
THE MEANS AND MOTIVATION FOR ANIMATING 
GRAPHICS IN ENGINEERING APPLICATIONS 

Oleg Yakimenko 

Naval Postgraduate School, Department of Mechanical and Astronautical Engineering, 
700 Dyer Rd., Monterey, CA 

oayakime@nps.edu (Oleg Yakimenko) 

Abstract 

The paper deals with animating the results of simulations of the dynamics of different 
engineering systems in the Mathworks’ MATLAB development environment. It first reviews 
the basics of the handle graphics allowing accessing and dynamically changing any property 
of any graphics object the user-defined two- or three-dimensional plot might be composed of. 
It further introduces two methods available in MATLAB to animate these plots. The first one 
simply redraws the entire plot at each instant of time, captures it and adds to the movie, 
available to play with later on. The second one might involve more programming but it allows 
to dynamically vary only the portion of the plot, which is actually changing, leaving the rest 
of it untouched. If standalone versions of the created movies are needed, the paper presents a 
way MATLAB suggests to convert them into the standard audio/video interleave files 
playable outside MATLAB. The paper capitalizes upon pretty basic examples and then 
advances to several more complex cases, where both methods for creating movies were 
employed to animate graphics and virtual scenes. Four appendices contain complete 
professionally-written scripts emphasizing both techniques and teaching some programming 
tricks. The paper advocates using animations to prove feasibility of simulations and debug 
user-created programs and is thought to be useful for engineering students and researchers. 
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1 Introduction 
Today the Mathworks’ MATLAB/Simulink 
development environment [1] is widely used all over 
the world to develop different level of fidelity models 
and run simulations. This software proved to be very 
powerful and yet simple to use in different areas 
including all kinds of engineering. 

Not long time ago the only output a student or 
engineer could rely on was the text output. Then, 
different languages (Basic, Fortran, Pascal, C) 
employed on personal computers offered different 

graphic packages to improve the representability of 
simulation results and allow more qualitative analysis. 

In this respect MATLAB performed a real 
breakthrough allowing the creation of a wide range of 
different two- and three-dimensional (2D and 3D) 
graphics, no other language can possibly think of. 
Moreover, MATLAB offers an easy programmatic 
access to any basic drawing element the graphics 
object might be composed of (Fig. 1). It is possible 
because each instance of an object is associated with a 
unique identifier called a handle. 
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Fig. 1 Graphics objects hierarchy 

Everybody knows that the following command 
plot(sin(0:pi/20:pi)) 

creates a sinusoid. But only few people realize what 
specter of new possibilities brings the following 
modification of this command 
h_line= plot(sin(0:pi/20:pi)); 

creating a handle h_line to this sinusoid. Using this 
handle, a user can easily manipulate the characteristics 
(called object properties) of the graphics object, 
sinusoid in this particular case. 

Handle graphics opens absolutely new horizons in 
presenting and analyzing the results of simulations, as 
well as developing animations. It is widely used by 
MATLAB developers to create numerous demos (the 
list of which appears when a user types ‘demo matlab’ 
in the MATLAB Command window) and to better 
explain the essence of numerical algorithms (e.g., in 
[2]). Yet somehow, handle graphics has not been used 
widely by students and researches. Among more than 
600 textbooks on MATLAB there are few that even 
mention this valuable feature (more recent ones 
however, like [3], [4] or [5], do introduce it). 

Hence, the goal of this paper is to reintroduce handle 
graphics to students and practical engineers and show 
how simple it is to enhance the graphical output to 
include animations. It will also be advocated that 
having the outputs of simulations represented as 
animations rather than band graphics or the static 
scenes, actually helps to understand the underlying 
physics and debug the user codes. 

The paper is organized as follows. First, Section 2 
reminds about the main properties of handle graphics, 
the system of graphics objects that MATLAB uses to 

implement graphing and visualization functions. Next, 
Section 3 introduces the means available in MATLAB 
to create animations including those built upon handle 
graphics. Then, Section 4 provides with several 
examples of animating 2D and 3D graphics and 
scenes, supported by actual MATLAB M-scripts in 
Appendices A-D. Finally, Section 5 describes two 
more examples, where animation occurred to be a very 
valuable tool for checking the correctness of 
numerical algorithms and debugging the programs. 
The paper ends with conclusions. 

2 Accessing object properties via its 
handle 
Promoting the ‘open source’ paradigm, MATLAB 
allows changing any property of any graphics object, 
including Figure and its children objects (as shown on 
Fig. 1), to accommodate user’s preferences. 

There are three key ideas about the graphics objects a 
MATLAB user should know to be able to proficiently 
manipulate with them programmatically: 

- graphic objects obey a certain hierarchy (Fig. 1), so 
that, for instance, Axis happens to be one of 
Figure’s ‘children’ and simultaneously a ‘parent’ for 
a lot of other graphics objects including Line; 

- each object has its own handle (even if it was not 
defined by the user explicitly); and 

- knowing object’s handle allows accessing 
(changing) any of its properties. 

Consider an example given in the introduction. As 
mentioned there, the command 
h_line= plot(sin(0:pi/20:pi)); 
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not only plots the sinusoid (creating a new Figure 
window and some default Axis automatically), but 
also creates a handle to this sinusoid, h_line. Using 
this handle we can access all the properties of this 
Line object. To see what these properties are, one 
should type get(h_line) to obtain 
                 Color: [0 0 1] 
             EraseMode: 'normal' 
             LineStyle: '-' 
             LineWidth: 0.5000 
                Marker: 'none' 
            MarkerSize: 6 
       MarkerEdgeColor: 'auto' 
       MarkerFaceColor: 'none' 

etc. (34 properties in total). 

If you are only interested in some specific property 
you may address it directly, for instance typing 
get(h_line,'Color') results in 
ans = 
     0     0     1 

(defining red, green, and blue color components of the 
Line object, so that our sinusoid happens to be blue). 

How about accessing the properties of the Axis 
object? Although we did not created it (it was created 
automatically for us) and therefore we have no handle 
to it, we can recall that the Axis object is a parent with 
respect to the Line object and therefore the command 
h_axis=get(h_line,'parent') 

retrieves the Axis handle for us. 

Now all Axis properties (133 of them just for the 
single 2D plot) can be seen by issuing 
get(h_axis) command. As a matter of fact, the 
gca function (stands for ‘get current axes’) stores the 
Axis handle automatically, so that the get(h_axis) 
command is equivalent to get(gca). 

Similarly, the command 
h_figure=get(h_axis,'Parent') 

retrieves the Figure handle. Alternatively, it can be 
done by issuing any of the following three commands: 
h_figure=get(gca,'Parent') 

or 
h_figure=get(0,'Children') 

or 
h_figure=get(0,'CurrentFigure') 

In addition, the MATLAB gcf (‘get current figure’) 
function automatically stores the Figure handle too. 
Therefore, neither of the above four commands is 
actually needed. However, these simple exercises help 
to understand how knowing the graphics objects 
hierarchy (Fig. 1) allows accessing Line properties 
even without assigning the handle to it explicitly. For 
instance, once we plotted the sinusoid with 
plot(sin(0:pi/20:pi)) 

we could use one of the following two commands to 
retrieve its handle: 
h_line=get(gca,'children') 

or 
h_line=get(get(gcf,'children'),'children') 

For more efficiency though, for simultaneous 
manipulations with multiple figures/axes/lines the 
handle to each object, the properties of which are 
needed to be changed dynamically, should be assign 
directly. 

Now, using the set function we can change any 
specific property of any object using (referring to) its 
handle H. The general syntax of the set function is 
set(H,'PropertyName',PropertyValue) 

For example, 
set(h_line,'Color','r','LineWidth',2.5) 

changes the sinusoid color to red ([1 0 0]) and 
increases the line width to 2.5 points (1 point = 1/72 
inch). 

Knowing these basic features of handle graphics we 
can now proceed with animations. 

3 MATLAB tools for creating 
animations 
MATLAB offers two ways of generating moving, 
animated graphics. They are so called [1]: 

- ‘Creating Movies’ approach that saves a number of 
different pictures and then plays them back as a 
movie; and 

- ‘Erase Mode’ method, which continually erases and 
then redraws some of the objects on the screen, 
making incremental changes with each redraw. 

Let us briefly consider both of them based on simple 
examples taken from [6]. 

