
SIMULATION AND DESIGN OF SYSTEMS WITH
OBJECT ORIENTED PETRI NETS

Radek Koč́ı
�

and Vladimı́r Janoušek
�

�

Faculty of Information Technology, Brno University of Technology, Bǒzeťechova 2, 612 66,
Brno, Czech Republic

koci@fit.vutbr.cz (Radek Koč́ı)

Abstract

Software engineering is a science discipline dealing with methods and techniques of the system
design. Increasing complexity of developed systems makes the design process more exacting.
The need for better quality of the development processes is growing up too. As an answer to
these requirements, new software engineering methods are raising. They are commonly known
asModel-Driven Software Developmentor Model-Based Design(MBD). An important feature
of these methods is the fact that they use executable models,for instance, the most popular one
is Object Management Group’s Model Driven Architecture(MDA) based on Executable UML.
The designer creates models and checks their correctness bysimulation so that there is no need
to make a prototype. The development methods allow for semi-automatic translation of checked
models to implementation language (i.e. the code generation). Unfortunately, the resulting code
is not final, the code is supposed to be adapted and these changes are usually not moved back
to models. Consequently, the models can become outdated and in most cases loose their value
– models do not correspond to the final implementation, possible changes are more and more
demanding and it may consequent less productivity in the complex systems design. We base
our approach to the system development on simulation modelswhich have a proper formal
background and can be integrated into target application with no need to generate a code. Thus,
we start with simulation models but during the development process we are obtaining more
and more adequate application. The models we use are based onObject-oriented Petri nets
formalism. Presence of models in final implementation opensa possibility to make maintenance
and adaptation to changing requirements more productive.

Keywords: Modeling, Simulation, Object-Oriented Petri Nets, Model-Based Design

Presenting Author’s Biography

Radek Kǒćı is an assistant professor at Brno University of Technology,
Faculty of Information Technology, Czech Republic, and is concerned
in the education of Software engineering, Operation Systems, and Java
courses. His research interest includes modeling and simulation in the con-
text of software engineering, especially an application ofPetri nets, DEVS
[1], statecharts [2], and other formalisms in the system design methodol-
ogy. He also cooperates on modeling and simulation of agent and multi-
agent systems using Object Oriented Petri Nets. He defendedhis Ph.D.
thesisMethods and tools for Implementing Open Simulation Systemsin
2004.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

The important property of software system design and
development is a quality and a productivity of devel-
oped systems as well as development processes. There
are many approaches to keep development processes
more productive. Each such approach uses models as a
basic means for description of system structure and sys-
tem dynamism. Models, contrary of the programming
environment, allow developer to better think about de-
signed system with no needs for thinking out prob-
lems sequent on programming language specificity. Of
course, models are part of methodologies in software
engineering for many years – we may mention theYour-
dan methodof structured systems analysis and design
developed by Edward Yourdan and his colleagues at the
turn of 1970s and 1980s orUnified Modeling Language
(UML) by OMG consortium in presents.

When we will go through the development process us-
ing the most popular modeling language UML, we can
see that we use two basic sets of models – models de-
scribing static relationships between modeled entities
(a typical example is a class diagram) and models de-
scribing selected dynamic relationships established in
some conditions (e.g., a collaboration diagram, an ob-
ject diagram, etc.) These models have a static charac-
ter and their purpose is to make a conceptual design of
solved problems enabling better understanding of the
system design. Then the designers have to implement
the resulting system according to the models in selected
programming language and framework.

Testing and correctness checking are another topic of
software system development. These activities are usu-
ally affiliated with a program created in some program-
ming language. We first have to have an executable
variant of models (a prototype) so as we are able to
check the software correctness. Since we design a part
of systems as models, then we implement it, and then
we check it, it may lead to less productivity in the com-
plex systems design – we must look for errors in the
prototype implementation and then correct them in the
models. After it, the created prototype often missed its
value and we can do just one thing – to throw out.

