Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

SIMULATION AND DESIGN OF SYSTEMS WITH
OBJECT ORIENTED PETRI NETS

Radek Koci ! and Vladimir Janousek!

!Faculty of Information Technology, Brno University of Techogy, Bazechova 2, 612 66,
Brno, Czech Republic

koci@fit.vutbr.cz (Radek KO

Abstract

Software engineering is a science discipline dealing wighhods and techniques of the system
design. Increasing complexity of developed systems mdieedésign process more exacting.
The need for better quality of the development processesisigg up too. As an answer to
these requirements, new software engineering methodsaianeg. They are commonly known
asModel-Driven Software DevelopmemtModel-Based Desig(MBD). An important feature
of these methods is the fact that they use executable mddeisstance, the most popular one
is Object Management Group’s Model Driven Architect(idDA) based on Executable UML.
The designer creates models and checks their correctnesasblation so that there is no need
to make a prototype. The development methods allow for senamatic translation of checked
models to implementation language (i.e. the code genajatiinfortunately, the resulting code
Is not final, the code is supposed to be adapted and theseeshargyusually not moved back
to models. Consequently, the models can become outdated amalst cases loose their value
— models do not correspond to the final implementation, ptesshanges are more and more
demanding and it may consequent less productivity in theptexnsystems design. We base
our approach to the system development on simulation madeich have a proper formal
background and can be integrated into target applicatitthma need to generate a code. Thus,
we start with simulation models but during the developmentess we are obtaining more
and more adequate application. The models we use are bas@bject-oriented Petri nets
formalism. Presence of models in final implementation opgnsssibility to make maintenance
and adaptation to changing requirements more productive.

Keywords: Modeling, Simulation, Object-Oriented Petri Nets, Model-Based Design

Presenting Author’s Biography

Radek Kdi is an assistant professor at Brno University of Technolog#®
Faculty of Information Technology, Czech Republic, and iscawned
in the education of Software engineering, Operation Systeand Java |
courses. His research interest includes modeling and atianlin the con-
text of software engineering, especially an applicatioReiri nets, DEVS
[1], statecharts [2], and other formalisms in the systemgtesiethodol-
ogy. He also cooperates on modeling and simulation of agehtaulti-

agent systems using Object Oriented Petri Nets. He defehideldh.D.
thesisMethods and tools for Implementing Open Simulation Systems
2004.

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

1 Introduction may citeModel Driven Architecturenethodology with

i i the Meta-Object Facility which is the OMG’s adopted
The important property of software system design angiangard for metamodeling [4, 5]. Nevertheless, the

development is a quality and a productivity of devely,oge| transformation entails some problems — since the
oped systems as well as development processes. Thgig,siormation into programming languages is not fully

are many approaches to keep development processgiomated, the generated code is never final and it has
more productive. Each s_uch approach uses models agdye fine completed by hand. These changes are not
basic means for description of system structure and sysried back to models and the new generation can lose
tem dynamism. Models, contrary of the programminghem The methods covering presented attributes are

e_nvironment, allow developer to bette_r think about degenerally calledViodel Based Developme(MBD).
signed system with no needs for thinking out prob-

lems sequent on programming language specificity. X lot of other models or paradigms is suitable for
course, models are part of methodologies in softwan@odel-based design, e.g. statecharts, DEVS (Discrete
engineering for many years —we may mentionYbar- Event Systems Specification), Petri Nets, or special
dan methodf structured systems analysis and desigtools (e.g. the MetaEdit system [6]). We are interested
developed by Edward Yourdan and his colleagues at ttie the Object Oriented Petri Nets (OOPN) formalism
turn of 1970s and 1980s bmified Modeling Language and the associated PNtalk system [7, 8, 9]. PNtalk is
(UML) by OMG consortium in presents. a long-term project started in 1993 as an original at-
. tempt to bring high-level Petri nets closer to program-
When we will go through the development process Usying janguages. Main goal of this experiment was to
ing the most popular modeling language UML, we cam o e that formal models such as Petri nets can be used
See t_hat we use wo baS|_c sets of models — model_s_ milarly to traditional programming languages during
scribing static relationships between modeled ent't'e§ystems development. The rigorous mathematical na-
(a t_ypical example is a c!ass d“’?‘gra@ and models d?ﬂre of OOPN offers a potential to solve analysis and
scribing selected dynamic relationships established (R ification problems. Several experimental implemen-

