
THE MEANS AND MOTIVATION FOR ANIMATING
GRAPHICS IN ENGINEERING APPLICATIONS

Oleg Yakimenko

Naval Postgraduate School, Department of Mechanical and Astronautical Engineering,
700 Dyer Rd., Monterey, CA

oayakime@nps.edu (Oleg Yakimenko)

Abstract

The paper deals with animating the results of simulations of the dynamics of different
engineering systems in the Mathworks’ MATLAB development environment. It first reviews
the basics of the handle graphics allowing accessing and dynamically changing any property
of any graphics object the user-defined two- or three-dimensional plot might be composed of.
It further introduces two methods available in MATLAB to animate these plots. The first one
simply redraws the entire plot at each instant of time, captures it and adds to the movie,
available to play with later on. The second one might involve more programming but it allows
to dynamically vary only the portion of the plot, which is actually changing, leaving the rest
of it untouched. If standalone versions of the created movies are needed, the paper presents a
way MATLAB suggests to convert them into the standard audio/video interleave files
playable outside MATLAB. The paper capitalizes upon pretty basic examples and then
advances to several more complex cases, where both methods for creating movies were
employed to animate graphics and virtual scenes. Four appendices contain complete
professionally-written scripts emphasizing both techniques and teaching some programming
tricks. The paper advocates using animations to prove feasibility of simulations and debug
user-created programs and is thought to be useful for engineering students and researchers.

Keywords: Animation of systems’ dynamics, MATLAB, Handle graphics.

Presenting Author’s biography
Oleg Yakimenko received his MS degree in computer science from
Moscow Institute of Physics and Technology, Russia in 1986, and his
MS degree in aeronautical and astronautical engineering from Air
Force Engineering Academy, Moscow, Russia (AFEA) in 1988. He
received his first PhD degree in aeronautical and astronautical
engineering from the same academy in 1991 and his second PhD
degree in operations research in 1996. Dr. Yakimenko has progressed
through all professorial ranks at AFEA and is currently teaching and
conducting research for the U.S. Navy at NPS. His research interests
include fight mechanics; guidance, navigation and control of manned
and unmanned vehicles; high-fidelity modeling and real-time applications. He is an author of
over 200 publications including several textbooks on programming and digital computations
(numerical methods). Prof. Yakimenko is an Associate Fellow of American Institute of
Aeronautics and Astronautics and Russian Academy of Sciences of Aviation and Aeronautics.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
Today the Mathworks’ MATLAB/Simulink
development environment [1] is widely used all over
the world to develop different level of fidelity models
and run simulations. This software proved to be very
powerful and yet simple to use in different areas
including all kinds of engineering.

Not long time ago the only output a student or
engineer could rely on was the text output. Then,
different languages (Basic, Fortran, Pascal, C)
employed on personal computers offered different

graphic packages to improve the representability of
simulation results and allow more qualitative analysis.

In this respect MATLAB performed a real
breakthrough allowing the creation of a wide range of
different two- and three-dimensional (2D and 3D)
graphics, no other language can possibly think of.
Moreover, MATLAB offers an easy programmatic
access to any basic drawing element the graphics
object might be composed of (Fig. 1). It is possible
because each instance of an object is associated with a
unique identifier called a handle.

FigureFigure

UicontrolUicontrolAxisAxis UimenuUimenu UicontextmenuUicontextmenu

LightLightImageImage LineLine PatchPatch RectangleRectangle SurfaceSurface TextText

UibuttongroupUibuttongroup UipanelUipanel UitoolbarUitoolbar

UipushtoolUipushtool UitoggletoolUitoggletool

FigureFigure FigureFigure

Root (Computer Screen)Root (Computer Screen) ParentParent

ChildrenChildren

Fig. 1 Graphics objects hierarchy

Everybody knows that the following command
plot(sin(0:pi/20:pi))

creates a sinusoid. But only few people realize what
specter of new possibilities brings the following
modification of this command
h_line= plot(sin(0:pi/20:pi));

creating a handle h_line to this sinusoid. Using this
handle, a user can easily manipulate the characteristics
(called object properties) of the graphics object,
sinusoid in this particular case.

