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Abstract  

The work deals with a recognition problem using a probabilistic-fuzzy model. The model is 
based on the notion of fuzzy random variable and also on the Bayesian theory. The Bayesian 
hierarchical classifier is based on a decision-tree scheme. For given tree skeleton and features 
to be used, the optimal (Bayes) decision rules (strategy) at each non-terminal node are 
presented. The globally optimal Bayes strategy (which minimizes the overall error 
probability) has been calculated for stage-dependent loss function. This fuzzy loss function 
means that the loss depends on the stage at which misclassification is made. The loss function 
in our case is fuzzy-valued and is described by a fuzzy triangular or trapezoidal number. In 
order to rank fuzzy mean values, we have selected the subjective method defined by Campos 
and Gonzalez. This method is based on the λ-average valued of a fuzzy number where λ 
parameter is a subjective degree of optimism-pessimism. In the end, some results of 
simulation investigations of this case of pattern recognition are presented. This results 
presented influence of parameter λ on separation point for decision regions at the first stage. 
This paper contribute to a better understanding of the impact of the choice of a fuzzy numbers 
which describe stage-dependent loss function in multistage classifier. 
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1 Introduction 

This paper deals with a recognition problem, which – 
assuming a probabilistic model with a full information 
– values of a loss function are assumed to be fuzzy 
numbers. The class of the fuzzy-valued loss functions 
is definitely much wider than the class of the real-
valued ones. This fact reflects the richness of the 
fuzzy expected loss approach to describe the 
consequences of incorrect classification as opposed to 
the real-valued approach. For this reason, several 
studies have previously described decision problems 
in which values assessed to the consequences of 
decision are assumed to be fuzzy [1,5,6,11]. These 
papers describe only single-stage decision problems. 

This paper deals with a multistage recognition 
problem We will consider the so-called Bayesian 
hierarchical classifier [8,9]. In this recognition 
problem the decision as to the membership of an 
object into a class is not a single activity but is the 
result of a more or less complex decision process. The 
mechanics of classification can be described by means 
of a tree, in which the terminal nodes represent pattern 
classes, i.e. final classification, and the interior nodes 
denote groups of classes. In particular, the root-node 
represents the entire set of classes into which a pattern 
may be classified. This model has been formulated so 
that, on the one hand, the existence of fuzzy loss 
function representing the preference pattern of the 
decision maker can be established; while, on the other 
hand, a priori probabilities of classes and class-
conditional probability density functions can be given. 

In the further part, after the introduction of necessary 
symbols, we will calculate the set of optimal 
recognition algorithms for internal nodes, minimizing 
the global quality indicator. As a criterion of 
optimality we will assume the mean value of the fuzzy 
loss function (risk), which values depends on the stage 
of the decision tree, on which an error has occurred. 
The presented algorithm will be illustrated by a 
simulation investigation in which crisp method for 
ranking fuzzy numbers was applied. 

2 The multistage recognition task 

The synthesis of multistage classifier is a complex 
problem. It involves specification of the following 
components: 

• the decision logic, i.e. hierarchical ordering of 
classes, 

• feature used at each stage of decision, 

• the decision rules (strategy) for performing the 
classification. 

This paper is devoted only to the last problem. This 
means that we will deal only with the presentation of 
decision algorithms, assuming that both the tree 

skeleton and the feature used at each non-terminal 
node have been specified. 

Let us consider a pattern recognition problem, in 
which the number of classes is equal to M. Let us 
assume that classes were organized in (N+1) 
horizontal decision tree. Let us number all nodes of 
the constructed decision-tree with consecutive 
numbers of 0, 1, 2,..., reserving 0 for the root-node 
and let us assign numbers of classes from the 
M={1,2,...,M} set to terminal nodes so that each one 
of them is labeled with the number of the class which 
is connected with that node. This allows the 
introduction of the following notation [8,9]: 

• M(n) – the set of numbers of nodes, which 
distance from the root is n, n = 0,1,2,...,N. In 
particular M(0) = {0}, M(N ) =M, 

• U
1

0
)(

−

=
=

N

n
nMM  – the set of interior node numbers 

(non terminal), 

• )(Ni MM ⊆  – the set of class numbers 

attainable from the i-th node ( )M∈i , 

• i
M  – the set of numbers of immediate 

descendant nodes i ( )M∈i , 

• im  – number of immediate predecessor of the i–

th node (i≠0). 

We will continue to adopt the probabilistic model of 
the recognition problem, i.e. we will assume that the 
class number of the pattern being recognized 

)(NjN M∈  and its observed features x are 

realizations of a couple of random variables JN and X. 
Complete probabilistic information denotes the 
knowledge of a priori probabilities of classes: 

 )(),()( NjjJPjp NNN M   ∈== N  (1) 

and class-conditional probability density functions: 

 ).(,),/()( NjXxjxfxf NNjN
M      ∈∈=  (2) 

Let  

 M    ,RX ∈≤⊆∈ iddx i
d

ii
i ,  (3) 

denote vector of features used at the i-th node, which 
have been selected from the vector x. 

Our target now is to calculate the so-called multistage 
recognition strategy .}{ M∈=π iiN ψ , that is the set of 

recognition algorithms in the form: 

 M  MX ∈→ ii
ii ,:Ψ . (4) 

Formula (4) is a decision rule (recognition algorithm) 
used at the i-th node which maps observation subspace 
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to the set of immediate descendant nodes of the i-th 
node.  

Let ),( NN jiL denote the loss incurred when objects 

of the class Nj   is assigned to the class Ni  

( )(, Nji NN M∈ ). Our aim is to minimize the mean 

risk, that is the mean value of the fuzzy loss  
function [6]: 

 ==π )],([min)(
~

,

**
NN

JI
JI

NN

LER N  (5) 

 )]),(([min
,

N
JX

JX
N

ΨLE=  

We will refer to the *
Nπ  strategy as the globally 

optimal N-stage recognition strategy. 