some conditions (e.g., a collaboration diagram, an olins and verification methods were developed during
ject diagram, etc.) These models have a static charq%-cent years [10].
0

ter and their purpose is to make a conceptual design

solved problems enabling better understanding of thehe goal of this paper is to outline a system develop-

system design. Then the designers have to implemenient approach which use models which are a bit dif-

the resulting system according to the models in selectédrent from the approaches based on UML-like models.

programming language and framework. The key idea is to use models not only as diagrams en-

. . . abpling better quality of thinking about developed sys-
Testing and correctness checking are ar_10_ther topic QL g, in the first place, as a part living through all
software system development. These activities are usls, i '

llv affiliated with ted e development stages. More plainly, the models can
ally affiliated with & program Created In Some programg g e ot only as a documentation but also as a work-
ming language. We first have to have an executab

: le prototype including a possibility to use them as a
variant of models (a prototype) so as we are able 19, ot reqyiting application. The presented approach
check the software correctness. 'Slnce we d'eS|gn a palf s together phases of design, testing, and implemen-
of systems as models, then we |mpler_n_ent_ it, and th tion. We obtain a method having several benefits. The
we check it, it may lead to less productivity in the com

| i desi t look f . th'correctness of designed application is tested by simula-
piex systems design — we must look for errors in Mg,y of models with no need for code generation. The
prototype implementation and then correct them in th%OPN formalism has a formal background, so it is pos-

mcl)dels. dAfter i, thée qrez?ted ptrr(])_totyp(ta c;fr':en miSfed it§ible to check models in the way of formal verifications
value and we can ao just one thing —to tNrow out. - +44 Finally, a possibility to leave models in the target

However, present software systems are more sophis@Pplication allows for debugging the application on the
cated and more complex thus using static models is evBlodel basis — the application is always seen as a set of
more exacting because of their extensiveness. Thefodels.

were developed methods with a view to eliminate de-

scribed problems of system development. They have QObject Oriented Petri Nets

two essential attributes distinguishing these methods

from the conventional approach. In the first place, th&everal attempts to combine Petri nets and objects has
models are used not only as an abstract view on the deeen done in the nineteens, for instance Object Petri
veloped system, but also as an executable prototypdets [11], Cooperative Nets [12], Nets-in-nets formal-
Thus, we must use such models which can be simism [13]. They are supported by specialized tools like,
lated, e.g.,Executable UML(EXUML) [3] which en- e.g., Renew [14]. Object Oriented Petri Nets (OOPN)
riches the classic UML models with more precise sef7], developed by our research team, is a formalism
mantics allowing for the model simulation. Secondlycovering advantages of Petri nets and object orienta-
models are to be transformed to other kinds of modelson. Petri nets allow to describe properties of the mod-
or to a programming language. To ensure it, the metaled system in a proper formal way and the object-
models and metamodeling has been introduced. Metarientation brings structuring and a possibility of net
models are models of modeling language and define siestantiation. OOPN along with interactive incremental
mantics of language elements. As an illustration weevelopment allows to design systems at different levels

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

of abstraction using sequential reinforcements and im- — COis_aPN
provements. OOPN can be interoperable with another o state x. x>=50 |
kind of objects so that the ability to deploy models on ~ oreset

the target application platform or to test models in a
real software environment [15] gets better. We are also
developing techniques of formal verification of OOPN
[10].