However, present software systems are more sophisti-
cated and more complex thus using static models is ever
more exacting because of their extensiveness. There
were developed methods with a view to eliminate de-
scribed problems of system development. They have
two essential attributes distinguishing these methods
from the conventional approach. In the first place, the
models are used not only as an abstract view on the de-
veloped system, but also as an executable prototype.
Thus, we must use such models which can be simu-
lated, e.g.,Executable UML(ExUML) [3] which en-
riches the classic UML models with more precise se-
mantics allowing for the model simulation. Secondly,
models are to be transformed to other kinds of models
or to a programming language. To ensure it, the meta-
models and metamodeling has been introduced. Meta-
models are models of modeling language and define se-
mantics of language elements. As an illustration we

may citeModel Driven Architecturemethodology with
theMeta-Object Facility, which is the OMG’s adopted
standard for metamodeling [4, 5]. Nevertheless, the
model transformation entails some problems – since the
transformation into programming languages is not fully
automated, the generated code is never final and it has
to be fine completed by hand. These changes are not
carried back to models and the new generation can lose
them. The methods covering presented attributes are
generally calledModel Based Development(MBD).

A lot of other models or paradigms is suitable for
model-based design, e.g. statecharts, DEVS (Discrete
Event Systems Specification), Petri Nets, or special
tools (e.g. the MetaEdit system [6]). We are interested
in the Object Oriented Petri Nets (OOPN) formalism
and the associated PNtalk system [7, 8, 9]. PNtalk is
a long-term project started in 1993 as an original at-
tempt to bring high-level Petri nets closer to program-
ming languages. Main goal of this experiment was to
prove that formal models such as Petri nets can be used
similarly to traditional programming languages during
systems development. The rigorous mathematical na-
ture of OOPN offers a potential to solve analysis and
verification problems. Several experimental implemen-
tations and verification methods were developed during
recent years [10].

The goal of this paper is to outline a system develop-
ment approach which use models which are a bit dif-
ferent from the approaches based on UML-like models.
The key idea is to use models not only as diagrams en-
abling better quality of thinking about developed sys-
tem but, in the first place, as a part living through all
the development stages. More plainly, the models can
serve not only as a documentation but also as a work-
able prototype including a possibility to use them as a
part of resulting application. The presented approach
joins together phases of design, testing, and implemen-
tation. We obtain a method having several benefits. The
correctness of designed application is tested by simula-
tion of models with no need for code generation. The
OOPN formalism has a formal background, so it is pos-
sible to check models in the way of formal verifications
too. Finally, a possibility to leave models in the target
application allows for debugging the application on the
model basis – the application is always seen as a set of
models.

2 Object Oriented Petri Nets

Several attempts to combine Petri nets and objects has
been done in the nineteens, for instance Object Petri
Nets [11], Cooperative Nets [12], Nets-in-nets formal-
ism [13]. They are supported by specialized tools like,
e.g., Renew [14]. Object Oriented Petri Nets (OOPN)
[7], developed by our research team, is a formalism
covering advantages of Petri nets and object orienta-
tion. Petri nets allow to describe properties of the mod-
eled system in a proper formal way and the object-
orientation brings structuring and a possibility of net
instantiation. OOPN along with interactive incremental
development allows to design systems at different levels

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

of abstraction using sequential reinforcements and im-
provements. OOPN can be interoperable with another
kind of objects so that the ability to deploy models on
the target application platform or to test models in a
real software environment [15] gets better. We are also
developing techniques of formal verification of OOPN
[10].

The formalism of OOPN is closely associated with
Smalltalk environment – Smalltalk is its inscription
language (actions and guards are described using
Smalltalk), and, moreover, the tool based on OOPN
called PNtalk is implemented in Smalltalk. It implies
that there can be native cooperation between OOPN and
Smalltalk objects. So far, we have implemented that
kind of interoperability, so that it is possible to trans-
parently access OOPN objects from Smalltalk and vice
versa.