3.1 ‘Creating Movies’ approach 

We start from the most obvious, old-fashion way of 
generating animated graphics, which is the ‘Creating 
Movies’ approach. The idea here is to simply create 
each movie frame in advance and then combine them 
together. The two key MATLAB functions here are: 

- getframe, capturing movie frame, and 
- movie, playing recorded movie frames. 

The self-explanatory script below provides with an 
example of using this approach to create animations: 
% Defining a membrane 
 r = [0:0.05:1]';     % Radius vector 
 phi = 0:pi/20:2*pi;  % Phi angle vector 
 x = r*cos(phi);  % x-coordinates of a grid 
 y = r*sin(phi);  % y-coordinates of a grid 
 z = besselj(1,3.8316*r)*cos(phi); 
% Plotting the membrane 
 mesh(x,y,z) 
 xlabel('x-axis'), ylabel('y-axis') 
 zlabel('z-axis'), axis tight 
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 set(gca,'nextplot','replacechildren'); 
% Creating movie frames 
 for j = 1:20 
    mesh(x,y,sin(2*pi*j/20)*z,z); 
    F(j) = getframe; 
 end 
% Starting the movie 
 k=questdlg('Ready to watch the movie?',... 
    'Start the Movie', 'Yes', 'No', 'Yes'); 
% Playing the movie two times 
 if char(k(1))=='Y' 
    movie(F,2) 
 end 

(hereinafter the key commands responsible for 
animation are highlighted). This script animates the 
membrane defined in the first part of it. The 
MATLAB mesh function is used to originally 
visualize the membrane. The 'nextplot'-
'replacechildren' pair sets current axes to 
keep their scale, i.e. it removes all child objects, but 
do not reset axes properties while redrawing the 
membrane. The animation is done by rescaling the 
values of z (the z-coordinate on each frame is simply 
premultiplied by the sinusoidal scale factor that 
changes smoothly from 0 to 1 and then back to 0). The 
function questdlg is used to create and display the 
question dialog box). Two of the 20 generated frames 
are shown on Fig. 2 to give an idea of what happens 
on the screen. 

 
Fig. 2 Frames 5 and 15 of the membrane animation 

One of the pitfalls when using the ‘Creating Movies’ 
approach is that a movie is not rendered in real-time; it 
is simply a playback of previously rendered frames. 
From the other hand, the original drawing time is not 
important during playback, which is just a matter of 
blitting the frame to the screen. Therefore, this 
approach might be better suited to situations where 
each frame is fairly complex and cannot be redrawn 
rapidly. Otherwise the ‘Erase Mode’ approach 
addressed in the next subsection can be used as well. 

3.2  ‘Erase Mode’ method 

Another way of creating animations in more elegant 
way, changing some rather than all graphics objects 
programmatically, is to use the ‘Erase Mode’ method. 

EraseMode is one of the line specifications (offered 
by the handle graphics) and is very useful and 
powerful in animation. This property controls the 
technique MATLAB uses to draw and erase line 
objects. Alternative erase modes are useful for 
creating animated sequences, where control of the way 
individual objects are redrawn is necessary to improve 
performance and obtain the desired effect. 

The default EraseMode is normal allowing 
redrawing the affected region of the display, 
performing the 3D analysis necessary to ensure that all 
objects are rendered correctly. This mode produces the 
most accurate picture, but is the slowest. The other 
three modes (background, xor and none) are 
faster, but do not perform a complete redraw and are 
therefore less accurate, for instance, none mode do 
not erase the line when it is moved or destroyed al all. 

For example, let us consider the following set of 
commands that uses ‘Erase Mode’ method to slowly 
convert a sinusoid to cosinusoid: 
% Plotting a sinusoid 
 x=0:0.2:2*pi;   % Defines the x scale 
 y=sin(x);       % Computes sin(x) 
 z=cos(x);       % Computes cos(x) 
 plot(x,y)       % Plots sin(x) curve 
 set(gcf,'DoubleBuffer','on'); 
 set(gca,'xlim',[0 2*pi],'ylim',[-1 1]); 
 set(gca,'XTick',[0:pi:2*pi]) 
 set(gca,'XTickLabel',{'0';'pi';'2pi'}) 
 xlabel('x'), ylabel('y=f(x)') 
% Getting a handle to the line 
 h_line=get(gca,'children'); 
% Changing line properties 
 for i=1:1000 
    pause(0.005) 
% Setting the weighting coefficient w 
    w=i/1000; 
% Blending sin(x) and cos(x) using w 
    d=(1-w)*y+w*z; 
% Changing ydata for the line 
set(h_line,'ydata',d,'EraseMode','normal'); 
end 

In the first four lines of the code we compute data for 
two dependences,  and , and plot 
the first one (sinusoid). Then, we turn the double 
buffering on, which helps to produce flash-free 
rendering for simple animations (such as those 
involving lines, as opposed to objects containing large 
numbers of polygons). (Double buffering is the 
process of drawing to an off-screen pixel buffer and 
then blitting the buffer contents to the screen once the 
drawing is complete.). The next line sets the x and y 
axes limits. In the two following lines we are also 
accessing some of the properties of the Axis object. 
After adding axes’ labels we are getting a handle to 
the line. 

sin( )y = x xcos( )z =

Now, what we want to do by the remaining commands 
is to change the y-data for the line, keeping the rest of 
the properties untouched. Every time we change 
ydata, the previous line is erased (the default value 
for the EraseMode property is set to normal 
anyway, so we just added this property-value pair here 
to emphasize it). As a result, we will see a smooth 
conversion of sinusoid to cosinusoid. 

Figure 3 shows what you could eventually see on the 
figure if you would run the above fragment with the 
EraseMode property set to none. 

The two other options are: 
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- xor, which draws and erases the image by 
performing an exclusive OR (XOR) with the color 
of the screen beneath it (although this mode does 
not damage the color of the objects beneath the 
image, the image’s color itself depends on the color 
of whatever is beneath it on the display); and 

- background that erases the image by drawing it 
in the axes background color (property Color of 
current Axis) or the figure background color 
(property Color of the Figure) if the Axis color 
is set to none (as opposed to xor mode, this does 
damage objects that are behind the erased image, 
but images keep their color unchanged). 

 
Fig. 3 Snap-shot of the current window after applying 

EraseMode none mode 

Note that while all line’s transitions are still visible on 
the screen, you cannot copy this figure or print it, 
because MATLAB stores no information about its 
former location. The way we did it on Fig. 3 was 
taking a snap-shot of the current window with 
<Alt>+<PrtScrn> keyboard keys. You can also use the 
MATLAB getframe command (discussed in the 
previous subsection) or any other screen capture 
applications to create an image of a figure containing 
the non-normal mode objects. 

As mentioned, the ‘Erase Mode’ method offers 
programmatic way of animating the results of 
simulations and therefore is very attractive and 
powerful. All you have to do is to create a 2D or even 
3D scene composed of some objects, get the handles 
to these objects, and then change their properties (x, y 
(z) data, color, transparency, etc.). As a matter of fact 
two of the built-in MATLAB functions use the ‘Erase 
Mode’ method to animate graphs by default. They are 
comet and comet3. Basically, these two ‘dynamic’ 
functions are simply the substitutes for the ‘static’ 
plot and plot3 functions, respectively. The comet 
graphs are animated graphs in which a circle (the 
comet head) traces the data points on the screen. The 
comet body is a trailing segment that follows the head. 
The tail is a solid line that traces the entire function. 
The script below provides an example of using these 
two functions (see Fig. 4): 

 

subplot(2,1,1) 
t = 0:.0005:2*pi; 
x = cos(3*t).*(cos(t).^2); 
y = sin(3*t).*(sin(t).^2); 
comet(x,y); 
subplot(2,1,2) 
t = -10*pi:pi/1000:10*pi; 
comet3((cos(t).^2).*sin(t),... 
       (sin(t).^2).*cos(t),t); 

 

 
Fig. 4 Snap-shots of the current window when using 

comet and comet3 functions 

The only problem with comet and comet3 functions 
is that the trace left by a comet is created by using 
EraseMode of none, which once again means that 
you cannot print the graph (you get only the comet 
head) and it disappears if you cause a redraw (e.g., by 
zooming, panning, rotating or resizing the window). 
(Fig. 4 was created by combining two snap-shops 
when the first and then the second plots were drawn.) 