The formalism of OOPN is closely associated with
Smalltalk environment — Smalltalk is its inscription
language (actions and guards are described using
Smalltalk), and, moreover, the tool based on OOPN
called PNtalk is implemented in Smalltalk. It implies
that there can be native cooperation between OOPN and
Smalltalk objects. So far, we have implemented that
kind of interoperability, so that it is possible to trans-
parently access OOPN objects from Smalltalk and vice
versa.

2.1 Introduction to OOPN

Models in OOPN are organized into classescléssis
specified by an object net, a set of method nets, a set
of synchronous ports, and a set of message selectors
corresponding to its method nets and ports. Object
nets describe possible autonomous activities of objects,
method nets describe reactions of objects to messages . -
sent to them from the outside, and synchronous ports al- return t return
low for remotely testing states of objects and changing
them in an atomic way. Classes can be specified incre-
mentally usingnheritance The inherited methods and Fig. 1 An OOPN example.
synchronous ports can be redefined and new methods

and synchronous ports can be added. The same mecha-

nism applies for object net places and transitions.

t2

_ . . The synchronous port is thesxecuted simultaneously
An example demonstrating the notation of OOPN i ith the sender transition. The semantics of the syn-

(S:qowglallgslzcl:%u::%n%éing o%?nstfésogfeglariites Cclza?ssar(]: hronous interaction can be described as a transition
: y J ; hich is a fusion of the sender transition and the syn-

contains its object net (place p and transition t), syn- . -)
chronous porstate; and methodsvait: andreset chronous port (respecting polymorphism and parame

ters binding) (Figure 3).
2.2 Object net

Object netsconsist of places and transitions. Everyd The PNtalk System

place has its initial marking. Every transition has con-
ditions (i.e. inscribed testing arcs), preconditions. (i.ePNtalk is a simulation framework based on OOPN im-

inscrib_ed i_nput_arcs), a guard, an action, and postcon {aesmg:éid dlgs%m:tgi(ggggogrzgegé t;};\gzczl'qtgc;ﬁg\ls
tions (i.e. inscribed output arcs). interoperability between OOPN and Smalltalk objects.
2.3 Method net The metalevel architecture distinguishes two architec-
tural levels. Domain modeldescribes developed sys-
Etem using appropriate domain paradigm, e.g., OOPN.
Widta modeldescribes the domain model in computa-
. . X N3hal environment. The domain model has no direct
objectnets in order to allow running methods to modify.o. e sentation in an implementation language, but it is
states of objects which they are running in. Method, o rmed into special object called metaobjects. The
nets .a}redynammla_lly mstanuatgdby message passing pia|k system architecture introduces a new meta level
specified byransition actiongFigure 2). between the domain objects (i.e. OOPN classes and ob-
2.4 Synchronous port jects) and Smalltalk. This approach allows us to have

.) full control over the domain object’s structure and be-
Synchronous portare intended for synchronous inter-p5yior.

action of objects. The synchronous interactions (invo-

cation of synchronous ports) are specified in transitiolVe can take a look at the metalevel in two views.
guards as message sendings. A (sender) transitionHgstly, we take a look at the representation of OOPN
firable only if the receiver of the message in its guaralasses and objects. The OOPN classes consists of
agree with it (the involved synchronous port is firable)compiled nets containing compiled places and transi-

Method netsare similar to object nets but, in addition

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

arg

DRI VAN,
=St ke

O
mwmmreturrr; 77777777777 ?
(@)
NI/
send 7
wait O D ™
receive < O :
¢ N ié

Fig. 3 Atomic synchronous interaction — syntax (a) and

® semantics (b).