2.1 Introduction to OOPN

Models in OOPN are organized into classes. Aclassis
specified by an object net, a set of method nets, a set
of synchronous ports, and a set of message selectors
corresponding to its method nets and ports. Object
nets describe possible autonomous activities of objects,
method nets describe reactions of objects to messages
sent to them from the outside, and synchronous ports al-
low for remotely testing states of objects and changing
them in an atomic way. Classes can be specified incre-
mentally usinginheritance. The inherited methods and
synchronous ports can be redefined and new methods
and synchronous ports can be added. The same mecha-
nism applies for object net places and transitions.

An example demonstrating the notation of OOPN is
shown in Figure 1. It consists of classes C0 and
C1. Class C0 contains only the object net. Class C1
contains its object net (place p and transition t), syn-
chronous portstate:, and methodswait: andreset.

2.2 Object net

Object netsconsist of places and transitions. Every
place has its initial marking. Every transition has con-
ditions (i.e. inscribed testing arcs), preconditions (i.e.
inscribed input arcs), a guard, an action, and postcondi-
tions (i.e. inscribed output arcs).

2.3 Method net

Method netsare similar to object nets but, in addition,
each of them has a set of parameter places and a return
place. Method nets can access places of the appropriate
object nets in order to allow running methods to modify
states of objects which they are running in. Method
nets aredynamically instantiatedby message passing
specified bytransition actions(Figure 2).

2.4 Synchronous port

Synchronous portsare intended for synchronous inter-
action of objects. The synchronous interactions (invo-
cation of synchronous ports) are specified in transition
guards as message sendings. A (sender) transition is
firable only if the receiver of the message in its guard
agree with it (the involved synchronous port is firable).

x < y

y := x + 1

waitFor: x

x

x
x

t1 t2

#fail
#success

y
0

x

0
p

xy

return

state: x

x

x

0

#e

return

reset

t

t

C1 is_a PN

o

o

o

(x,y)

(x,#fail)

x

x
y := o waitFor: xt2

t3

o := C1 new

t1

p2

p4

p12‘#e

10,20 p3

t4

o state: x. x >= 50
o reset

#e

C0 is_a PN

Fig. 1 An OOPN example.

The synchronous port is thenexecuted simultaneously
with the sender transition. The semantics of the syn-
chronous interaction can be described as a transition
which is a fusion of the sender transition and the syn-
chronous port (respecting polymorphism and parame-
ters binding) (Figure 3).

3 The PNtalk System

PNtalk is a simulation framework based on OOPN im-
plemented in Smalltalk environment. Its architecture
has been designed as open and metalevel and allows
interoperability between OOPN and Smalltalk objects.
The metalevel architecture distinguishes two architec-
tural levels. Domain modeldescribes developed sys-
tem using appropriate domain paradigm, e.g., OOPN.
Meta modeldescribes the domain model in computa-
tional environment. The domain model has no direct
representation in an implementation language, but it is
transformed into special object called metaobjects. The
PNtalk system architecture introduces a new meta level
between the domain objects (i.e. OOPN classes and ob-
jects) and Smalltalk. This approach allows us to have
full control over the domain object’s structure and be-
havior.

We can take a look at the metalevel in two views.
Firstly, we take a look at the representation of OOPN
classes and objects. The OOPN classes consists of
compiled nets containing compiled places and transi-

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

y := o msg: x

msg: arg

arg

return

send

receive

wait

return

arg
x

y

(a)

(b)

Fig. 2 Client-server interaction – syntax (a) and seman-
tics (b).

tions. Each such element has its own metaobject de-
scribing its behavior and its state. When a new instance
of OOPN class is being created then the new metaobject
is established as an instance of Smalltalk classPNOb-
ject. Similarly to the metaobject of the OOPN class,
the metaobjectPNObjectconsists ofprocesses. When
some method is being invocated then a copy of the ap-
propriatecompiled netis created and executed as a part
of the object’s process.

