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Abstract  

In this paper we present a System Dynamics model for the incidence of type-2 diabetes in 
Austria based on a model developed by A. Jones, J. Homer et al. [1] for the United States of 
America. The main influencing factors incorporated in the model are obesity, age and disease 
management. This model is developed further to better represent the health care organization 
in Austria as well as to include a distinction by sex. While most control circles are very 
similar to the USA model the input parameters differ radically, making an adaptation 
necessary. This results in large deviations in the disease prevalence relative to the total 
population. A thorough stability analysis is carried out and the question of sensitivity to input 
parameters variation is investigated. A comparison with available historical data shows the 
applicability on the real world system. A test run is made and compared with the standard 
scenario of no change in health care politics after 2007. This test run is in accordance with the 
WHO recommendation of half an hour of physical exercises per day and it is shown to be 
effective in the prevention of type-2 diabetes mellitus. Further developments and test runs are 
suggested. 

Keywords: system dynamics, health care modeling, socioeconomics, complex data, large 

scale modeling. 
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1 Introduction 

Diabetes mellitus (DM) and its complications are one 
of the most challenging topics in public health care.  
Consequent diseases include neuropathy along with 
the risk of gangrene and a later amputation, 
nephropathy that can lead to obligatory dialysis as 
well as to the necessity of a kidney transplant and 
retinopathy with the danger of premature blindness. 
With a prevalence of 25 million people in the 
European Union and 60 million people at risk of 
developing pre-diabetes, diabetes is a major chronic 
disease responsible for 5 to 10 percent of the total 
health care costs [2]. The WHO expects a rise in 
diabetes prevalence of 37 percent from the year 2000 
to the year 2025 [3]. The question is how to best 
manage this serious threat to public health. 

One way to find an answer is to employ System 
Dynamics (SD) with it's a very broad range of 
applications in natural, economical, technical and 
social sciences. SD models are perfectly suited to test 
different policies of intervention in simulations and 
therefore are a powerful tool to help finding the best 
strategies. 

We adopt a SD model, commissioned by the Center 
for Disease Control and Prevention (CDC) in the USA 
and developed by A. Jones, J. Homer et al. [1], which 
has been successfully applied to reproduce the 
historical available data of the last two decades. The 
structure of the model arises not only from the 
progression of DM as a chronic disease but also from 
the available data. We adopt the model to the Austrian 
data set and enhance it to include a distinction by sex 
since different policies may become necessary. 

The structure of this paper is as follows: In section 
two we try to answer the question why using SD to 
develop a model for the diabetes prevalence makes 
sense. The main stocks and flows in this model are 
described in section three. Section four discusses the 
available input data and methods to handle them. 
Section five deals with the main influence factors: 
obesity as a function of caloric intake and 
consumption, age and disease prevention and control. 
A stability and, at least to some extend, a sensitivity 
analysis is carried out in section six. Results for 
Austria are given in section seven. The last section 
will summarize our findings and propose testing 
schemes and further future work.  

 

2 Modeling motivation 

Chronic diseases are widespread above all in our 
aging affluent society. Approximately one third of the 
total population suffers from chronic diseases and 
with increasing age the percentage is rising steeply. 
Already more than one half of the people above 60 
suffer from at least one chronic disease. Therefore 

these afflictions are responsible for a great part of the 
health care costs, outstripping the costs of accidents 
and acute diseases combined. According to all 
estimates chronic diseases are going to increase 
further [6].  

Besides the socioeconomic importance, chronic 
diseases sport several features which suggest a SD 
treatment:  

1.) All health care officials, including doctors, 
politicians, patient associations and other medical 
staff, recognize the threat and agree that measures on a 
population-wide, system-wide level have to be taken 
to reduce chronic diseases and their consequences. But 
most programs sport conventional analytical methods 
by which each aspect of a complicated disease control 
strategy is addressed and evaluated separately. The 
advantage of SD here is that one gets a global picture 
where all influencing factors are incorporated and act 
together.  