Handle graphics opens absolutely new horizons in
presenting and analyzing the results of simulations, as
well as developing animations. It is widely used by
MATLAB developers to create numerous demos (the
list of which appears when a user types ‘demo matlab’
in the MATLAB Command window) and to better
explain the essence of numerical algorithms (e.g., in
[2]). Yet somehow, handle graphics has not been used
widely by students and researches. Among more than
600 textbooks on MATLAB there are few that even
mention this valuable feature (more recent ones
however, like [3], [4] or [5], do introduce it).

Hence, the goal of this paper is to reintroduce handle
graphics to students and practical engineers and show
how simple it is to enhance the graphical output to
include animations. It will also be advocated that
having the outputs of simulations represented as
animations rather than band graphics or the static
scenes, actually helps to understand the underlying
physics and debug the user codes.

The paper is organized as follows. First, Section 2
reminds about the main properties of handle graphics,
the system of graphics objects that MATLAB uses to

implement graphing and visualization functions. Next,
Section 3 introduces the means available in MATLAB
to create animations including those built upon handle
graphics. Then, Section 4 provides with several
examples of animating 2D and 3D graphics and
scenes, supported by actual MATLAB M-scripts in
Appendices A-D. Finally, Section 5 describes two
more examples, where animation occurred to be a very
valuable tool for checking the correctness of
numerical algorithms and debugging the programs.
The paper ends with conclusions.

2 Accessing object properties via its
handle
Promoting the ‘open source’ paradigm, MATLAB
allows changing any property of any graphics object,
including Figure and its children objects (as shown on
Fig. 1), to accommodate user’s preferences.

There are three key ideas about the graphics objects a
MATLAB user should know to be able to proficiently
manipulate with them programmatically:

- graphic objects obey a certain hierarchy (Fig. 1), so
that, for instance, Axis happens to be one of
Figure’s ‘children’ and simultaneously a ‘parent’ for
a lot of other graphics objects including Line;

- each object has its own handle (even if it was not
defined by the user explicitly); and

- knowing object’s handle allows accessing
(changing) any of its properties.

Consider an example given in the introduction. As
mentioned there, the command
h_line= plot(sin(0:pi/20:pi));

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

not only plots the sinusoid (creating a new Figure
window and some default Axis automatically), but
also creates a handle to this sinusoid, h_line. Using
this handle we can access all the properties of this
Line object. To see what these properties are, one
should type get(h_line) to obtain
 Color: [0 0 1]
 EraseMode: 'normal'
 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
 MarkerSize: 6
 MarkerEdgeColor: 'auto'
 MarkerFaceColor: 'none'

etc. (34 properties in total).

If you are only interested in some specific property
you may address it directly, for instance typing
get(h_line,'Color') results in
ans =
 0 0 1

(defining red, green, and blue color components of the
Line object, so that our sinusoid happens to be blue).

How about accessing the properties of the Axis
object? Although we did not created it (it was created
automatically for us) and therefore we have no handle
to it, we can recall that the Axis object is a parent with
respect to the Line object and therefore the command
h_axis=get(h_line,'parent')

retrieves the Axis handle for us.

Now all Axis properties (133 of them just for the
single 2D plot) can be seen by issuing
get(h_axis) command. As a matter of fact, the
gca function (stands for ‘get current axes’) stores the
Axis handle automatically, so that the get(h_axis)
command is equivalent to get(gca).

Similarly, the command
h_figure=get(h_axis,'Parent')

retrieves the Figure handle. Alternatively, it can be
done by issuing any of the following three commands:
h_figure=get(gca,'Parent')

or
h_figure=get(0,'Children')

or
h_figure=get(0,'CurrentFigure')

In addition, the MATLAB gcf (‘get current figure’)
function automatically stores the Figure handle too.
Therefore, neither of the above four commands is
actually needed. However, these simple exercises help
to understand how knowing the graphics objects
hierarchy (Fig. 1) allows accessing Line properties
even without assigning the handle to it explicitly. For
instance, once we plotted the sinusoid with
plot(sin(0:pi/20:pi))

we could use one of the following two commands to
retrieve its handle:
h_line=get(gca,'children')

or
h_line=get(get(gcf,'children'),'children')

For more efficiency though, for simultaneous
manipulations with multiple figures/axes/lines the
handle to each object, the properties of which are
needed to be changed dynamically, should be assign
directly.