The second view is the system dynamism. The metaob-
ject PNObjectoffers a metaprotocol for controlling the
simulation. The simulation, however, consists of more
than one object and all these objects must share the
same space. It means that there has to be a common
metaobject controlling the simulation run including the
time management. This metaobject is namedworld and
it is implemented by Smalltalk classPNtalkWorld. To
make simulation runing, the metaobjectPNObjectmust
be placed into some world – without the world, it has
no dynamism.

4 The car-sharing case study

In this section, we introduce a small example which was
created to illustrate a software development based on
the Model Driven System Design approach (MDSD).
It covers all development stages, from business process
analysis, design, and model-driven code generation to
the implementation of the business logic. This example
has been inspired by [16].

The example describes an information system for a car-
sharing company. The application and its complex de-
velopment process is shown in [16]. We will con-
centrate on basic parts and will demonstrate a differ-
ence between using of UML-based formalisms and the
OOPN formalism.

o msg: x
msg: arg

(a)

(b)

x = arg

Fig. 3 Atomic synchronous interaction – syntax (a) and
semantics (b).

The functionality of developed systems is usually in-
troduced by means ofuse case diagrams. The use case
diagram depicting a basic functionality of our example
is shown in Figure 4. We can see that the application al-
lows user to create a new reservation, to cancel reserva-
tion, and to edit reservation. Each of that functions re-
quires an identification of the user (member). The new
reservation and the reservation changing require further
operations.

Fig. 4 Use case diagram of the car-sharing application.

We will not describe the entire design of presented ex-
ample with MDSD approach. What is interesting for us
now is an activity order of the application. This can be
described by activity diagram in Figure 5. This diagram
will serve as a demonstration of different approaches
using UML-like diagrams and Object Oriented Petri
Nets.

In [16], the architecture of the car-sharing application is

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

Fig. 5 Activity diagram of the navigation order in the
application.

designed as a classic three-tier one consisting of a pre-
sentation layer, a process layer, and a persistence layer
and it is based on J2EE framework. To apply princi-
ples of Model Driven Software Development in prac-
tise, we have to have a specialized tool which must to
be able to work with extended UML including model-
ing constraints. The constraints are needed for the code
generator. The tool has to also be conformed to used
target platform (e.g., J2EE). So the models are designed
with respect to the code generation in chosen platforms.
Moreover, the generated code is never final and it has to
be fine completed by hand. These changes are not car-
ried back to models and the new generation can lose
them.

In next chapters, we demonstrate an application of our
kind of design methodology using OOPN which can
eliminate the problems described above.

5 System Design Using OOPN

Formalisms like Object Oriented Petri Nets have a pure
semantics and it is not necessary to enrich them by ad-
ditional properties to obtain unambiguous expressions
(as an example we may note the UML models and Ob-
ject Constrain Language). Moreover, these formalisms
can be directly interpreted and, consequently, integrated
into target applications. It implies that there is no need
for code generation and it is possible to debug and to
really develop applications using models.

The system design based of OOPN formalism can be
characterized in following points.

1. The process starts with simple models of the activ-
ity order, which is similar to workflow modeling.

2. Then we identify subnets in the models and clas-
sify them into classes.

3. The designer models various layers (aspects) of
the system, such as activity models, interface mod-
els, models of shared resources, etc.

4. It is possible to switch between different views
over nets, e.g., the base structure and behavior, the
subnet of accessors, timeouts, etc. In fact, all these
subnets form one net, but we can make it more
transparent using a concept of views.

In fact, these points do not describe a sequence of ac-
tivities, but represent activities done during the system
design simultaneously. The system is developed incre-
mentally, in each step we model the system activities,
make decision what part is to be modeled at what layer
and, if necessary, change a structure of subnets.