2.) Chronic diseases involve long time scales. There 
are long delays between causes and health 
consequences making short term analysis methods 
unsuitable. Three prevention levels, of which each can 
require dozens of years of treatment, are 
distinguished: primary prevention to avoid the onset 
of an affliction, secondary prevention to avoid chronic 
development and harmful consequences and tertiary 
prevention to avoid the loss of functions [4].  

3.) For every prevention level many different policies 
are available. Primary prevention includes behavioral 
and socioeconomic measures like improving lifestyle, 
working and living conditions, information, education 
and many more. Secondary prevention focuses on 
precaution and early detection. And finally elements 
of the tertiary prevention are accessibility to the 
medical treatment, improvement of compliance and 
empowerment. All these measures together with 
quality control are elements of a process-based 
disease-management approach. SD now gives the 
opportunity to test different approaches and policies 
simultaneously and observe the respective outcome. 

Finally diabetes mellitus is the prime example of a 
chronic disease. It is researched well enough so that 
the main risk factors are known and that much input 
data is available.  

 

3 The core model 

Of diabetes mellitus only the risk for type-2 diabetes, 
which is responsible for 85 to 95 percent of all cases, 
is reasonably influenceable. Since type-2 DM is still 
very seldom for juveniles we restrict ourselves to the 
adult population. The steep rise of people with DM 
from 1995 to 2000 is not only due to a higher 
prevalence but also due to better and earlier diagnosis. 
This has also consequences for the model structure: In 
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Figure 1 we present the population stocks and flows in 
our model. We distinguish seven different population 
stocks arranged in four groups. The first group 
consists only of one stock: the healthy adults who 
have a normal blood-glucose level. The other groups 
each consist of two levels, the diagnoses and the 
undiagnosed ones. The second group is the population 
with pre-diabetes. These are people with an increased 
blood-glucose level but not yet having developed full 
diabetes, which constitute the third group. In the last 
group are people who not only have diabetes but are 
also stricken by consequent diseases. 

 

Figure 1: The main stocks and flows of the model 

Let us now examine the flows more closely: There is 
only one inflow of healthy adults into the fist level, 
while people may die out of every level. This inflow is 
given as a time series input by statistical predictions. 
The different death rates are affected by the fraction of 
obese people of every stock, which is calculated in our 
model, as well as by the fraction of elderly people, 
which is again given as a time series. The basic 
assumption is that the relative rates of people with a 
risk factor compared to people without it remains 
constant in the respective group. Written explicitly 

hold true for every group, where P(a|b) denotes the 
conditional probability of factor a under condition b. 
If DM is already detected than also the control of the 
disease, the “disease management”, is influencing the 
death rates. With suitable initial values the dynamic 
death rates can then be calculated. 

The flows between the different stocks are 
characterized by the following assumptions: While 
people with pre-diabetes can still recover, there is no 
way to cure DM after its onset. DM is a chronic 
disease after all and once complications occur the 
damage is dealt and cannot be undone. The onset of 
pre-diabetes and DM occur unobserved, while 
complications can also arise even if under medical 

supervision. All transition rates are affected by the 
elderly and the obese fractions of the respective 
populations. The progression rates (the horizontal 
untitled ones) of the detected populations can be 
influenced by the clinical management, like 
prevention measures and compliance. The detection 
rates (the vertical ones) are more difficult to describe: 
they are first order exponentially delayed functions of 
the progression rates as well as the testing frequency 
and the sensitivity of the tests. Time dependent input 
data enter in several places of DM detection and 
control incorporating different possible health 
policies. 

 

4 Data basis 

The original model is very complex, allowing for 
nonlinear behavior. There are over 134 different input 
parameters and not all of them can be measured 
directly. It is therefore necessary to estimate some of 
the unmeasured input parameters so that the output 
reproduces available historical data. This is the reason 
why we start the simulation in 1980 and continue it till 
2050. The model for the United States of America 
incorporates qualitative statements in their parameter 
estimation and use a partial-model-tuning approach. In 
short the tuning of uncertain parameters is done 
manually but applied to the smallest possible piece of 
structure and the smallest possible cluster of 
parameters given the configuration of available time 
series data. 