Fig. 2 Client-server interaction — syntax (a) and seman-

tics (b). The functionality of developed systems is usually in-
troduced by means afse case diagramdhe use case
diagram depicting a basic functionality of our example

tions. Each such element has its own metaobject disshown in Figure 4. We can see that the application al-

scribing its behavior and its state. When a new instand@Ws USer to create a new reservation, to cancel reserva-

of OOPN class is being created then the new metaobjelé@n, and to edit reservation. Each of that functions re-

is established as an instance of Smalltalk clR&Op- duires an identification of the user (member). The new

the metaobjecPNObjectconsists ofprocessesWhen Opéerations.

some method is being invocated then a copy of the ap-

propriatecompiled nets created and executed as a part

The second view is the system dynamism. The metaob-

ject PNObjectoffers a metaprotocol for controlling the

simulation. The simulation, however, consists of more

than one object and all these objects must share th
Reservation Reservation

of the object’s process.
same space. It means that there has to be a commo
{include}’/

metaobject controlling the simulation run including the
time management. This metaobject is namedd and

it is implemented by Smalltalk clag@NtalkWorld To
make simulation runing, the metaobjéd¥Objectmust
be placed into some world — without the world, it has
no dynamism.

N
{include}~

Take
Reservation
Request

Determine
Reservable
Car

~
~

. ~ 7
{include} ({include}s ;{nclude}
S ’

4 The car-sharing case study >

In this section, we introduce a small example which was
created to illustrate a software development based orr_;lI

the Model Driven System Design approach (MDSD).
It covers all development stages, from business process

analysis, design, and model-driven code generation to

the implementation of the business logic. This exampl&/e will not describe the entire design of presented ex-

has been inspired by [16]. ample with MDSD approach. What is interesting for us
now is an activity order of the application. This can be

fescribed by activity diagram in Figure 5. This diagram

&uill serve as a demonstration of different approaches

velopment process is shown in [16]. We will con- i yML-like diagrams and Object Oriented Petri
centrate on basic parts and will demonstrate a differg

/

0. 4 Use case diagram of the car-sharing application.

; . Nets.
ence between using of UML-based formalisms and the
OOPN formalism. In [16], the architecture of the car-sharing application is

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

3. The designer models various layers (aspects) of
@ the system, such as activity models, interface mod-
@A els, models of shared resources, etc.
User Registration Reservation
Confirmation
[OK] X 4. It is possible to switch between different views
- / over nets, e.g., the base structure and behavior, the
4 subnet of accessors, timeouts, etc. In fact, all these
Member subnets form one net, but we can make it more
[Cancel] | Identification [OK] transparent using a concept of views.
[Cancel]
[OK] . .
v \ In fact, these points do not describe a sequence of ac-

celect Car Edit tivities, but represent activities done during the system
Category [[Create Reservation design simultaneously. The system is developed incre-
Reservation] mentally, in each step we model the system activities,

[Show] make decision what part is to be modeled at what layer
y and, if necessary, change a structure of subnets.

Show L
[Can—ice” Reservation 5.1 Model of Activity

) o o) This chapter concentrates on basic OOPN modeling.
Fig. 5 Activity diagram of the navigation order in the Firstly, we analyze a behavior of the registration pro-
application. cess (see starting activities in Figure 5). This process
is modeled as a net which is instantiated whenever the
new user connects to the application (see Figure 6). The

equence of activity igin, verify user andlogout If

designed as a classic three-tier one consisting of a p user verification is successful, the net describing the
sentation layer, a process layer, and a persistence Ia)L F ' 9

and it is based on J2EE framework. To apply princic>¢f behavior is created and placed into a plese If
ples of Model Driven Software Development in prac_Fhe user verification failed, the net state is moved back

tise, we have to have a specialized tool which must tgﬂo_the start marking so that the user can try to login
be able to work with extended UML including model-293!N-
ing constraints. The constraints are needed for the code
generator. The tool has to also be conformed to used
target platform (e.g., J2EE). So the models are designed
with respect to the code generation in chosen platforms.
Moreover, the generated code is never final and it has to

be fine completed by hand. These changes are not car-
ried back to models and the new generation can lose
them.

ready

In next chapters, we demonstrate an application of our
kind of design methodology using OOPN which can
eliminate the problems described above.