3.3 Creating standalone movies 

Obviously, when using any of the aforementioned two 
methods, ‘Creating Movies’ or ‘Erase Mode’, the 
animation plays within Mathworks’ development 
environment. However, MATLAB offers a way to 
convert this animation into the standalone movie, 
specifically into the AVI (Audio Video Interleave) 
file. 

(Despite its limitations and the availability of more 
modern multimedia formats, like MPEG4, the AVI 
multimedia format remains popular among file-
sharing communities. This is probably due to its high 
compatibility with existing video editing and playback 
software like Windows Media Player. Besides, if 
necessary, the AVI file can be converted later to say 
MPEG4 format using appropriate codices, for example 
Xvid or DivX.) 

To create and store your animation as a standalone 
AVI-file, playable outside MATLAB, several 
functions can be employed. The two key ones are: 

- movie2avi, creating an AVI movie from 
MATLAB movie, and 
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- addframe, adding a frame to the current (opened) 
AVI file. 

For instance, if we just add a single line, which is 
movie2avi(F,'membrane.avi',... 
'compression','none','quality',100) 

after the M-script shown in subsection 3.1 (for the 
‘Creating Movies’ approach) the membrane.avi file 
will be created. Similarly, we can add the line 
    F(i) = getframe; 

before the end of the for loop in the M-script shown 
in subsection 3.2 (for the ‘Erasing Mode’ method), 
and then use for example a command 
movie2avi(F,'sin2cos.avi',... 
'compression','Cinepak',’fps’,30) 

afterwards to create the sin2cos.avi movie. 

An alternative way of creating AVI-file is using the 
addframe function (you will find an example of 
how to do it in Appendix C). The command 
aviobj = addframe(aviobj,frame) 

appends the data in frame to the AVI-file identified by 
aviobj, which must be created beforehand by using 
avifile function. To this end, 
aviobj = avifile(filename) 

creates an AVI-file, giving it the name specified in 
filename and using default values for all other 
AVI-file object properties. If filename does not 
include an extension, avifile appends .avi to it 
automatically. The function avifile returns a 
handle to an AVI-file object aviobj, which can be 
used in addframe function. Note that once the 
movie is created, aviobj should be closed: 
aviobj = close(aviobj) 

You can always retrieve information about your AVI-
file using aviinfo function 

aviinfo('filename'), 

and read the AVI-movie filename back into MATLAB 
development environment movie structure mov using 
the aviread function: 
mov = aviread(filename) 

Then you can use the movie function again to view 
the movie mov. 

Be aware that when you create a standalone movie, 
the frame height and width will be padded to be a 
multiple of four as required by majority of codices 
(MATLAB uses one of the following codices: 
‘Indeo3’, ‘Indeo5’, ‘Cinepak’, ‘MSVC, ‘RLE’ or 
‘None’, with ‘Indeo5’ being the default one). Another 
warning is that a user should be careful when creating 
AVI-file on one computer to be played on another one 
(that another computer might have no codec you 
created your movie with). 

4 Practical examples 
This section demonstrates several practical examples 
of animating the results of simulations. The first 
example (Fig. 5), deals with analyzing the quality 
(consistency) of some data associated with image 
processing, specifically, two frame coordinates of 
some moving object, x and y (the problem formulation 
and the developed algorithms are addressed in [7]). 
This example employs the ‘Erase Mode’ method to 
produce animation. 

The n-point Welch window runs through the x and y 
coordinates of some object in the sequence of frames. 
The two elongated rectangles on the upper plots (Fig. 
5) move simultaneously from left to right through 
static data (not changing on the graphs). Two bottom 
plots demonstrate the instantaneous power spectral 
densities (PSD), so that the spectra diagrams change 
all the time. If the Welch PSD approaches or drops 
below some threshold (10-5) (marked with the wide 
green strip in the bottom portion of the bottom plots), 
it indicates that something is wrong with the data and 
those suspicious points should be eliminated (the wide 
strip itself turns yellow or red, respectively). 

 
Fig. 5 Checking the consistency of the data 

The script in Appendix A shows how it was 
programmed in MATLAB. The original lines on the 
first frame were plotted using the plot and 
semilogy functions. Then, using their handles some 
of their properties are continuously altered. 

The second example, created using the ‘Erase Mode’ 
approach as well, helps to analyze the relative attitude 
of the ballistic missile and interceptor during impact 
(Fig. 6) (the problem formulation can be found in [8]). 
To represent each of two missiles the M-script given 
in Appendix B uses the fill function. Using the 
simulation results the program rotates the missile 
silhouettes for each instant of time by changing just a 
few of their properties accessed via the missile 
silhouettes’ handles. The orientation and magnitude of 
the speed vectors as well as the text are changing 
dynamically too (using the handles to corresponding 
plot and text commands). 
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Fig. 6 The intercept geometry animation 

Figures 7 and 8 show examples of animation of 
rendezvous of three robots (see details in [9]). 
Appendix C contains the complete code, which 
accepts the parameters of motion of all three robots, 
along with their thrusters, cameras and lidars 
orientation, and animates 2D and 3D scenes. 
Obviously, the code if very bulky, especially for the 
3D scene generation (the patch function was used to 
describe each of the robot’s side). The proper 
reordering of the multiple objects to assure correct 
overlapping is also needed. That is why the ‘Creating 
Movies’ approach was used. (For the bird-eye view it 
could be also done using the ‘Erase Mode’ approach, 
i.e. creating the handles to the all moving objects 
generated with the fill function.) 

 
Fig. 7 Bird-eye representation of three robots on a 

floor with camera beams 

 
Fig. 8 The 3D visualization of a virtual scene 

Finally, Appendix D related to the case considered in 
the next section contains one more M-script showing 
an example of how to animate 3D scene using the 
patch function and ‘Erase Mode’ approach. 

5 Cause for animations 
Now the question to ask is why we need animations at 
all? Is it that we simply want to have fun? Well, quite 
often there is a reason beyond fun. Exploiting 
powerful and relatively easy-to-use tools provided by 
MATLAB allows to better understand the underlying 
physics and sometime effectively debug a user code. 

As an example, Figs. 9 and 10 represent two user-
created GUIs (graphical user interface) allowing to 
understand the physics beyond the pose (position and 
attitude) estimation problem for the descending 
payload of the aerodynamic delivery system (the 
details can be found in [10]). (By the way, these GUIs 
were created using MATLAB GUIDE tool.) 

 
Fig. 9 Interactive graphical user interface 

 
Fig. 10 Aerodynamic delivery system descent analysis 

Several cameras (that can be chosen interactively 
using the first GUI shown on Fig. 9) observe the 
descending payload and emulate what they would see 
(Fig. 10). On this second GUI everything is changing 
dynamically demonstrating what kind of information 
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could be extracted if the real system were 
implemented (which would cost tens and hundreds of 
thousands of dollars to do). Therefore, the developed 
tool producing realistic animations happens to be very 
useful. It allows to thoroughly analyze the overall 
geometry of the experimental setup, choose the most 
efficient constellation of cameras to use and challenge 
(test) pose estimation algorithms without costly real 
drops ([7,10]). 

The complete M-script are too long to show them 
here, however Appendix D demonstrates a small self-
contained piece of it exhibiting how to animate the 
rotating payload. Of course, as shown on Fig. 10, there 
might be up to six cameras involved, so in order to 
manage the properties of each 3D view in the most 
efficient way the original script used arrays of handles. 

Finally, Figs. 11 and 12 present an example, where 
animation allowed finding a small but unfortunate 
error, which was quite difficult to capture without 
dynamic 3D representation. 
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Fig. 11 Example of a multiple band graphic 

   
Fig. 12 Control of the inverted pendulum 

The parameters of the controlled inverted pendulum 
shown on Fig. 11 as the usual band plots were 
considered quite reasonable until the proper 3D 
animation (using the ‘Creating Movies’ method) was 
created (Fig.12). This animation led to the 
instantaneous conclusion that something was not right. 
It further allowed to debug the program by simply 
changing the sign of one state. Not to mention that the 
time spent on debugging the original program was 

much greater then the time spent on writing the code 
for animation. 