The fuzzy-valued loss function is described by 
triangular or trapezoidal fuzzy number. The 
trapezoidal fuzzy number is characterized by means of 
a membership function: 
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and triangular fuzzy number is characterized by means 
of a membership function: 
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where Af  and Ag  are continuous functions, Af  is 

increasing (from 0 to 1), Ag  is decreasing (from 1 to 

0). 

In order to rank fuzzy mean values, we have selected 
the subjective method defined by Campos and 
Gonzalez [4]. This method is based on the λ-average 

valued of a fuzzy number, which is defined for A
~

 as 
the real number given by 

 ∫ αλ−+λ= αα
λ

1

0
12 )(])1([)

~
( dSaaAVS  (8) 

where ],[
~

21 ααα = aaA , ]1,0[∈λ  and S being an 

additive measure on ]1,0[⊂Y . 

The λ parameter is a subjective degree of optimism-
pessimism. In a loss context, λ=0 reflects the highest 
optimism, while λ=1 reflects the highest pessimism. 
Then, the λ-ranking method used for comparing fuzzy 
numbers is given by: 

 )
~

()
~

(
~~

BVAVBA SS
λλ ≥⇔≥ . (9) 

This λ-average ranking method extends some well-
known ranking functions [3,12]. One of the most 
relevant characteristics of the ranking method based 

on the function λ
SV  is its feasibility, which is due to 

the following reason: when we apply λSV  on the fuzzy 

expected value of an integrably bounded fuzzy 
random variable the computation of this fuzzy 
expected value is not required. The λ-average value of 
a fuzzy expected value is reduced to the expected 
value of a classical random variable, namely, the 

composition of λ
SV  and the fuzzy variable [10]. 

3 The recognition algorithm for stage-
dependent fuzzy loss function 

Let us assume now 

 ( ) s
wNN LjiL )(

~
,

~
d

=  (10) 

where w is the first common predecessor of the nodes 

Ni  and Nj  ( )(, Nji NN M∈ ). So defined fuzzy loss 

function means that the loss depends on the stage at 
which misclassification is made. Stage-dependent 
fuzzy loss function for the three-stage binary classifier 
are presented in Fig. 1. 

Putting (5) into (4) we obtain the optimal (Bayes) 
strategy, which decision rules are as follows: 
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})]...]()(
nN

ijN xfjp×  

for )(nin M∈ , n=0,1,2,...,N–1, where 

),/( 1
*

NnN jijq +  denotes probability of accurate 

classification of the object of the class Nj  in further 

stages using *
Nπ  strategy rules on condition that on 

the n-th  stage the 1+ni  decision has been made. 

 

Fig. 1 Interpretation of stage-dependent fuzzy loss 
function 

4 Project of simulation investigations 

Let us consider the two-stage binary classifier present 
in Fig 2. Four classes have identical a priori 
probabilities which are equal 0.25. Class-conditional 

probability density functions of features 5X  and 

6X  are following: 
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=
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The feature 0X  is triangular in each class with the 

following class-conditional probability density 
functions: 
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The stage-dependent fuzzy loss function are the 
following:  

case 1 T
SL )4,3,3,2(

~
0 = , T

SL )3,2,2,1(
~
1 = , 

case 2 T
SL )6,4,4,2(

~
0 = , Tr

SL )1,5.0,5.0,0(
~
1 = , 

case 3 Tr
SL )3,5.2,5.1,1(

~
0 = , Tr

SL )1,5.0,0,0(
~
1 = , 

case 4 Tr
SL )3,5.2,5.1,1(

~
0 = , T

SL )5,1,1,5.0(
~
1 = , 

and are described by triangular or trapezoidal 
membership function. 

Due to the peculiar distribution of 5X  and 6X , the 

decision rules *
5Ψ and *

6Ψ , at the second stage of 

classification, the separation point are following: 

25.2'
5 =x  and 9.0'

6 =x . Let us now determine the 

rule *
0Ψ  at the first stage of classification. From (7) 

we obtain: 
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Putting now the data of example, and use Campos-
Gonzalez method for comparison fuzzy risk, we 
finally obtain results presented in Fig. 3-6, where 

value of point '
0x  (separation point for decision 

regions at the first stage) in function of parameter λ is 
presented. 

1 2 3 4

65

0
SL0

~

SL1

~

 

Fig. 2 Illustrate of simulation – decision tree 

 
Fig. 3  Separation point for decision regions at the first 
stage – case 1 
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Fig. 4 Separation point for decision regions at the first 

stage – case 2 

 
Fig. 5 Separation point for decision regions at the first 

stage – case 3 

 
Fig. 6 Separation point for decision regions at the first 

stage – case 4 

For crisp stage-dependent loss function (equal 2 and 1  
on the first and the second stage respectively), we 

have '
0x =1.48. 

5 Conclusions 

In the paper we have presented the multistage Bayes 
classifier with a full probabilistic information. In this 
recognition model a priori probabilities of classes and 
class-conditional probability density functions are 
given. Additionally, consequences of wrong decision 
are fuzzy-valued and are represented by triangular or 
trapezoid fuzzy numbers. In this work we have 
considered algorithm for hierarchical classifier with 
stage-dependent fuzzy loss function when observation 
of the features are crisp. We use Campos-Gonzalez 
method for comparision fuzzy risk. Simulation 
investigations presented infuence of parameter λ on 
separation point for decision regions at the first stage. 
This paper contribute to a better understanding of the 
impact of the choice of a fuzzy numbers which 
describe stage-dependent loss function in multistage 
classifier. 
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