5 System Design Using OOPN

Formalisms like Object Oriented Petri Nets have a pure
semantics and it is not necessary to enrich them by ad-
ditional properties to obtain unambiguous expressions
(as an example we may note the UML models and Ob-
ject Constrain Language). Moreover, these formalisms
can be directly interpreted and, consequently, integrated
into target applications. It implies that there is no need

for code generation and it is possible to debug and to

really develop applications using models. The activity is modeled as a sequence of transitions or
b%ynchronous ports. While the transition firing is condi-
tioned only by its input places, the synchronous port has
to be called out in addition, analogous to the methods.
The transition modelan internal eventand the syn-
1. The process starts with simple models of the activehronous port modelsn event synchronized with some
ity order, which is similar to workflow modeling. external eventAs an example we may take an evemnt
gin:, which is modeled by means of synchronous port.
2. Then we identify subnets in the models and clasfo execute this event, the synchronous port has to be
sify them into classes. called from the net’s surroundings, how we will see

logout: u
u logout

Fig. 6 The registration activity net.

The system design based of OOPN formalism can
characterized in following points.

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

in the next paragraph. The everdrify is modeled by 4\;%)/ P < Read
means of transition because it is an internal activity of e Je——s_ SNV

G

the net. Of course, it can call some other methods or #
synchronous ports, but its execution is not conditioned
by an external initiative.

login: name
ame

ready

o

m n := FillinTheBlankMorph #
request: 'Name:’ name
/li"'”) u := self verify: name
(myn) U
m ;
login l u /!\ u
| n size > 0. rn login: n | (rn.n) /
nsize =0
PopUpMenu inform: 'Canceled’ #e

u
. m logout: u
rn isReady failed u logout
ruser: u | 9etUser

PopUpMenu inform: 'Canceled’

]] Fig. 8 The registration activity net — another view.
Fig. 7 The user interface net.

N N behavior . .
The user interface can be modeled as the net shown Reg's"atw".Net
in Figure 7. When the user connects an application, creation behavior
the new registration net is created and placed into the
placeready. The interface for typing user name is sim- UserNet |—cpresentation User

ulated by Smalltalk claskillinTheBlankMorph If a

size of the returned stringis greater that 0, the activi-))) o

ties linked with registration are started. We can see two Fi9. 9 Class diagram of the car-sharing application.
commands in the guard of the transititogin — test-

ing if n size ¢ Gand calling synchronous pam login:

n. Synchronous ports allow for connection of differentyy classes. On the basis of acquired experiences during
nets in synchronous way, so that the transitaginwill the system modeling, we can identify other classes and

be fired with the synchronous pddgin: of the netin their associations, as it is shown in Figure 9:
Figure 6 at the same time.

Now the user verification is being processed (see call- e« RegistrationNetand UserNet describing work-
ing the methodrerify: namein the transitionverify in flows of registration and user activities.

Figure 6) and the user interface net (Figure 7) is wait-

ing for the result. If the registration process failed, the ® ApplicationUI modeling a user interface to an ap-
registration net is in the state represented by an anony- Pplication. This part of the model can be replaced
mous token #€) in the placeready of the net in Fig- by real Ul on more complex model of Ul in later
ure 6. If the registration process is successful, the new development stages.

net representing a user behavior is created as a result . N
of the methodverify: and placed into the placgser ¢ L}ser representing one user and keeplng mfor.ma-
These two different states are verifiable by means of ~tion about him. This class can be described either
synchronous portisReadyanduser: (see calling them in OOPN formalism or in Smalltalk._ Objects of
from guards of transitionfailed andgetUserin Figure the classUser are stored in the persistence layer
7). Nevertheless, we did not design these ports in the Which can be either modeled by OOPN formalism
registration net because they are not essential for the ba- OF S0me database can be used.