6 Conclusions 
The popular and growing Mathworks’ software offers 
a lot of advanced features allowing to animate the 
results of simulations and moreover to do it 
programmatically. The paper shows the main tools 
allowing to do this and presents some examples. It is 
thought that using these advanced capabilities not only 
improves the ‘readability’ of the results, but might 
also help in better understanding the underlying 
physics and debugging a user code. The scripts 
presented in the paper serve as examples of practical 
application of some of MATLAB’s tools and are 
supposed to teach some useful techniques and 
programming tricks. While it does not take much time 
to explore the advanced capability of MATLAB 
addressed in this paper, the usefulness of using it will 
definitely surpass all expectations. 
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Appendix A. Example of animating 2D graphics using handles (‘Erase Mode’ method) 
function badIndex=fftScan(xData,yData,window,overlap) 
% This function accepts two vectors of input data (xData and yData), 
% size of the segment for the fft analysis (window), and overlap 
% It outputs the indices of the input data where PSD falls below 10e-5 
%       To see how it works you can try to run the following two lines: 
%          XData=randn(1000,1); XData(30:400)=0*XData(30:400); YData=randn(1000,1); 
%          fftScan(XData,YData,128,2) 
PSDthreshold=10e-5; 
%% Setting-up a two-plot figure window 
ysc=max([abs(xData)' abs(yData)']); 
figure('Name','Animation of Spectral Analysis for Camera') 
i=1; 
xOffset=xData(i:i+window); 
yOffset=yData(i:i+window); 
[Pxx,xww]=pwelch(xOffset,[],[],window,30); 
[Pyy,yww]=pwelch(yOffset,[],[],window,30); 
    subplot(2,2,1) 
    plot(xData,'.b'), hold on 
    xwin=plot([i i i+window i+window i],-ysc*[-1 1 1 -1 -1],'r'); 
    set(xwin,'EraseMode','xor') 
    ylim(ysc*[-1 1]) 
    xlabel('Frame'), ylabel('x-offset (pixel)') 
 title('Welch FFT Window'); 
subplot(2,2,2) 
plot(yData,'.b') 
hold on 
ywin=plot([i i i+window i+window i],-ysc*[-1 1 1 -1 -1],'r'); 
set(ywin,'EraseMode','xor') 
ylim(ysc*[-1 1]) 
ylabel('y-offset (pixel)'); 
xlabel('Frame'); 
title('Welch FFT Window'); 
    subplot(2,2,3) 
    hx=semilogy(xww,Pxx,'.-r'); 
    set(hx,'EraseMode','xor') 
    axis([0 15 10e-7 10e4]), hold on 
    warnbarx=semilogy([0.1 15],5e-6*[1 1],'Color','g','LineWidth',12); 
    set(warnbarx,'EraseMode','xor') 
    grid on; 
    xlabel('Frequency (Hz)'), ylabel('x-offset PSD (dB/Hz)') 
    title('Welch PSD Estimate'); 
subplot(2,2,4) 
hy=semilogy(yww,Pyy,'.-r'); 
set(hy,'EraseMode','xor') 
hold on 
warnbary=semilogy([0.1 15],5e-6*[1 1],'Color','g','LineWidth',12); 
set(warnbary,'EraseMode','xor') 
axis([0 15 10e-7 10e4]), grid on; 
xlabel('Frequency (Hz)'), ylabel('y-offset PSD (dB/Hz)') 
title('Welch PSD Estimate'); 
 