5.1 Model of Activity

This chapter concentrates on basic OOPN modeling.
Firstly, we analyze a behavior of the registration pro-
cess (see starting activities in Figure 5). This process
is modeled as a net which is instantiated whenever the
new user connects to the application (see Figure 6). The
sequence of activity islogin, verify user, andlogout. If
the user verification is successful, the net describing the
user behavior is created and placed into a placeuser. If
the user verification failed, the net state is moved back
into the start marking so that the user can try to login
again.

login: name

#e

name

name

u := self verify: name

u

u = nil u != nil

u u

u

logout: u
u logout

u

#e

#e

#e

ready

user

verify

Fig. 6 The registration activity net.

The activity is modeled as a sequence of transitions or
synchronous ports. While the transition firing is condi-
tioned only by its input places, the synchronous port has
to be called out in addition, analogous to the methods.
The transition modelsan internal eventand the syn-
chronous port modelsan event synchronized with some
external event. As an example we may take an eventlo-
gin:, which is modeled by means of synchronous port.
To execute this event, the synchronous port has to be
called from the net’s surroundings, how we will see

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

in the next paragraph. The eventverify is modeled by
means of transition because it is an internal activity of
the net. Of course, it can call some other methods or
synchronous ports, but its execution is not conditioned
by an external initiative.

rn

(rn,n)

ready

n size = 0

n := FillInTheBlankMorph
 request: ’Name:’

PopUpMenu inform: ’Canceled’

n size > 0. rn login: n

(rn,n)

(rn,n)

rn

rn isReady

PopUpMenu inform: ’Canceled’ rn user: u

rn

rn

rn

getUser

login

failed

Fig. 7 The user interface net.

The user interface can be modeled as the net shown
in Figure 7. When the user connects an application,
the new registration net is created and placed into the
placeready. The interface for typing user name is sim-
ulated by Smalltalk classFillInTheBlankMorph. If a
size of the returned stringn is greater that 0, the activi-
ties linked with registration are started. We can see two
commands in the guard of the transitionlogin – test-
ing if n size ¿ 0and calling synchronous portrn login:
n. Synchronous ports allow for connection of different
nets in synchronous way, so that the transitionlogin will
be fired with the synchronous portlogin: of the net in
Figure 6 at the same time.

Now the user verification is being processed (see call-
ing the methodverify: namein the transitionverify in
Figure 6) and the user interface net (Figure 7) is wait-
ing for the result. If the registration process failed, the
registration net is in the state represented by an anony-
mous token (#e) in the placereadyof the net in Fig-
ure 6. If the registration process is successful, the new
net representing a user behavior is created as a result
of the methodverify: and placed into the placeuser.
These two different states are verifiable by means of
synchronous portsisReadyanduser: (see calling them
from guards of transitionsfailed andgetUserin Figure
7). Nevertheless, we did not design these ports in the
registration net because they are not essential for the ba-
sic workflow description. So, these ports are added into
the net in the second view enabling transparent com-
munication between nets. This second view is shown in
Figure 8.

5.2 Modelled classes

So far, we have got two nets, one of them in two views.
As an integral part we used synchronous ports. We have
modeled registration activities as two layers – first one
is a net describing a workflow of registration and second
one is a net describing a model of the user interface.
These layers can be encapsulated to objects described

login: name

#e

name

name

u := self verify: name

u

u = nil u != nil

u u

u

logout: u
u logout

u

#e

#e

#e

ready

user

isReady

user: uu

#e

Fig. 8 The registration activity net – another view.

Fig. 9 Class diagram of the car-sharing application.

by classes. On the basis of acquired experiences during
the system modeling, we can identify other classes and
their associations, as it is shown in Figure 9:

� RegistrationNetand UserNet describing work-
flows of registration and user activities.

� ApplicationUI modeling a user interface to an ap-
plication. This part of the model can be replaced
by real UI on more complex model of UI in later
development stages.