sic workflow description. So, these ports are added into

the net in the second view enabling transparent confMl the presented nets are modeled as object nets of ap-
munication between nets. This second view is shown ipropriate classes. Thus, the nets presented in Figure
Figure 8. 6 and Figure 8 form the object net of claRegistra-
tionNetand the net presented in Figure 7 is a part of the
object net of clasgpplicationUlL

So far,_ we have got two nets, one of them in two VieWSg 3 Model of User Activities

As an integral part we used synchronous ports. We have

modeled registration activities as two layers — first onén activation of synchronous pouser: uhas a side

is a net describing a workflow of registration and seconéffect — if the variablelis free, then the object placed in
one is a net describing a model of the user interfacéhe placauseris bound to the variable. Thus, it checks
These layers can be encapsulated to objects descrili&the registration process is successful and also gets an

5.2 Modelled classes

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

object describing the user behavior. This object is athe clasUserFormis called. It calls synchronous port
instance of clasilserNetand its object net is shown in reserveCarwith an argument of the reserved car object

Figure 10. c. It causes that the car is marked as reserved and the
user net is moved to a stateady (see the transition
logout e doResin Figure 10). The methodeserveCaropens
Q_\ #e editReservation —) a list of reservations as a last operation. If the user

X e e cancels the reservation process, the mettattelCar-

ready e _ Reservations called. It calls synchronous parancel-
cancelEdit Res(the user net is moved to a statady) and opens
confirm: ¢

e a list of reservations. Now we are in the start state and
the user has three options again.

reserveCar

reserveCar
u processPort: #reserveCar.
sel f openEditor.

reserveCar: c¢
u processPort: #reserveCar:
val ues: {c}.
sel f openlLi st.

#e

—| self doReservation: ¢ |

confirmed: b
cancel Car Reservati on

Fig. 10 Object net of the clasgsserNet u processPort: #cancel Res.
sel f openlLi st.

We will continue with the user interface workflow de-]

scribed in Figure 7. For this case, we use a bit different Fig. 12 Selected methods of the classerForm
approach. The interface is implemented in Smalltalk as

classUserFormand it is accessed from the user inter-5 4 Model of .
face net as described in Figure 11. : odel of persistence

We supposed that users and reservation records are
somewhere in the storage so far. Now, we outline a pos-
sibilities how to model a persistence layer. The method

When the transition gets a user nett calls a message
openFor:user: of the classUserFormand passes ref-

erences to the user interface ne¢lf) and to the user i of the cl : > . :
net (). The message creates a new object ensuringV%:'fy' of the classRegistrationNet(see Figure 6) is

graphical user interface for the car reservation Iisting{i\‘;1 en as a demo example. Basically, we have three
editing, and creation of new ones ays to model a storage of users and an access to it.

ready e Using the pure OOPN formalism and its expres-
sion potential.

getUser

e Using a combination of the OOPN formalism and
Smalltalk language.

rnuser: u

UserForm openFor: self user: u.

(rn,u)

e Using a combination of the OOPN formalism and
Smalltalk language to access some database sys-
tem.

logout
rn logout: u

Fig. 11 The user interface net — a continuation.

The first way is shown in Figure 13 (at the top) and
Once instantiated, the object shows a list of reservatiortse second method is shown in Figure 13 (at the bot-
for the usem. The user (a person who works with thetom). Both cases use the plast®rageof object net to
user interface) has three options — to reserve a new catpre information about users. The first method uses
to edit a reservation, or to logout. Let us investigat¢his place to store pairhame, userjand is looking
the first option which can be initiated, for instance, byfor users in accordance to its names by means of the
pressing button which invokes the methesgerveCar OOPN binding mechanism. The method has two tran-
of the classUserForm(see code in Figure 12). As a sitions, one for successful selecting)(and one for un-
first operation, the method calls the synchronous posuccessful selectindg?). If there is a pair whosaame
reserveCarof the user netl. To execute it, the method matches the passedme the transitiortl is firable and
processPort:from metaobject protocol is used (if the the found object is assigned to a variab&er. If there
OOPN reference is passed outside of the PNtalk efis no such pair, the transitio fires and puts a value
vironment, the metaobject is accessible via this refenil to the return place. Note, that the special inhibitor
ence). Now, two situations can happen. The user comasc is used between the plasterageand the transition
firms new reservation and the methmserveCar:of 2.