%% Animating Welch PSD estimates 
size=length(xData); 
badIndex(1)=0; 
while i<(size-window) 
    set(xwin,'XData',[i i i+window i+window i],'YData',-ysc*[-1 1 1 -1 -1]); 
    set(ywin,'XData',[i i i+window i+window i],'YData',-ysc*[-1 1 1 -1 -1]); 
xOffset=xData(i:i+window); 
yOffset=yData(i:i+window); 
    [Pxx,xww]=pwelch(xOffset,[],[],window,30); 
    [Pyy,yww]=pwelch(yOffset,[],[],window,30); 
set(hx,'XData',xww,'YData',Pxx); 
set(hy,'XData',yww,'YData',Pyy); 
      set(warnbarx,'Color','g');      set(warnbary,'Color','g'); 
    if min(Pxx)<5*PSDthreshold || min(Pyy)<5*PSDthreshold 
      set(warnbarx,'Color','y');      set(warnbary,'Color','y'); 
    end                         % if end 
    if min(Pxx)<PSDthreshold || min(Pyy)<PSDthreshold 
      set(warnbarx,'Color','r');      set(warnbary,'Color','r'); 
      badIndex=[badIndex; i];   % There is a failure in the target tracking 
    end                         % if end 
i=i+overlap; pause(0.001) 
end 
badIndex(1)=[]; 
return 
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Appendix B. Example of animating 2D scene using handles (‘Erase Mode’ method) 
function x=Animation(speed, psi, theta, phi, alpha, beta,... 
                     speedI,psiI,thetaI,phiI,alphaI,betaI) 
% This script 'animates' the data received during ballistic missile intercept 
% simulation. It requires six input vectors of parameters for both missile and 
% interceptor: 
%          speed -  defining missile's full speed time history, 
%  psi,theta,phi -  defining Euler angles histories (orientation of {b} 
%                   wrt {n}), 
%     alpha,beta -  defining angle of attack and sideslip angle 
%                   histories. 
%       To see how it works you can try to run the following six lines: 
%          N=100; time=0:N; 
%          psi=pi/2*ones(N,1); theta=pi/2*cos(pi/N/3*time); phi=zeros(N,1); 
%          alpha=0.3*sin(2*pi/N*time); beta=zeros(N,1); 
%          speed=2000*sin(pi/N/2*time); 
%          Animation(speed,psi,theta,phi,alpha,beta,... 
%                    speed,pi+psi,theta,phi,alpha,beta); 
% 
NumbofFrs=length(speed)-1; 
time=0:NumbofFrs; 
%% Define Ballistic Missile's geometry (3 stages) 
% The geometry is defined for a half of the missile 
xBMs{1}=[0  0    2    3  16  19   30   32]; 
yBMs{1}=[0 1.85 1.85 1.1 1.1 0.65 0.65  0]; 
xBMs{2}=[0  0    1    2   14   16]; 
yBMs{2}=[0 1.31 1.31 0.65 0.65  0]; 
xBMs{3}=[0  0    2]; 
yBMs{3}=[0 0.65  0]; 
% Define geometry for the second half 
for iMS=1:3 
nP=length(xBMs{iMS}); 
for i=1:nP-1 
xBMs{iMS}=[xBMs{iMS}  xBMs{iMS}(nP-i)]; 
yBMs{iMS}=[yBMs{iMS} -yBMs{iMS}(nP-i)]; 
end 
% Place the missile to the center of the image and scale it so that it 
% occupies 2/3 of the screen 
sca=max(xBMs{iMS})-min(xBMs{iMS}); 
xbm=3*(xBMs{iMS}-sca/2)/sca;  % Missile geometry is defined in NED 
ybm=3*yBMs{iMS}/sca;          % frame {b} (x-axis is pointe North) 
% The final (full, centered and scaled) geomery 
Missile{iMS}(:,1)=xbm'; Missile{iMS}(:,2)=ones(length(xbm),1); 
Missile{iMS}(:,3)=ybm'; 
end 
%% Define Interceptor's geometry (2 stages) 
% The geometry is defined for a half of the missile 
xIMs{1}=[0 0    1.6   1.7  1.74 1.83 2  2.1 2.6  2.8 4.5 4.7  6  6.63]; 
yIMs{1}=[0 0.265 0.265 0.17 0.17 0.29 0.33 0.17 0.17 0.3 0.3 0.17 ... 
         0.17 0]; 
xIMs{2}=[0 0    0.04 0.13 0.3  0.4  0.9  1.1 2.8 3    4.3  4.93]; 
yIMs{2}=[0 0.17 0.17 0.29 0.33 0.17 0.17 0.3 0.3 0.17 0.17 0]; 
% Define geometry for the second half 
for iIS=1:2 
nP=length(xIMs{iIS}); 
for i=1:nP-1 
xIMs{iIS}=[xIMs{iIS}  xIMs{iIS}(nP-i)]; 
yIMs{iIS}=[yIMs{iIS} -yIMs{iIS}(nP-i)]; 
end 
% Place the missile to the center of the image and scale it so that it 
% occupies 2/3 of the screeng 
sca=max(xIMs{iIS})-min(xIMs{iIS}); 
xim=3*(xIMs{iIS}-sca/2)/sca;  % Missile geometry is defined in NED 
yim=3*yIMs{iIS}/sca;          % frame {b} (x-axis is pointed North) 
% The final (full, centered and scaled) geomery 
Interceptor{iIS}(:,1)=xim'; Interceptor{iIS}(:,2)=ones(length(xim),1); 
Interceptor{iIS}(:,3)=yim'; 
end 
%% Define the initial frame for Missile 
figure('Name','Side-View Animation') 
subplot(1,2,1) 
R_psi   = [ cos(psi(1))   sin(psi(1))   0; 
           -sin(psi(1))   cos(psi(1))   0; 
                0             0         1]; 
R_theta = [cos(theta(1))  0  -sin(theta(1)) 
               0          1       0; 
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           sin(theta(1))  0   cos(theta(1))]; 
R_phi   = [1       0             0; 
           0   cos(phi(1))   sin(phi(1)); 
           0  -sin(phi(1))   cos(phi(1))]; 
Rm_n2b = R_phi*R_theta*R_psi;        % Rotation from {n} to {b} 
imMis=Rm_n2b'*Missile{1}';           % Missile's coordinates in {n} 
Mis=fill(imMis(2,:),-imMis(3,:),'c');% Projection onto y-z plane of {n} 
set(Mis,'EraseMode','xor') 
axis(2*[-1 1 -1 1]), axis equal, hold on 
plot(0,0,'r.')                                  % Center of the figure 
plot([0 0],[0 -.1],'Color','k','LineWidth',2)   % Gravity vector 
R_beta   = [ cos(beta(1))   sin(beta(1))   0; 
            -sin(beta(1))   cos(beta(1))   0; 
                 0              0          1]; 
R_alpha = [ cos(-alpha(1))  0  -sin(-alpha(1)) 
                 0          1         0; 
            sin(-alpha(1))  0   cos(-alpha(1))]; 
Rm_n2v = R_alpha*Rm_n2b;             % Rotation from {n} wrt {v} 
Speed=[speed(1); 0; 0]/1000;         % Speed magnitude in {v} 
imSpd=Rm_n2v'*Speed;                 % Projection onto y-z plane of {n} 
SpM=plot([0 imSpd(2)],[0 -imSpd(3)],'Color','r','LineWidth',2); 
set(SpM,'EraseMode','xor'); 
textSpeed=text(imSpd(2)+.1,-imSpd(3),'Speed'); 
set(textSpeed,'EraseMode','xor'); 
xlabel('East (y_{LTP})'), ylabel('Up (-z_{LTP})') 
set(gca,'XTickLabel',{}), set(gca,'YTickLabel',{}) 
title('Ballistic Missile Attitude') 
%% Display initial frame and time 
textFrame=text('Color',[0.8471 0.1608 0],'FontAngle','italic',... 
       'Position',[0.9 2.75],'String',['Frame ' num2str(1) ' out of '... 
       num2str(NumbofFrs)],'BackgroundColor',[1 1 1]); 
textTime=text('Color',[0.8471 0.1608 0],'FontAngle','italic',... 
       'Position',[0.9 2.35],'String',['Time ' num2str(time(1),'%.2f')... 
       ' sec'],'BackgroundColor',[1 1 1]); 
%% Define the initial frame for Interceptor 
subplot(1,2,2) 
R_psi   = [ cos(psiI(1))   sin(psiI(1))   0; 
           -sin(psiI(1))   cos(psiI(1))   0; 
                0             0         1]; 
R_theta = [cos(thetaI(1))  0  -sin(thetaI(1)) 
               0          1       0; 
           sin(thetaI(1))  0   cos(thetaI(1))]; 
R_phi   = [1       0             0; 
           0   cos(phiI(1))   sin(phiI(1)); 
           0  -sin(phiI(1))   cos(phiI(1))]; 
Ri_n2b = R_phi*R_theta*R_psi;        % Rotation from {n} to {b} 
imInt=Ri_n2b'*Interceptor{1}';       % Interceptor's coordinates in {n} 
Int=fill(imInt(2,:),-imInt(3,:),'r');% Projection onto y-z plane of {n} 
set(Int,'EraseMode','xor'); 
axis(2*[-1 1 -1 1]), axis equal, hold on 
plot(0,0,'r.')                                  % Center of the figure 
plot([0 0],[0 -.1],'Color','k','LineWidth',2)   % Gravity vector 
R_beta   = [ cos(betaI(1))   sin(betaI(1))   0; 
            -sin(betaI(1))   cos(betaI(1))   0; 
                 0              0          1]; 
R_alpha = [ cos(-alphaI(1))  0  -sin(-alphaI(1)) 
                 0          1         0; 
            sin(-alphaI(1))  0   cos(-alphaI(1))]; 
Ri_n2v = R_alpha*Ri_n2b;             % Rotation from {n} wrt {v} 
Speed=[speedI(1); 0; 0]/1000;        % Speed magnitude in {v} 
imSpd=Ri_n2v'*Speed;                 % Projection onto y-z plane of {n} 
SpI=plot([0 imSpd(2)],[0 -imSpd(3)],'Color','r','LineWidth',2); 
set(SpI,'EraseMode','xor'); 
textSpeedI=text(imSpd(2)+.1,-imSpd(3),'Speed'); 
set(textSpeedI,'EraseMode','xor'); 
xlabel('East (y_{LTP})'), ylabel('Up (-z_{LTP})') 
set(gca,'XTickLabel',{}), set(gca,'YTickLabel',{}) 
title('Interceptor Attitude') 
%% Add the 'Next Frame' and 'Auto' buttons 
uicontrol('string','Next Frame','units','normalized','pos',[.66,.15,.13,.06],... 
          'callback','set(gcf,''userdata'',1)'); 
auto = uicontrol('string','Auto','units','normalized','pos',[.8 .15,.08,.06],... 
                 'style','togglebutton','callback','set(gcf,''userdata'',1)'); 
set(gcf,'userdata',0); goFlag=0; 
%% Start animation 
for j = 2:NumbofFrs 
%% i) Define current stage for Missile and Interceptor 
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if time(j)<6                            % Interceptor booster burns out 
    iMS=1; iIS=1; 
elseif time(j)<130                      % Missile 1st stage burns out 
    iMS=1; iIS=2; 
elseif time(j)<240                      % Missile 2nd stage burns out 
    iMS=2; iIS=2; 
else 
    iMS=3; iIS=2; 
end 
%% ii) Define rotation matrix from {n} to {b} and rotate the missile 
R_psi   = [ cos(psi(j))   sin(psi(j))   0; 
           -sin(psi(j))   cos(psi(j))   0; 
                0             0         1]; 
R_theta = [cos(theta(j))  0  -sin(theta(j)) 
               0          1       0; 
           sin(theta(j))  0   cos(theta(j))]; 
R_phi   = [1       0             0; 
           0   cos(phi(j))   sin(phi(j)); 
           0  -sin(phi(j))   cos(phi(j))]; 
Rm_n2b = R_phi*R_theta*R_psi;           % Rotation from {n} to {b} 
imMis=Rm_n2b'*Missile{iMS}';            % Missile's coordinates in {n} 
set(Mis,'XData',imMis(2,:),'YData',-imMis(3,:)); % y-z plane projection 
%% iii) Define rotation matrix for the Missile's speed vector 
%% and rotate it 
R_beta   = [ cos(beta(j))   sin(beta(j))   0; 
            -sin(beta(j))   cos(beta(j))   0; 
                 0              0          1]; 
R_alpha = [ cos(-alpha(j))  0  -sin(-alpha(j)) 
                 0          1         0; 
            sin(-alpha(j))  0   cos(-alpha(j))]; 
Rm_n2v = R_alpha*Rm_n2b;             % Rotation from {n} wrt {v} 
Speed=[speed(j); 0; 0]/1000;         % Speed magnitude in {v} 
imSpd=Rm_n2v'*Speed;                 % Projection onto y-z plane of {n} 
set(SpM,'XData',[0 imSpd(2)],'YData',[0 -imSpd(3)]); 
set(textSpeed,'Position',[imSpd(2)+.1 -imSpd(3) 0]); 
%% iv) Define rotation matrix from {n} to {b} and rotate the interceptor 
R_psi   = [ cos(psiI(j))   sin(psiI(j))   0; 
           -sin(psiI(j))   cos(psiI(j))   0; 
                0             0         1]; 
R_theta = [cos(thetaI(j))  0  -sin(thetaI(j)) 
               0          1       0; 
           sin(thetaI(j))  0   cos(thetaI(j))]; 
R_phi   = [1       0             0; 
           0   cos(phiI(j))   sin(phiI(j)); 
           0  -sin(phiI(j))   cos(phiI(j))]; 
Ri_n2b = R_phi*R_theta*R_psi;           % Rotation from {n} to {b} 
imInt=Ri_n2b'*Interceptor{iIS}';        % Interceptor coordinates in {n} 
set(Int,'XData',imInt(2,:),'YData',-imInt(3,:)); % y-z plane projection 
%% v) Define rotation matrix for the Interceptor's speed vector 
%% and rotate it 
R_beta   = [ cos(betaI(j))   sin(betaI(j))   0; 
            -sin(betaI(j))   cos(betaI(j))   0; 
                 0              0          1]; 
R_alpha = [ cos(-alphaI(j))  0  -sin(-alphaI(j)) 
                 0          1         0; 
            sin(-alphaI(j))  0   cos(-alphaI(j))]; 
Ri_n2v = R_alpha*Ri_n2b;             % Rotation from {n} wrt {v} 
Speed=[speedI(j); 0; 0]/1000;        % Speed magnitude in {v} 
imSpd=Ri_n2v'*Speed;                 % Projection onto y-z plane of {n} 
set(SpI,'XData',[0 imSpd(2)],'YData',[0 -imSpd(3)]); 
set(textSpeedI,'Position',[imSpd(2)+.1 -imSpd(3) 0]); 
%% vi) Count frames 
set(textFrame,'String',['Frame ' num2str(j) ' out of ' ... 
    num2str(NumbofFrs)]); 
set(textTime,'String',['Time ' num2str(time(j),'%.2f') ' sec']); 
%% vii) Wait for any control button to be pushed 
while goFlag==0 
     if get(auto,'value')==1 
         goFlag=1; 
     elseif get(gcf,'userdata')==1 
         goFlag=1; set(gcf,'userdata',0) 
     else 
         pause(0.25) 
     end 
 end 
 goFlag=0; pause(0.1) 
end 
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Appendix C. Example of animating 2D and 3D scenes using ‘Creating Movie’ approach 
The anim_floor function below is the main function. It sequentially calls draw_floor, draw_robot, and 
draw_dev functions (appearing after anim_floor below) to produce the bird-eye view of the rendezvous 
geometry and draw_3D function to visualize what would robot’s camera see. The input signals are: 