� User representing one user and keeping informa-
tion about him. This class can be described either
in OOPN formalism or in Smalltalk. Objects of
the classUser are stored in the persistence layer
which can be either modeled by OOPN formalism
or some database can be used.

All the presented nets are modeled as object nets of ap-
propriate classes. Thus, the nets presented in Figure
6 and Figure 8 form the object net of classRegistra-
tionNetand the net presented in Figure 7 is a part of the
object net of classApplicationUI.

5.3 Model of User Activities

An activation of synchronous portuser: u has a side
effect – if the variableu is free, then the object placed in
the placeuseris bound to the variableu. Thus, it checks
if the registration process is successful and also gets an

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

object describing the user behavior. This object is an
instance of classUserNetand its object net is shown in
Figure 10.

reserveCar

#e

#e

#e

self doReservation: c

c

#e

#e
ready

editReservation

reserveCar: c

c

#e

#e

r := self confirmChanges: c

c

confirm: c

c

r

confirmed: b
b

cancelRes

cancelEdit

#e

#e #e

#e

#e

#e

logout
#e

doRes

Fig. 10 Object net of the classUserNet.

We will continue with the user interface workflow de-
scribed in Figure 7. For this case, we use a bit different
approach. The interface is implemented in Smalltalk as
classUserFormand it is accessed from the user inter-
face net as described in Figure 11.

When the transition gets a user netu, it calls a message
openFor:user: of the classUserFormand passes ref-
erences to the user interface net (self) and to the user
net (u). The message creates a new object ensuring a
graphical user interface for the car reservation listing,
editing, and creation of new ones.

rn
ready

(rn,u)

logout

rn user: u

UserForm openFor: self user: u.

(rn,u)

getUser

rn logout: u

Fig. 11 The user interface net – a continuation.

Once instantiated, the object shows a list of reservations
for the useru. The user (a person who works with the
user interface) has three options – to reserve a new car,
to edit a reservation, or to logout. Let us investigate
the first option which can be initiated, for instance, by
pressing button which invokes the methodreserveCar
of the classUserForm(see code in Figure 12). As a
first operation, the method calls the synchronous port
reserveCarof the user netu. To execute it, the method
processPort:from metaobject protocol is used (if the
OOPN reference is passed outside of the PNtalk en-
vironment, the metaobject is accessible via this refer-
ence). Now, two situations can happen. The user con-
firms new reservation and the methodreserveCar:of

the classUserFormis called. It calls synchronous port
reserveCar:with an argument of the reserved car object
c. It causes that the car is marked as reserved and the
user net is moved to a stateready (see the transition
doResin Figure 10). The methodreserveCaropens
a list of reservations as a last operation. If the user
cancels the reservation process, the methodcancelCar-
Reservationis called. It calls synchronous portcancel-
Res(the user net is moved to a stateready) and opens
a list of reservations. Now we are in the start state and
the user has three options again.

reserveCar
u processPort: #reserveCar.
self openEditor.

reserveCar: c
u processPort: #reserveCar:
values: {c}.

self openList.

cancelCarReservation
u processPort: #cancelRes.
self openList.

Fig. 12 Selected methods of the classUserForm.

5.4 Model of persistence

We supposed that users and reservation records are
somewhere in the storage so far. Now, we outline a pos-
sibilities how to model a persistence layer. The method
verify: of the classRegistrationNet(see Figure 6) is
taken as a demo example. Basically, we have three
ways to model a storage of users and an access to it.

� Using the pure OOPN formalism and its expres-
sion potential.

� Using a combination of the OOPN formalism and
Smalltalk language.

� Using a combination of the OOPN formalism and
Smalltalk language to access some database sys-
tem.