Since the available data are very different in Austria 
compared to the US we will look at some points in 
detail now. Where data are available we of course use 
them directly or use them to calculate the necessary 
input parameters. Examples are the future population 
for every year as describes below and the initial death 
rates from the life expectancy. 

Another point is that the available data originate from 
different years, like data recorded only since a certain 
starting date or the progression of classification 
standards. For the parameters which remain constant 
over time, like the ratio of the death rates above, this 
constitutes no problem. Where appropriate data are 
available the assumption that they stay constant is 
tested. In the other cases we have reason to believe in 
the validity of this assumption since the model worked 
for the US. 

Where no data from Austria are available we use data 
from nearby countries, like Germany or the United 
Kingdom, or we use the input parameters from the US 
model. This is justified since all these countries 
belong to the same western industrial culture area. 
Therefore it is expected that the parameters are almost 
the same as in Austria. Additional confidence is 
provided by the fact that parameters for the US model 
have already been verified [1]. 
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And finally the specific situation in Austria makes 
some parameters unnecessary or completely different. 
One difference to the USA model arises from the fact 
that everyone in Austria has access to health care and 
can afford the necessary medicaments and treatments 
thanks to the compulsory insurance system and free 
social healthcare. The second difference is that the 
costs of DM and consequent diseases are simply not 
comparable. 

One major difficulty encountered when modeling 
diseases in general is the estimated number of 
unreported cases. Several studies are available on this 
topic (c.f. [7] and references therein). Our findings are 
in fairly good agreement to the WHO estimates of a 
current DM prevalence of 5 to 7 percent [3]. The exact 
number of cases is not to be taken intimately, but this 
isn’t our goal anyway. In the application we want to 
compare different policies of health care management 
against each other. 

For the analysis in this paper we use data for Austria. 
The quality of the data is good and many input 
parameters are available, especially with respect to the 
distinction by sex. This distinction is made by running 
the model twice with different input parameters and 
then adding up the respective results. 

 

5 The main factors of 

influence 

We have already identified the most important 
influencing factors: age, clinical management and 
obesity. The age enters through the fraction of elderly 
people. The adult population, including people of age 
20 and above, is given by a time series calculated from 
the demographic development taken from [5] (from 
where the online data tables were exported). The 
fraction of elderly people is calculated as the fraction 
of people age 65 and above compared to the adult 
population and can be seen together with the adult 
population in Figure 2. The calculation of the values 
for each year is done by a spline interpolation of order 
3 of the available data. Note that the results do change 
less than one percent if we use linear interpolation 
instead. 

The disease management allows adjusting the 
following time dependent input parameters: the testing 
of high-risk patients, the testing for and the 
monitoring of pre-diabetes, the ability to self-monitor 
the blood glucose level and the ability to adopt a 
healthy lifestyle. For the calculation of the standard 
scenario the historical values of these input parameters 
are taken from [5,6,7,8] and are assumed to stay 
constant after 2005. 

 

 

Figure 2: Adult (upper solid line) and elderly (lower 
solid line) population and the fraction of elderly 
people (slashed line, right scale) in Austria from 1971 
to 2006 (data) and prognosis till 2050. 

 

Finally the obese fraction of the population is 
calculated dynamically in our model. Figure 3 
presents the controlling feedback loop which governs 
the body-mass-index (BMI) in dependence of the 
calorie intake and consumption. Here lies a difference 
to the original model: While the physical activity 
calories were given directly as a time dependent input 
variable in the US model we don’t have these data 
available for Austria. Instead we use the physical 
activity level, which is a multiple of the basal 
metabolic rate, as given in [6]. Finally this control 
cycle is also a reason why we only study adults: The 
formulas used are valid only for adults and we 
automatically exclude adolescence effects on the BMI. 