Now, using the set function we can change any
specific property of any object using (referring to) its
handle H. The general syntax of the set function is
set(H,'PropertyName',PropertyValue)

For example,
set(h_line,'Color','r','LineWidth',2.5)

changes the sinusoid color to red ([1 0 0]) and
increases the line width to 2.5 points (1 point = 1/72
inch).

Knowing these basic features of handle graphics we
can now proceed with animations.

3 MATLAB tools for creating
animations
MATLAB offers two ways of generating moving,
animated graphics. They are so called [1]:

- ‘Creating Movies’ approach that saves a number of
different pictures and then plays them back as a
movie; and

- ‘Erase Mode’ method, which continually erases and
then redraws some of the objects on the screen,
making incremental changes with each redraw.

Let us briefly consider both of them based on simple
examples taken from [6].

3.1 ‘Creating Movies’ approach

We start from the most obvious, old-fashion way of
generating animated graphics, which is the ‘Creating
Movies’ approach. The idea here is to simply create
each movie frame in advance and then combine them
together. The two key MATLAB functions here are:

- getframe, capturing movie frame, and
- movie, playing recorded movie frames.

The self-explanatory script below provides with an
example of using this approach to create animations:
% Defining a membrane
 r = [0:0.05:1]'; % Radius vector
 phi = 0:pi/20:2*pi; % Phi angle vector
 x = r*cos(phi); % x-coordinates of a grid
 y = r*sin(phi); % y-coordinates of a grid
 z = besselj(1,3.8316*r)*cos(phi);
% Plotting the membrane
 mesh(x,y,z)
 xlabel('x-axis'), ylabel('y-axis')
 zlabel('z-axis'), axis tight

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

 set(gca,'nextplot','replacechildren');
% Creating movie frames
 for j = 1:20
 mesh(x,y,sin(2*pi*j/20)*z,z);
 F(j) = getframe;
 end
% Starting the movie
 k=questdlg('Ready to watch the movie?',...
 'Start the Movie', 'Yes', 'No', 'Yes');
% Playing the movie two times
 if char(k(1))=='Y'
 movie(F,2)
 end

(hereinafter the key commands responsible for
animation are highlighted). This script animates the
membrane defined in the first part of it. The
MATLAB mesh function is used to originally
visualize the membrane. The 'nextplot'-
'replacechildren' pair sets current axes to
keep their scale, i.e. it removes all child objects, but
do not reset axes properties while redrawing the
membrane. The animation is done by rescaling the
values of z (the z-coordinate on each frame is simply
premultiplied by the sinusoidal scale factor that
changes smoothly from 0 to 1 and then back to 0). The
function questdlg is used to create and display the
question dialog box). Two of the 20 generated frames
are shown on Fig. 2 to give an idea of what happens
on the screen.

Fig. 2 Frames 5 and 15 of the membrane animation

One of the pitfalls when using the ‘Creating Movies’
approach is that a movie is not rendered in real-time; it
is simply a playback of previously rendered frames.
From the other hand, the original drawing time is not
important during playback, which is just a matter of
blitting the frame to the screen. Therefore, this
approach might be better suited to situations where
each frame is fairly complex and cannot be redrawn
rapidly. Otherwise the ‘Erase Mode’ approach
addressed in the next subsection can be used as well.

3.2 ‘Erase Mode’ method

Another way of creating animations in more elegant
way, changing some rather than all graphics objects
programmatically, is to use the ‘Erase Mode’ method.

EraseMode is one of the line specifications (offered
by the handle graphics) and is very useful and
powerful in animation. This property controls the
technique MATLAB uses to draw and erase line
objects. Alternative erase modes are useful for
creating animated sequences, where control of the way
individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

The default EraseMode is normal allowing
redrawing the affected region of the display,
performing the 3D analysis necessary to ensure that all
objects are rendered correctly. This mode produces the
most accurate picture, but is the slowest. The other
three modes (background, xor and none) are
faster, but do not perform a complete redraw and are
therefore less accurate, for instance, none mode do
not erase the line when it is moved or destroyed al all.

