MAP, it is evident that 10 parts have entered the 
work cell. On the other hand, only 5 parts have 
arrived at the output. The other 5 parts got trapped in 
the system; all resources are occupied and none of 
them can be released since they are all waiting for 
each other. This condition is known as a circular 
blocking and it is equivalent to already mentioned 
deadlock. Analysis of graphs in Figure 4.3. can 
clearly show how the system came into deadlock. In 
sampling interval k = 806 machine A just finished 
processing of 9th part. In the same time sample buffer 
B is full (BP = 2 for k = 806), machine B is 
processing 6th part and robot R is idle. 
 
Prerequisites of rule x2, MAP is completed and robot 
R is idle, are met, thus, task in the consequent part, 
RP1, is started. Since buffer is full, robot cannot 
complete RP1. A part that is supposed to leave the 
buffer and make room for a new one is blocked by 
the part in machine B which waits to be cleared by 

robotmachine A

machine B

buffer

parts in

parts out
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robot R that is already holding a part. Resources wait 
for each other, the system is deadlocked and parts 
cannot proceed through the line. 

1
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Figure 4.3.  Results obtained by simulation based on 
dynamic matrix model (several parts processed). 

 
At the end of the example, let us reorder the job 
sequence in the work cell by exchanging positions of 
machines A and B, i.e. instead of drill the first 
operation in the sequence is grind. The dynamic 
matrix model is changed correspondingly and 
simulation results are shown in Figure 4.4. It can be 
noticed that deadlock is avoided and the system has 
cyclic activities. Parts are leaving the work cell with 
a period of 123 sampling intervals. Operational time 
of particular resource can be easily determined from 
graphs corresponding to its idleness and activity. For 
example, graph B clearly shows that buffer is 
underutilized as it never accommodates more than 1 
part, i.e. the system could work correctly with a 1-
slot buffer. As expected, the slowest machine is 
operational 100 % of time (graphs MBP and MB), 
while activity periods of other two resources are 
approximately 24 % for robot (graphs RP1, RP2 and 
R) and 74 % for machine A (graphs MAP and MA).      

 
Figure 4.4.  Results obtained by simulation based on 
dynamic matrix model (reordered job sequence). 
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