 

 

Figure 3: BMI-feedback cycle, details are found in [1]. 

 

The fraction of the obese population is then a well 
known empirical function of the average BMI. With 
this variable the obese fraction of the population with 
a normal blood glucose level can be calculated and via 
a smoothing process the fractions of obese people in 
the other stocks. 
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6 Stability and sensitivity 

analysis 

Qualitatively this type-2 diabetes mellitus SD model is 
very complex and therefore there is no chance to 
analyze the stability of the system analytically. 
However, there are some qualitative considerations 
which can be made: 

The first has to do with the stocks and flows structure: 
the only inflow in the system is the adult population 
(c.f. figure 1). Nowhere else in the system new 
population can enter, the people are only allowed to 
die out of the system. Therefore the number of people 
in the system is bounded and no unlimited growth can 
arise. Secondly all the flows are time-delayed, so we 
can expect that the system responds smoothly to 
discrete changes of the input variables and no 
instantaneous depletion of a level can occur.  

And finally a first order analytical approximation for 
the effect of input parameter changes of sub-systems 
can be made. However, this is not sufficient for the 
analysis of the stability of the system due to the 
occurrence of feedback loops: the errors have a 
feedback on themselves and therefore they may 
accumulate in a geometric series or even worse. Since 
there is no chance to solve this problem analytically 
we have to investigate the stability and the sensitivity 
to input parameters numerically. 

As a quantitative analysis two things were done: 
firstly each input parameter was changed individually. 
By changing each input consecutively by ±20% the 
output variables always changed by less than 10%, 
except when changing the initial population levels. 
The change was done linearly around the initial value, 
as long as the values where in the allowed range (e.g. 
no probabilities greater than one). This is a first 
indicator that the system is stable and that, with the 
exception of the initial population levels, the system is 
not very sensitive to parameter changes. This is true 
especially in the long time behavior, when the time 
dependent input parameters do not vary any more (c. f. 
the standard scenario). 

Secondly the Ljapunov exponent was calculated while 
some input parameters were varied. The Ljapunov 
exponent measures how fast the trajectories of 
different initial conditions separate (positive 
exponent) or converge (negative exponent) in phase-
space with time. The definition of the maximal 
Ljapunov exponent λ  for continuous, differentiable 
systems is 
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where t is the time and Z(t) is the trajectory in phase-
space. But since we do not know this movement 
through phase-space analytically we had to work 

numerically. The numerical calculation is more 
difficult and was done in the following way: 

A Monte-Carlo sampling of the System Dynamics 
model was performed: some of the input parameters 
where varied randomly at the same time. The 
variations followed a Gaussian distribution with a 
standard deviation of 20% around their initial values. 

This was done for 100 different input parameter 
combinations and the respective results have been 
calculated. The discrete Ljapunov exponent can be 
calculated as 
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Since we do not know the analytical derivate of the 
time evolution function f(y(tn)) with respect to the 
phase-space variables y(tn) we need to approximate the 
differential quotient through 
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This approximation is valid since the values for the 
time step tn+1 are calculated from the values of the 
previous time step. The approximation is quite good 
as long as the denominator stays away from zero, 
which is luckily the case. If the simple finite 
difference quotient would be calculated instead, a 
wrong result would be obtained since the effect of the 
phase-space velocity of the system would be excluded. 

Now two kinds of averaging have been done:  

1. The mean of all runs has been taken and the 
Ljapunov exponent from it has been calculated and 

2. the Ljapunov exponents for every run have been 
calculated and averaged afterwards. 

For the test runs from Figure 4, where all time 
independent input variables with exception of the 
initial population levels have been varied, the 
respective results are λ 1= −0.0377 and λ 2= −0.0373 
± 0.007. All of the individual exponents in the second 
case are negative and the ±0.007 is the standard 
deviation. These Monte-Carlo averaged Ljapunov are 
very similar, their difference is of the order of the 
standard deviation. For all kinds of variations of the 
input variables and parameters the Ljapunov exponent 
turned out to be negative although small (typically 
between -0.02 and -0.1). There turned out to be no 
significant difference if 1.000 instead of 100 different 
parameter combinations were used. 
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Figure 4: The diabetes fraction of the adult population 
for 100 different parameter values. 