The first way is shown in Figure 13 (at the top) and
the second method is shown in Figure 13 (at the bot-
tom). Both cases use the placestorageof object net to
store information about users. The first method uses
this place to store pairs(name, user)and is looking
for users in accordance to its names by means of the
OOPN binding mechanism. The method has two tran-
sitions, one for successful selecting (t1) and one for un-
successful selecting (t2). If there is a pair whosename
matches the passedname, the transitiont1 is firable and
the found object is assigned to a variableuser. If there
is no such pair, the transitiont2 fires and puts a value
nil to the return place. Note, that the special inhibitor
arc is used between the placestorageand the transition
t2.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

The second way uses the placestorageto store an object
of Smalltalk classDictionary. Transitionst1 andt2 then
use ordinary methods (c containsKey: name) in their
guards to make out that the user exists or doesn’t. If it
does, the transitiont1 fires, gets appropriate object from
the dictionary, creates an object as an instance of class
UserNetand puts this object into the return place. If it
doesn’t, the transitiont2 fires and puts a valuenil to the
return place.

The third way (not shown) is similar to the second one
in principle. The storage is not represented as an in-
stance of Smalltalk classDictionary, but it is an object
ensuring an access to selected database system.

(name, user)

verify: name

name

(name, user)
name

name

u nil

c

verify: name

name

c

name

name

u nil

return

(c containsKey: name) not

return

storage

storage

t1

t2

t2

t1

u := UserNet new user: user.

c containsKey: name

user := c at: name.
u := UserNet new user: user.

Fig. 13 The method netverify:.

5.5 System Simulation

System simulation is an integral part of our methodol-
ogy. Contrary to the UML models, the developer works
with simulation models at any time. Simulation helps
to find errors in the design immediately as well as to an-
alyze a behavior of the designed system in specific sit-
uations (e.g., traffic simulation, throughput of the sys-
tem working with processes, etc.) The simulation can
be interactive (it means that the developer makes deci-
sion about what transition is to fire, what value is to be
bound etc.) or automatical, e.g., automatical testing.

6 Conclusion

The system design based on models with a subsequent
code generation helps developers to improve the de-
veloped process efficiency, but there is still a draw-
back which stem from the separation of models (design
phases) and the application (the models implementa-
tion).

The PNtalk system has been designed as a tool suit-
able for system development based on modeling and
simulation. Their characteristic is to use formal mod-

els (OOPN) in conjunction with incremental and itera-
tive development process. It allows for high-quality and
rapid development and for combination of modeled and
real components. For instance, suppose that we are de-
veloping a system for robotics control. Then we may
first model the actuator (and we are able to verify the
correctness of our algorithms and concepts by simula-
tion) and then we can replace this model by e.g. the
real robotic arm (whereas, of course, the next testing
follows). The another example is a system driven by a
workflow with a WWW interface. We are able to sim-
ulate this interface including its inputs and responses
so that we may concentrate on the system logic. During
the development we can concurrently design the WWW
interface and finally we replace the simulated interface
by its developed real variant.

The important idea is alsomodel continuity. It makes
the tendency towards an elimination of generating the
source code from models. The system is developed in-
crementally, in each step the models are being improved
and combined with real components. Finally, the key
part, in particular the control of the system logic, is kept
in the system as its integral part. For example, we are
able to develop the car-sharing application in the OOPN
formalism, the user interface in Smalltalk (using, e.g.,
SeaSide framework), and to get functional application
by their integration.

In the presented approach we have used several layers
– business logic (workflow), presentation, and persis-
tence. The models of the layers are synchronized by
means of synchronous ports. Connection to the sur-
roundings of the model is accomplished by means of in-
herent ability of PNtalk to interoperate with Smalltalk.
This way the user interface and databases can be ac-
cessed.

The presented experimental methodology and tool en-
rich the system development process with a number of
elements which can improve a quality and productiv-
ity of it. The developer programs by modeling, there
is no code generation because the model is a code.
There is no difference between programming environ-
ment, modeling environment, or testing environment –
every development tasks are cover by one environment.