- vector time(:) holding the time stamps of the simulation; 
- three-dimensional array states(1:3,1:3,:), composed of time histories of robots’ x-y position and 

yaw angle; 
- two-dimensional array thrusters(:,1:3), describing time histories of thrusters’ orientation; and 
- two-dimensional array camera(:,1:6), containing time histories of cameras and lidars orientation. 

The geometry of the floor and three robots used in almost every function is defined not as a set of global 
variables but rather in the global_props function shown the last. 
 
function anim_floor(time,states,thrusters,camera) 
% This function animates the bird-eye and 3D view of the rendezvous animation 
% For the bird-eye view it sequentially calls another functions: 
%                   draw_floor, draw_robot, and draw_dev 
% For the 3D view it calls draw_foto functions 
% 
[robot_props, floor_props] = global_props; 
mov = avifile('robotmov.avi','quality',100,'Compression','Indeo3','fps',5); 
 [m,n] = size(time); 
for i = 1:ceil(m/100):m 
    subplot(1,2,1); 
    draw_floor(time(i)); 
    for j = 1 : 3 
        pos=states(1:3,j,i); 
        draw_robot(pos,robot_props(j)); 
        switch j 
            case 1 
% draw camera field of view 
            draw_dev(j, pos, 'Cam', camera(i,1)); 
% draw 360 vectored variable thruster 
            draw_dev(j, pos, 'Thruster', thrusters(i,1:3)); 
% draw lidar beam 
            draw_dev(j, pos, 'Lidar', camera(i,[1:2,4:5])); 
            case {2,3} 
        end 
    end 
% draw camera’s snap-shot 
    subplot(1,2,2); 
    data=states(1:3,1:3,i)'; 
    alf= camera(i,1)+states(3,1,i); 
    draw_3D(1, data, alf,0,0) 
mov = addframe(mov,getframe(gcf)); 
end 
mov = close(mov); 
 
function draw_floor(t) 
% This function plots the rectangular floor 
[robot_props,floor_props]=global_props; 
hold off 
BlueFloor=floor_props.dim; 
fill([BlueFloor(2,3) BlueFloor(3,2)], [BlueFloor(1,1) BlueFloor(1,2)],'w'), hold on 
axis equal, axis([BlueFloor(2,2) BlueFloor(3,2) BlueFloor(1,1) BlueFloor(2,1)]); 
title('Bird''s Eye View'); 
xlabel('y-axis (East) (m)'), ylabel('x-axis (North) (m)') 
text('Color',[0.8471 0.1608 0],'FontAngle','italic',... 
    'Position',[.1 .1],... 
    'String',['time=' num2str(round(100*t)/100)]) 
 
function draw_robot(pos,robot) 
% This function plots the robot (top view) 
x=pos(1); y=pos(2); t=pos(3);   % postion/orientation of robot 
% Converting robot's corners from {b} to {n} 
r2n  = [cos(t) -sin(t)  0; 
        sin(t)  cos(t)  0; 
            0        0  1]; 
RobCrns=r2n*robot.crns'+[x;y;0]*ones(1,8); 
fill(RobCrns(2,1:4,1),RobCrns(1,1:4,1),robot.dc) 
radius=abs(robot.crns(1)); 
line([y y+radius*sin(t)],[x x+radius*cos(t)], 'Color', 'y') 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 13 Copyright © 2007 EUROSIM / SLOSIM



 
function draw_dev(me,pos,type,u) 
% This function plots diverging rays corresponding to thrusters and lidar 
robot_props=global_props; 
x=pos(1); y=pos(2); t=pos(3); 
switch type 
case 'Cam' 
 a=u+t; 
 clr= robot_props(me).lc; 
 sFoV= robot_props(me).sfov; 
 rx=40/x; ry=40/y; 
 patch(y*[1 1+ry*sin(a-sFoV) 1+ry*sin(a+sFoV) 1],... 
 x*[1 1+rx*cos(a-sFoV) 1+rx*cos(a+sFoV) 1],... 
 clr, 'LineStyle', 'none', 'FaceAlpha', .25); 
case 'Thruster' 
 mag=u(1)*10; 
 a=u(2)+t+pi; 
 clr='c'; 
 sFoV=.05; 
 rx=mag/x; ry=mag/y; 
 patch(y*[1 1+ry*sin(a-sFoV) 1+ry*sin(a+sFoV) 1],... 
 x*[1 1+rx*cos(a-sFoV) 1+rx*cos(a+sFoV) 1],... 
 clr, 'LineStyle', 'none', 'FaceAlpha', .25); 
case 'fThruster' 
 mag=u(1)*10; 
 d=- robot_props(me).crns(1); 
 a=u(2)+t; 
 clr='c'; 
 len=.3; 
 sFoV=.05; 
 rx=mag; ry=mag; 
 patch([y+d*sin(t) y+ry*sin(a-sFoV)+d*sin(t) y+ry*sin(a+sFoV)+d*sin(t) y+d*sin(t)],... 
 [x+d*cos(t) x+rx*cos(a-sFoV)+d*cos(t) x+rx*cos(a+sFoV)+d*cos(t) x+d*cos(t)],... 
 clr, 'LineStyle', 'none', 'FaceAlpha', .25); 
 plot([y+d*sin(t), y+d*sin(t)+len*sin(a)], [x+d*cos(t), x+d*cos(t)+len*cos(a)], 'm'); 
case 'bThruster' 
 mag=u(1)*10; 
 d= robot_props(me).crns(1); 
 a=u(2)+t+pi; 
 clr='c'; 
 len=.3; 
 sFoV=.05; 
 rx=mag; ry=mag; 
 patch([y+d*sin(t) y+ry*sin(a-sFoV)+d*sin(t) y+ry*sin(a+sFoV)+d*sin(t) y+d*sin(t) ],... 
 [x+d*cos(t) x+rx*cos(a-sFoV)+d*cos(t) x+rx*cos(a+sFoV)+d*cos(t) x+d*cos(t)],... 
 clr, 'LineStyle', 'none', 'FaceAlpha', .25); 
 plot([y+d*sin(t), y+d*sin(t)+len*sin(a)], [x+d*cos(t), x+d*cos(t)+len*cos(a)], 'm'); 
case 'Lidar' 
 r12 = u(1); b12 = u(2); r13 = u(3); b13 = u(4); 
 x2 = x+r12*cos(t+b12); y2 = y+r12*sin(t+b12); 
 x3 = x+r13*cos(t+b13); y3 = y+r13*sin(t+b13); 
 plot(y2+.1*randn(1,10),x2+.1*randn(1,10),'.') 
 plot(y3+.1*randn(1,10),x3+.1*randn(1,10),'.') 
end 
 