 

We can now interpret these results: although a 
variation in the initial conditions leads to a larger 
difference in the end than in the beginning the system 
turns out to be stable. The system is also not very 
sensitive to a variation of individual parameters. The 
conclusion is that the system is quantitatively 
dynamically stable in accordance with the qualitative 
expectations, as long as the input data does not leave 
the compulsory bounds (like probabilities greater than 
one and the like). 

 

7 Testing schemes and results 

for Austria 

In this section we give the results for the development 
of DM in Austria till 2050. We also test different 
scenarios for the management of DM against the 
standard scenario that every parameter remains 
constant after 2005.  

In Figure 5 we see the fractions of detected and 
undetected diabetes and diabetes with complications, 
where all input parameters except the adult population 
inflow and the fraction of elderly people remain 
constant after 2005. We see that the diabetes fraction 
of the adult population continues to grow until around 
2025 and then becomes slowly saturated. The diabetes 
with complications fraction of the adult population 
shows a similar behavior. Almost all cases of DM 
with complications are detected. The same is true only 
for 70 percent of the uncomplicated DM population. 
The distinctive form of the undetected diabetes 
without complications curve between 1980 and 2000 
is due to the beginning of the detection of pre-diabetes 
as a disease. The sum of all diabetes cases increases in 
a much smoother way. 

As an example for a possible policy testing we give 
the results of the same test run with the difference that 
the physical activity level, which is in Austria 
somewhat below the recommended level [6], is, 
starting with 2007, increased over a time-span of 10 
years to the recommended one. This is in accordance 
with the WHO recommendation that everyone should 

make half an hour of physical exercises per day. In 
Figure 6 we see the diabetes fraction of the adult 
population compared to the total of Figure 5 with the 
difference that people are going for a walk at moderate 
speed for approximately an hour per day from 2007 
onwards (which corresponds to the recommended 
PAL increase). We see that the growth of the DM 
percentage stops after approximately three years and 
begins to drop afterwards. This time delay is of the 
same magnitude as the typical time delay constants 
occurring in the model. In the year 2050 the total 
diabetes prevalence has dropped about 1.5 percent. 
The absolute number of diabetes cases is however still 
increasing for a longer time due to an increase in the 
adult population. 

This is especially relevant for the costs and e.g. the 
planning of health care institutions. This example 
could be incorporated in reality with relative low costs 
compared to the diabetes care costs.  

 

 

Figure 5: Detected (solid) and undetected (slashed) 
diabetes (upper lines) and diabetes with complications 
(lower lines) fractions of the adult population in 
Austria. 

 

Figure 6: The diabetes fraction of the adult population 
when the PAL is increased from the current to the 
recommended level over the next ten years compared 
to the standard scenario (slashed line). 
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8 Summary and outlook 

In this paper we have shown how a SD model for the 
DM prevalence in the US can be modified to fit the 
specific requirements and the available data in 
Austria. The stability and the sensitivity of the system 
have been analyzed. The WHO recommendation of 
half an hour of physical exercises a day has been 
shown to be effective to prevent type-2 diabetes 
mellitus. 

Further work is on the way to compare more different 
health care schemes for Austria and to include a more 
detailed health care cost analysis.  

From the applied side of SD the following case studies 
can be made: We can also simulate different regions 
of health care to analyze the west-east gradient of life 
expectancy and life style in Austria. Together with the 
Hauptverband der Sozialversicherungsträger and other 
public decision makers responsible for health care 
various policies may be tested. Especially interesting 
is whether different policies for men and women are 
useful. Ongoing studies to examine the disease 
management from prevention and early detection over 
lifestyle adjustment to compliance are suited to 
validate the predictions made by the SD model. 

Future work may also include a combination with SD 
models for obesity  
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