For example, let us consider the following set of
commands that uses ‘Erase Mode’ method to slowly
convert a sinusoid to cosinusoid:
% Plotting a sinusoid
 x=0:0.2:2*pi; % Defines the x scale
 y=sin(x); % Computes sin(x)
 z=cos(x); % Computes cos(x)
 plot(x,y) % Plots sin(x) curve
 set(gcf,'DoubleBuffer','on');
 set(gca,'xlim',[0 2*pi],'ylim',[-1 1]);
 set(gca,'XTick',[0:pi:2*pi])
 set(gca,'XTickLabel',{'0';'pi';'2pi'})
 xlabel('x'), ylabel('y=f(x)')
% Getting a handle to the line
 h_line=get(gca,'children');
% Changing line properties
 for i=1:1000
 pause(0.005)
% Setting the weighting coefficient w
 w=i/1000;
% Blending sin(x) and cos(x) using w
 d=(1-w)*y+w*z;
% Changing ydata for the line
set(h_line,'ydata',d,'EraseMode','normal');
end

In the first four lines of the code we compute data for
two dependences, and , and plot
the first one (sinusoid). Then, we turn the double
buffering on, which helps to produce flash-free
rendering for simple animations (such as those
involving lines, as opposed to objects containing large
numbers of polygons). (Double buffering is the
process of drawing to an off-screen pixel buffer and
then blitting the buffer contents to the screen once the
drawing is complete.). The next line sets the x and y
axes limits. In the two following lines we are also
accessing some of the properties of the Axis object.
After adding axes’ labels we are getting a handle to
the line.

sin()y = x xcos()z =

Now, what we want to do by the remaining commands
is to change the y-data for the line, keeping the rest of
the properties untouched. Every time we change
ydata, the previous line is erased (the default value
for the EraseMode property is set to normal
anyway, so we just added this property-value pair here
to emphasize it). As a result, we will see a smooth
conversion of sinusoid to cosinusoid.

Figure 3 shows what you could eventually see on the
figure if you would run the above fragment with the
EraseMode property set to none.

The two other options are:

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

- xor, which draws and erases the image by
performing an exclusive OR (XOR) with the color
of the screen beneath it (although this mode does
not damage the color of the objects beneath the
image, the image’s color itself depends on the color
of whatever is beneath it on the display); and

- background that erases the image by drawing it
in the axes background color (property Color of
current Axis) or the figure background color
(property Color of the Figure) if the Axis color
is set to none (as opposed to xor mode, this does
damage objects that are behind the erased image,
but images keep their color unchanged).

Fig. 3 Snap-shot of the current window after applying

EraseMode none mode

Note that while all line’s transitions are still visible on
the screen, you cannot copy this figure or print it,
because MATLAB stores no information about its
former location. The way we did it on Fig. 3 was
taking a snap-shot of the current window with
<Alt>+<PrtScrn> keyboard keys. You can also use the
MATLAB getframe command (discussed in the
previous subsection) or any other screen capture
applications to create an image of a figure containing
the non-normal mode objects.

As mentioned, the ‘Erase Mode’ method offers
programmatic way of animating the results of
simulations and therefore is very attractive and
powerful. All you have to do is to create a 2D or even
3D scene composed of some objects, get the handles
to these objects, and then change their properties (x, y
(z) data, color, transparency, etc.). As a matter of fact
two of the built-in MATLAB functions use the ‘Erase
Mode’ method to animate graphs by default. They are
comet and comet3. Basically, these two ‘dynamic’
functions are simply the substitutes for the ‘static’
plot and plot3 functions, respectively. The comet
graphs are animated graphs in which a circle (the
comet head) traces the data points on the screen. The
comet body is a trailing segment that follows the head.
The tail is a solid line that traces the entire function.
The script below provides an example of using these
two functions (see Fig. 4):

subplot(2,1,1)
t = 0:.0005:2*pi;
x = cos(3*t).*(cos(t).^2);
y = sin(3*t).*(sin(t).^2);
comet(x,y);
subplot(2,1,2)
t = -10*pi:pi/1000:10*pi;
comet3((cos(t).^2).*sin(t),...
 (sin(t).^2).*cos(t),t);

Fig. 4 Snap-shots of the current window when using

comet and comet3 functions

The only problem with comet and comet3 functions
is that the trace left by a comet is created by using
EraseMode of none, which once again means that
you cannot print the graph (you get only the comet
head) and it disappears if you cause a redraw (e.g., by
zooming, panning, rotating or resizing the window).
(Fig. 4 was created by combining two snap-shops
when the first and then the second plots were drawn.)