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

The second way uses the platerageto store an object els (OOPN) in conjunction with incremental and itera-
of Smalltalk clas®ictionary. Transitiongl andt2then tive development process. It allows for high-quality and
use ordinary method< (containsKey: namein their rapid development and for combination of modeled and
guards to make out that the user exists or doesn’t. If ieal components. For instance, suppose that we are de-
does, the transitioti fires, gets appropriate object from veloping a system for robotics control. Then we may
the dictionary, creates an object as an instance of clafisst model the actuator (and we are able to verify the
UserNetand puts this object into the return place. If itcorrectness of our algorithms and concepts by simula-
doesn't, the transitiot? fires and puts a valugil to the tion) and then we can replace this model by e.g. the
return place. real robotic arm (whereas, of course, the next testing
follows). The another example is a system driven by a
Svorkflow with a WWW interface. We are able to sim-
Mate this interface including its inputs and responses
so that we may concentrate on the system logic. During
the development we can concurrently design the WWW
interface and finally we replace the simulated interface

The third way (not shown) is similar to the second on
in principle. The storage is not represented as an i
stance of Smalltalk clad3ictionary, but it is an object
ensuring an access to selected database system.

”/ag by its developed real variant.
storage [verify: name

(name, user) /v\lname The important idea is alsmodel continuity It makes
(name, user) the tendency towards an elimination of generating the
l name © source code from models. The system is developed in-
[= UserNet now wser u‘ser nil cremental[y, in ea_ch step the models are k_)emg improved
: — I and combined with real components. Finally, the key

part, in particular the control of the system logic, is kept

return in the system as its integral part. For example, we are

able to develop the car-sharing application in the OOPN
name formalism, the user interface in Smalltalk (using, e.g.,

storage [verify: name SeaSide framewaoykand to get functional application
c name by their integration.
1 t2

name | (¢ containsKey: name) not | In the presented approach we have used several layers
p—) — business logic (workflow), presentation, and persis-
C containsKkey: name ni .
¢ Y u tence. The models of the layers are synchronized by

user := c at: name.
u := UserNet new user: user.

means of synchronous ports. Connection to the sur-
roundings of the model is accomplished by means of in-

-
jmy

M herent ability of PNtalk to interoperate with Smalltalk.
This way the user interface and databases can be ac-
Fig. 13 The method neferify:. cessed.

. . The presented experimental methodology and tool en-
5.5 System Simulation rich the system development process with a number of

System simulation is an integral part of our methodol€lements which can improve a quality and productiv-
ogy. Contrary to the UML models, the developer workdty of it. The developer programs by modeling, there
with simulation models at any time. Simulation helpdS no code generation because the model is a code.
to find errors in the design immediately as well as to anfhere is no difference between programming environ-
alyze a behavior of the designed system in specific sift€nt, modeling environment, or testing environment —
uations (e.qg., traffic simulation, throughput of the sysevery development tasks are cover by one environment.
tem working with processes, etc.) The simulation can .) .

be interactive (it means that the developer makes dedior the present, this methodology including the tool
sion about what transition is to fire, what value is to b&€rves for experiments and demonstration of the idea

bound etc.) or automatical, e.g., automatical testing. Of our approach to the system development processes.
Itis also not integrated with industrially used technolo-

6 C lusi gies and standards which can be seen as a drawback of
onclusion it. The advancement of the methodology and tools, and

The system design based on models with a subsequéf@ approximation to standard applications are topics of
code generation helps developers to improve the délrther research.

veloped process efficiency, but there is still a draw-

back which stem from the separation of models (desig
phases) and the application (the models implementg- Acknowledgement

tion). This work was supported by the Czech Grant Agency

The PNtalk system has been designed as a tool suithder the contracts GA102/07/0322, GP102/07/P306,
able for system development based on modeling arahd Ministry of Education, Youth and Sports under the
simulation. Their characteristic is to use formal mod<contract MSM 0021630528.