function draw_3D(ME,FLR,psi,theta,phi) 
% This function produces the 3D view from one of the robots 
[robot_props, floor_props]=global_props; 
% psi=yaw, theta=pitch, phi=roll 
X=FLR(ME,1); Y=FLR(ME,2); T=FLR(ME,3); 
%% Defining parameters of the square in {n} (NED) 
BlueFloor=floor_props.dim;                 % Square's corners starting from the origin 
NumbofPts=length(BlueFloor); 
%% Defining camera (attached to the robot's top) 
hc= robot_props(ME).crns(end);        % Camera's height above the ground 
Camera = [X; Y; hc];                  % Camera's position in {n} 
sFoV= robot_props(ME).sfov;           % Semi-field of view (horizontal) 
AsRatio= robot_props(ME).ar;          % Frame's aspect ratio' (horizontal/vertical) 
f= robot_props(ME).f;                 % Focal length (m) 
R_phi   = [1   0          0; 
           0   cos(phi)   sin(phi); 
           0  -sin(phi)   cos(phi)]; 
R_theta = [cos(theta)  0  -sin(theta) 
           0           1   0; 
           sin(theta)  0   cos(theta)]; 
%% Defining two other robots in {b} (NED) attached to the robot's bottom 
if ME==1, ROBOT1=2; ROBOT2=3; end 
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if ME==2, ROBOT1=1; ROBOT2=3; end 
if ME==3, ROBOT1=1; ROBOT2=2; end 
%% Defining light green and dark green colors 
RobPos=[FLR(ROBOT1,1),FLR(ROBOT1,2),0;     % Origin of the robot's {b} in {n} 
        FLR(ROBOT2,1),FLR(ROBOT2,2),0]; 
RobOr= [FLR(ROBOT1,3);FLR(ROBOT2,3)];      % Orientation of {b} wrt to {n} 
L(1,:)=robot_props(ROBOT1).lc; 
D(1,:)=robot_props(ROBOT1).dc; 
L(2,:)=robot_props(ROBOT2).lc; 
D(2,:)=robot_props(ROBOT2).dc; 
CRNS{1}=robot_props(ROBOT1).crns; 
CRNS{2}=robot_props(ROBOT2).crns; 
NumbofRbts=length(RobOr); 
for u=1:NumbofRbts 
R_r2n(:,:,u)  = [cos(RobOr(u))  -sin(RobOr(u))  0; 
                 sin(RobOr(u))   cos(RobOr(u))  0; 
                      0               0         1]; 
end 
%% Defining a camera frame 
Uscale=f*tan(sFoV); 
Vscale=Uscale/AsRatio; 
%% i) Converting the square to the camera frame 
R_psi = [cos(psi) sin(psi) 0; 
        -sin(psi) cos(psi) 0; 
                0        0 1]; 
R_n2c = R_phi*R_theta*R_psi;                     % Rotation from {n} wrt {c} 
imrs=R_n2c*(BlueFloor'-Camera*ones(1,NumbofPts));% Coordinates in {c} 
azimuth=atan2(imrs(2,:),imrs(1,:)); 
u0 = f*imrs(2,:)./imrs(1,:);                     % x-coordinate in {f} (right) 
v0 =-f*imrs(3,:)./imrs(1,:);                     % y-coordinate in {f} (right) 
%% ii) Counting the number and indices of Visible and Invisible points 
indVis=find(imrs(1,:)>0); indInv=find(imrs(1,:)<=0); 
nVis=length(indVis); nInv=NumbofPts-nVis; 
%% iii) Reodering the points 
if (nVis~=1) & (min(indInv)>1 & max(indInv)<NumbofPts) 
    fict=indVis; 
    indVis=(max(indInv)+1):NumbofPts; 
    indVis=[indVis 1:(min(indInv)-1)]; 
end 
%% iv) Assigning fictituous points as substitutes for invisible points 
u(2:nVis+1)=u0(indVis); 
v(2:nVis+1)=v0(indVis); 
inleft=indVis(1)-1;     if inleft<1,          inleft=inleft+NumbofPts;   end 
inright=indVis(nVis)+1; if inright>NumbofPts, inright=inright-NumbofPts; end 
tau1=abs((-sFoV-azimuth(indVis(1)))/(azimuth(inleft)-azimuth(indVis(1)))); 
tau2=abs((sFoV-azimuth(indVis(nVis)))/(azimuth(inright)-azimuth(indVis(nVis)))); 
imrLeft=imrs(:,inleft)*tau1+imrs(:,indVis(1))*(1-tau1); 
imrRight=imrs(:,inright)*tau2+imrs(:,indVis(nVis))*(1-tau2); 
ul = f*imrLeft(2)/imrLeft(1);       % Coordinates of fictituous points in {f} 
vl =-f*imrLeft(3)/imrLeft(1); 
ur = f*imrRight(2)/imrRight(1); 
vr =-f*imrRight(3)/imrRight(1); 
u(1)=(-Vscale-vl)*(u(2)-ul)/(v(2)-vl)+ul; v(1)=-Vscale; 
u(nVis+2)=(-Vscale-vr)*(u(nVis+1)-ur)/(v(nVis+1)-vr)+ur; v(nVis+2)=-Vscale; 
%% v) Converting robots centers from {n} to {c} 
imRts=R_n2c*(RobPos'-Camera*ones(1,NumbofRbts)); % Robots coordinates in {c} 
distRts=[norm(imRts(:,1),2) norm(imRts(:,2),2)]; % Distance from the origin of {c} 
azimuthRts=atan2(imRts(2,:),imRts(1,:));         % Robots azimuths in {c} 
for jr=1:NumbofRbts 
    % vi) Converting robot's corners from {b} to {n} 
    Robot=CRNS{jr}; 
    cyl=sqrt(Robot(1)^2+Robot(2)^2);          % Cylinder around the robot 
    RobCrns(:,:,jr)=R_r2n(:,:,jr)*Robot'+RobPos(jr,:)'*ones(1,8); 
    % vii) Default zeroing of left and right planes' coordinates (in {f}) 
    uR(:,2*jr-1) = zeros(4,1);  vR(:,2*jr-1) = zeros(4,1); 
    uR(:,2*jr)   = zeros(4,1);  vR(:,2*jr)   = zeros(4,1); 
    uRcolor(:,:,jr)=[L(jr,:);D(jr,:)]; 
    if abs(azimuthRts(jr))-sFoV<pi/2 && distRts(jr)*sin(abs(azimuthRts(jr))-sFoV)<cyl 
        %% viii) Converting visible robot's corners from {n} to {c} 
        imRtsCrns(:,:,jr)=R_n2c*(RobCrns(:,:,jr)-Camera*ones(1,8));   % Coordinates in {c} 
        %% ix) Determining the closest edge and two adjacent panels (left and right) 
        [dv,in]=min([norm(imRtsCrns(1:3,1,jr)),norm(imRtsCrns(1:3,2,jr)),... 
            norm(imRtsCrns(1:3,3,jr)),norm(imRtsCrns(1:3,4,jr))]); 
        inL=in+1;       if inL>4,   inL=inL-4;    end 
        inR=in-1;       if inR<1,   inR=inR+4;    end 
        Panel(:,:,2*jr-1)=[imRtsCrns(:,in,jr),imRtsCrns(:,inL,jr),...   % Left panel 
                           imRtsCrns(:,inL+4,jr),imRtsCrns(:,in+4,jr)]; 
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        Panel(:,:,2*jr)  =[imRtsCrns(:,in,jr),imRtsCrns(:,inR,jr),...   % Right panel 
                           imRtsCrns(:,inR+4,jr),imRtsCrns(:,in+4,jr)]; 
        %% x) Determining more distant panel (left or right) to be shown first 
        dl=norm(mean(Panel(:,:,2*jr-1),2)); 
        dr=norm(mean(Panel(:,:,2*jr),2)); 
        tt=[0,1]; 
        if dl<dr, tt=[1,0]; uRcolor(:,:,jr)=[D(jr,:);L(jr,:)]; end 
        %% xi) Computing {f}-coordinates of the farther and closer panels 
        for jt=1:2 
            uR(:,2*jr-1+tt(jt))= f*Panel(2,:,2*jr-2+jt)./Panel(1,:,2*jr-2+jt); 
            vR(:,2*jr-1+tt(jt))=-f*Panel(3,:,2*jr-2+jt)./Panel(1,:,2*jr-2+jt); 
        end 
    end             % The end of the 'if' structure 
end                 % The end of the 'for' loop 
ord=[2,1]; if distRts(2)<distRts(1), ord=[1,2]; end 
%     u(5)=u(1); v(5)=v(1); 
%     uR(5,:)=uR(1,:); vR(5,:)=vR(1,:); 
fill([-1 1 1 -1], [-1 -1 1 1], 'w','FaceAlpha', 1) 
patch(u,v,'c','FaceAlpha', 1); 
patch(uR(:,2*ord(1)-1),vR(:,2*ord(1)-1),uRcolor(1,:,ord(1)), 'FaceAlpha', 1); 
patch(uR(:,2*ord(1)),  vR(:,2*ord(1)),  uRcolor(2,:,ord(1)), 'FaceAlpha', 1); 
patch(uR(:,2*ord(2)-1),vR(:,2*ord(2)-1),uRcolor(1,:,ord(2)), 'FaceAlpha', 1); 
patch(uR(:,2*ord(2)),  vR(:,2*ord(2)),  uRcolor(2,:,ord(2)), 'FaceAlpha', 1); 
axis equal, axis([-Uscale Uscale -Vscale Vscale]); 
title (['SimImage from ' robot_props(ME).name]) 
 