3.3 Creating standalone movies

Obviously, when using any of the aforementioned two
methods, ‘Creating Movies’ or ‘Erase Mode’, the
animation plays within Mathworks’ development
environment. However, MATLAB offers a way to
convert this animation into the standalone movie,
specifically into the AVI (Audio Video Interleave)
file.

(Despite its limitations and the availability of more
modern multimedia formats, like MPEG4, the AVI
multimedia format remains popular among file-
sharing communities. This is probably due to its high
compatibility with existing video editing and playback
software like Windows Media Player. Besides, if
necessary, the AVI file can be converted later to say
MPEG4 format using appropriate codices, for example
Xvid or DivX.)

To create and store your animation as a standalone
AVI-file, playable outside MATLAB, several
functions can be employed. The two key ones are:

- movie2avi, creating an AVI movie from
MATLAB movie, and

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

- addframe, adding a frame to the current (opened)
AVI file.

For instance, if we just add a single line, which is
movie2avi(F,'membrane.avi',...
'compression','none','quality',100)

after the M-script shown in subsection 3.1 (for the
‘Creating Movies’ approach) the membrane.avi file
will be created. Similarly, we can add the line
 F(i) = getframe;

before the end of the for loop in the M-script shown
in subsection 3.2 (for the ‘Erasing Mode’ method),
and then use for example a command
movie2avi(F,'sin2cos.avi',...
'compression','Cinepak',’fps’,30)

afterwards to create the sin2cos.avi movie.

An alternative way of creating AVI-file is using the
addframe function (you will find an example of
how to do it in Appendix C). The command
aviobj = addframe(aviobj,frame)

appends the data in frame to the AVI-file identified by
aviobj, which must be created beforehand by using
avifile function. To this end,
aviobj = avifile(filename)

creates an AVI-file, giving it the name specified in
filename and using default values for all other
AVI-file object properties. If filename does not
include an extension, avifile appends .avi to it
automatically. The function avifile returns a
handle to an AVI-file object aviobj, which can be
used in addframe function. Note that once the
movie is created, aviobj should be closed:
aviobj = close(aviobj)

You can always retrieve information about your AVI-
file using aviinfo function

aviinfo('filename'),

and read the AVI-movie filename back into MATLAB
development environment movie structure mov using
the aviread function:
mov = aviread(filename)

Then you can use the movie function again to view
the movie mov.

Be aware that when you create a standalone movie,
the frame height and width will be padded to be a
multiple of four as required by majority of codices
(MATLAB uses one of the following codices:
‘Indeo3’, ‘Indeo5’, ‘Cinepak’, ‘MSVC, ‘RLE’ or
‘None’, with ‘Indeo5’ being the default one). Another
warning is that a user should be careful when creating
AVI-file on one computer to be played on another one
(that another computer might have no codec you
created your movie with).

4 Practical examples
This section demonstrates several practical examples
of animating the results of simulations. The first
example (Fig. 5), deals with analyzing the quality
(consistency) of some data associated with image
processing, specifically, two frame coordinates of
some moving object, x and y (the problem formulation
and the developed algorithms are addressed in [7]).
This example employs the ‘Erase Mode’ method to
produce animation.

The n-point Welch window runs through the x and y
coordinates of some object in the sequence of frames.
The two elongated rectangles on the upper plots (Fig.
5) move simultaneously from left to right through
static data (not changing on the graphs). Two bottom
plots demonstrate the instantaneous power spectral
densities (PSD), so that the spectra diagrams change
all the time. If the Welch PSD approaches or drops
below some threshold (10-5) (marked with the wide
green strip in the bottom portion of the bottom plots),
it indicates that something is wrong with the data and
those suspicious points should be eliminated (the wide
strip itself turns yellow or red, respectively).

Fig. 5 Checking the consistency of the data

The script in Appendix A shows how it was
programmed in MATLAB. The original lines on the
first frame were plotted using the plot and
semilogy functions. Then, using their handles some
of their properties are continuously altered.