For the present, this methodology including the tool
serves for experiments and demonstration of the idea
of our approach to the system development processes.
It is also not integrated with industrially used technolo-
gies and standards which can be seen as a drawback of
it. The advancement of the methodology and tools, and
the approximation to standard applications are topics of
further research.

7 Acknowledgement

This work was supported by the Czech Grant Agency
under the contracts GA102/07/0322, GP102/07/P306,
and Ministry of Education, Youth and Sports under the
contract MSM 0021630528.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

8 References
[1] B. Zeigler, T. Kim, and H. Praehofer.Theory of

Modeling and Simulation. Academic Press, Inc.,
London, 2000.

[2] D. Harel and M. Politi. Modeling reactive sys-
tems with Statecharts: The Statement Approach.
McGraw-Hill Companies, 1998.

[3] C. Raistrick, P. Francis, J. Wright, C Carter, and
I. Wilkie. Model Driven Architecture with Exe-
cutable UML. Cambridge University Press, 2004.

[4] A. Kleppe, J. Warmer, and W. Bast.MDA Ex-
plained: The Model Driven Architecture – Prac-
tice and Promise. 1st edition. Addison-Wesley
Professional, 2003.

[5] D. S. Frankel.Model Driven Architecture: Apply-
ing Mda to Enterprise Computing. 17 (MS-17).
John Wiley & Sons, 2003.

[6] MetaCase. Domain-Specific Modeling with
MetaEdit+. http://www.metacase.com, 2007.

[7] M. Čěska, V. Janoǔsek, and T. Vojnar. PNtalk -
A Computerized Tool for Object Oriented Petri
Nets Modelling. InProceedings of the 5th Inter-
national Conference on Computer Aided Systems
Theory and Technology – EUROCAST’97, pages
229–231. Las Palmas de Gran Canaria, ES, 1997.

[8] V. Janoǔsek. Modelov́ańı objekt̊u Petriho śıtěmi.
PhD thesis, FEI VUT, Brno, CZ, 1998.

[9] V. Janoǔsek and R. Kǒćı. PNtalk Project: Cur-
rent Research Direction. InSimulation Almanac
2005. Faculty of Electrical Engineering, Praha,
CZ, 2005.

[10] M. Čěska, V. Janoǔsek, R. Kǒćı, B. Křena, and
T. Vojnar. PNtalk: State of the Art. InPro-
ceedings of the Fourth International Workshop on
Modelling of Objects, Components, and Agents,
pages 301–307. Hamburg, DE, 2006.

[11] C. A. Lakos. From Coloured Petri Nets to Object
Petri Nets. InProceedings of the Application and
Theory of Petri Nets, volume 935. Spinger-Verlag,
1995.

[12] C. Sibertin-Blanc. Cooperative Nets. InProceed-
ings of Application and Theory of Petri Nets, vol-
ume 815. Springer-Verlag, 1994.

[13] L. Cabac, M. Duvigneau, D. Moldt, and
H. Rölke. Modeling dynamic architectures us-
ing nets-within-nets. InApplications and Theory
of Petri Nets 2005. 26th International Conference,
ICATPN 2005, Miami, USA, June 2005. Proceed-
ings, pages 148–167, 2005.

[14] O. Kummer, F. Wienberg, and et al. An ex-
tensible editor and simulation engine for Petri
nets: Renew. InApplications and Theory of
Petri Nets 2004. 25th International Conference,
ICATPN 2004, Bologna, Italy, June 2004. Pro-
ceedings, volume 3099, pages 484–493. Springer,
jun 2004.

[15] V. Janoǔsek and R. Kǒćı. Towards Model-Based
Design with PNtalk. InProceedings of the In-
ternational Workshop MOSMIC’2005. Faculty of
management science and Informatics of Zilina
University, SK, 2005.

[16] T. Stahl and M. Volter. Model-Driven Software
Development. John Wiley & Sons Ltd., England,
2006.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