function [robot,floor]=global_props(); 
%% Defining the first robot (as a structure) 
d2r=pi/180; 
robot(1).name='Blue'; 
robot(1).sfov=23*d2r; 
robot(1).f=.1; 
robot(1).ar=4/3; 
robot(1).lc=[0.6 .6 1];  
robot(1).dc=[0 0 1];       % Define light green and dark colors 
a=.288/2; b=.288/2; h=.6; 
robot(1).crns=[... 
   -a, -b, 0;              % Robot's corners starting from the left-bottom-floor 
    a, -b, 0;              % and going clockwise (1-2-3-4); 
    a,  b, 0; 
   -a,  b, 0; 
   -a, -b, -h;             % The same pattern is repeated at the above-floor 
    a, -b, -h;             % level (5-6-7-8), i.e. 5 is located above 1, etc. 
    a,  b, -h; 
   -a,  b, -h]; 
clear a b h d2r 
%% Defining two other robots 
robot(2)=robot(1); robot(2).name='Red'; 
robot(2).lc=[1 .6 .6]; robot(2).dc=[1 0 0];           
robot(3)=robot(1); robot(3).name='Green'; 
robot(3).lc=[0.6 1 .6]; robot(3).dc=[0 1 0];          
%% Defining the floor (as a structure) 
floor.dim=[  0,   0, 0;    % Square's corners starting from the origin 
           4.9,   0, 0;    % (left bottom) and going clockwise 
           4.9, 4.3, 0; 
             0, 4.3, 0]; 
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Appendix D. Example of animating 3D scene using handles (‘Erase Mode’ method) 
%% Defining payload and its 'trajectory' 
xb = [ 1  1 -1 -1  1  1 -1 -1]; 
yb = [ 1 -1 -1  1  1 -1 -1  1]; 
zb = [-1 -1 -1 -1  1  1  1  1]; 
Npoints = 600; 
t     = linspace(0,Npoints,Npoints); 
phi   = 0.4*sin(t*4*pi/Npoints); 
theta = 0.4*cos(t*4*pi/Npoints); 
psi   = t*1*pi/Npoints; 
el = linspace(-20,0,Npoints); 
si = linspace(6,2,Npoints); 
%% Setting the initial view 
fig = figure(1) 
set(fig,'DoubleBuffer','on'); 
axis equal 
set(gca,'xlim',si(1)*[-1 1],'ylim',si(1)*[-1 1],'zlim',si(1)*[-1 1],... 
                                        'View',[-14,el(1)],'Visible','off') 
R_phi   = [      1            0             0;             
                 0        cos(phi(1))   sin(phi(1)); 
                 0       -sin(phi(1))   cos(phi(1))]; 
R_theta = [cos(theta(1))      0        -sin(theta(1))   
                 0            1             0; 
           sin(theta(1))      0         cos(theta(1))]; 
R_psi   = [ cos(psi(1))   sin(psi(1))       0;      
           -sin(psi(1))   cos(psi(1))       0; 
                 0            0             1]; 
R_n2c = R_phi*R_theta*R_psi;                     % Rotation from {n} to {c} 
for k=1:8 
zz=R_n2c*[xb(k); yb(k); zb(k)]; 
x(k)=zz(1); y(k)=zz(2); z(k)=zz(3); 
end 
MS=24/si(1); 
h_top   = patch(x([1:4]),y([1:4]),z([1:4]),'b',... 
                        'Marker','o','MarkerSize',MS,'MarkerFaceColor','r'); 
hold 
h_bottom= patch(x([5:8]),y([5:8]),z([5:8]),'b',... 
                        'Marker','o','MarkerSize',MS,'MarkerFaceColor','r'); 
h_front = patch(x([1,2,6,5]),y([1,2,6,5]),z([1,2,6,5]),'b',... 
                        'Marker','o','MarkerSize',MS,'MarkerFaceColor','r'); 
h_back  = patch(x([2,3,7,6]),y([2,3,7,6]),z([2,3,7,6]),'b',... 
                        'Marker','o','MarkerSize',MS,'MarkerFaceColor','r'); 
h_left  = patch(x([3,4,8,7]),y([3,4,8,7]),z([3,4,8,7]),'b',... 
                        'Marker','o','MarkerSize',MS,'MarkerFaceColor','r'); 
h_right = patch(x([4,1,5,8]),y([4,1,5,8]),z([4,1,5,8]),'b',... 
                        'Marker','o','MarkerSize',MS,'MarkerFaceColor','r'); 
%% Starting animation 
for j=2:Npoints 
pause(0.005); 
R_phi   = [      1            0             0;             
                 0        cos(phi(j))   sin(phi(j)); 
                 0       -sin(phi(j))   cos(phi(j))]; 
R_theta = [cos(theta(j))      0        -sin(theta(j))   
                 0            1             0; 
           sin(theta(j))      0        cos(theta(j))]; 
R_psi   = [ cos(psi(j))   sin(psi(j))       0;      
           -sin(psi(j))   cos(psi(j))       0; 
                 0            0             1]; 
R_n2c = R_phi*R_theta*R_psi; 
for k=1:8 
zz=R_n2c*[xb(k); yb(k); zb(k)]; 
x(k)=zz(1); y(k)=zz(2); z(k)=zz(3); 
end 
MS=24/si(j); 
set(h_top,   'XData',x([1:4]),    'YData',y([1:4]),    'ZData',z([1:4]),'MarkerSize',MS); 
set(h_bottom,'XData',x([5:8]),    'YData',y([5:8]),    'ZData',z([5:8]),'MarkerSize',MS); 
set(h_front, 'XData',x([1,2,6,5]),'YData',y([1,2,6,5]),'ZData',z([1,2,6,5]),'MarkerSize',MS); 
set(h_back,  'XData',x([2,3,7,6]),'YData',y([2,3,7,6]),'ZData',z([2,3,7,6]),'MarkerSize',MS); 
set(h_left,  'XData',x([3,4,8,7]),'YData',y([3,4,8,7]),'ZData',z([3,4,8,7]),'MarkerSize',MS); 
set(h_right, 'XData',x([4,1,5,8]),'YData',y([4,1,5,8]),'ZData',z([4,1,5,8]),'MarkerSize',MS); 
set(gca,'xlim',si(j)*[-1 1],'ylim',si(j)*[-1 1],'zlim',si(j)*[-1 1],'View',[-14,el(j)]) 
end 
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