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

8 References [16] T. Stahl and M. Volter. Model-Driven Software
[1] B. Zeigler, T. Kim, and H. PraehoferTheory of DevelopmentJohn Wiley & Sons Ltd., England,

Modeling and Simulation Academic Press, Inc., 2006.
London, 2000.

[2] D. Harel and M. Politi. Modeling reactive sys-

tems with Statecharts: The Statement Approach

McGraw-Hill Companies, 1998.

C. Raistrick, P. Francis, J. Wright, C Carter, and

I. Wilkie. Model Driven Architecture with Exe-

cutable UML Cambridge University Press, 2004.

[4] A. Kleppe, J. Warmer, and W. BastMDA Ex-
plained: The Model Driven Architecture — Prac-
tice and Promise 1st edition. Addison-Wesley
Professional, 2003.

[5] D. S. Frankel.Model Driven Architecture: Apply-
ing Mda to Enterprise Computingl?7 (MS-17).
John Wiley & Sons, 2003.

[6] MetaCase. Domain-Specific Modeling with
MetaEdit+. http://www.metacase.com, 2007.

[7] M. Ce3ka, V. Janosek, and T. Vojnar. PNtalk -
A Computerized Tool for Object Oriented Petri
Nets Modelling. InProceedings of the 5th Inter-
national Conference on Computer Aided Systems
Theory and Technology — EUROCAST, @ages
229-231. Las Palmas de Gran Canaria, ES, 1997.

[8] V. Janowsek. Modelowani objekfl Petriho $témi
PhD thesis, FEI VUT, Brno, CZ, 1998.

[9] V. Janoek and R. Kéi. PNtalk Project: Cur-
rent Research Direction. I8imulation Almanac
2005 Faculty of Electrical Engineering, Praha,
CZ, 2005.

[10] M. Ceska, V. Janosek, R. Ka&i, B. Kfena, and
T. Vojnar. PNtalk: State of the Art. IiPro-
ceedings of the Fourth International Workshop on
Modelling of Objects, Components, and Agents
pages 301-307. Hamburg, DE, 2006.

[11] C. A. Lakos. From Coloured Petri Nets to Object
Petri Nets. InProceedings of the Application and
Theory of Petri Netsvolume 935. Spinger-Verlag,
1995.

[12] C. Sibertin-Blanc. Cooperative Nets. Proceed-
ings of Application and Theory of Petri Neisol-
ume 815. Springer-Verlag, 1994.

[13] L. Cabac, M. Duvigneau, D. Moldt, and
H. Rolke. Modeling dynamic architectures us-
ing nets-within-nets. IMpplications and Theory
of Petri Nets 2005. 26th International Conference,
ICATPN 2005, Miami, USA, June 2005. Proceed-
ings pages 148-167, 2005.

[14] O. Kummer, F. Wienberg, and et al. An ex-
tensible editor and simulation engine for Petri
nets: Renew. InApplications and Theory of
Petri Nets 2004. 25th International Conference,
ICATPN 2004, Bologna, lItaly, June 2004. Pro-
ceedingsvolume 3099, pages 484-493. Springer,
jun 2004.

[15] V. Janogek and R. K&i. Towards Model-Based
Design with PNtalk. InProceedings of the In-
ternational Workshop MOSMIC’200%aculty of
management science and Informatics of Zilina
University, SK, 2005.

[3

—_

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