The second example, created using the ‘Erase Mode’
approach as well, helps to analyze the relative attitude
of the ballistic missile and interceptor during impact
(Fig. 6) (the problem formulation can be found in [8]).
To represent each of two missiles the M-script given
in Appendix B uses the fill function. Using the
simulation results the program rotates the missile
silhouettes for each instant of time by changing just a
few of their properties accessed via the missile
silhouettes’ handles. The orientation and magnitude of
the speed vectors as well as the text are changing
dynamically too (using the handles to corresponding
plot and text commands).

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

Fig. 6 The intercept geometry animation

Figures 7 and 8 show examples of animation of
rendezvous of three robots (see details in [9]).
Appendix C contains the complete code, which
accepts the parameters of motion of all three robots,
along with their thrusters, cameras and lidars
orientation, and animates 2D and 3D scenes.
Obviously, the code if very bulky, especially for the
3D scene generation (the patch function was used to
describe each of the robot’s side). The proper
reordering of the multiple objects to assure correct
overlapping is also needed. That is why the ‘Creating
Movies’ approach was used. (For the bird-eye view it
could be also done using the ‘Erase Mode’ approach,
i.e. creating the handles to the all moving objects
generated with the fill function.)

Fig. 7 Bird-eye representation of three robots on a

floor with camera beams

Fig. 8 The 3D visualization of a virtual scene

Finally, Appendix D related to the case considered in
the next section contains one more M-script showing
an example of how to animate 3D scene using the
patch function and ‘Erase Mode’ approach.

5 Cause for animations
Now the question to ask is why we need animations at
all? Is it that we simply want to have fun? Well, quite
often there is a reason beyond fun. Exploiting
powerful and relatively easy-to-use tools provided by
MATLAB allows to better understand the underlying
physics and sometime effectively debug a user code.

As an example, Figs. 9 and 10 represent two user-
created GUIs (graphical user interface) allowing to
understand the physics beyond the pose (position and
attitude) estimation problem for the descending
payload of the aerodynamic delivery system (the
details can be found in [10]). (By the way, these GUIs
were created using MATLAB GUIDE tool.)

Fig. 9 Interactive graphical user interface

Fig. 10 Aerodynamic delivery system descent analysis

Several cameras (that can be chosen interactively
using the first GUI shown on Fig. 9) observe the
descending payload and emulate what they would see
(Fig. 10). On this second GUI everything is changing
dynamically demonstrating what kind of information

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

could be extracted if the real system were
implemented (which would cost tens and hundreds of
thousands of dollars to do). Therefore, the developed
tool producing realistic animations happens to be very
useful. It allows to thoroughly analyze the overall
geometry of the experimental setup, choose the most
efficient constellation of cameras to use and challenge
(test) pose estimation algorithms without costly real
drops ([7,10]).

The complete M-script are too long to show them
here, however Appendix D demonstrates a small self-
contained piece of it exhibiting how to animate the
rotating payload. Of course, as shown on Fig. 10, there
might be up to six cameras involved, so in order to
manage the properties of each 3D view in the most
efficient way the original script used arrays of handles.

Finally, Figs. 11 and 12 present an example, where
animation allowed finding a small but unfortunate
error, which was quite difficult to capture without
dynamic 3D representation.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50
100
150

θ p
(°

)

0 0.1 0.2 0.3 0.4 0.5 0.6
-60
-40
-20

0
20
40

θ d
(°

)

0 0.1 0.2 0.3 0.4 0.5 0.6
-800
-600
-400
-200

0
200

ω
p

(°
/s

ec
)

0 0.1 0.2 0.3 0.4 0.5 0.6
-1000

0

1000

ω
d

(°
/s

ec
)

0 0.1 0.2 0.3 0.4 0.5 0.6
-1
0
1

T
(N

-m
)

Time (sec)

, degθ

, degψ

deg,
secθω

deg,
secψω

, N mT ⋅

Switching Times (sec): 0.0383 0.1407 0.2846 0.4381 0.5422 0.6173 0.6549
Fig. 11 Example of a multiple band graphic

Fig. 12 Control of the inverted pendulum

The parameters of the controlled inverted pendulum
shown on Fig. 11 as the usual band plots were
considered quite reasonable until the proper 3D
animation (using the ‘Creating Movies’ method) was
created (Fig.12). This animation led to the
instantaneous conclusion that something was not right.
It further allowed to debug the program by simply
changing the sign of one state. Not to mention that the
time spent on debugging the original program was

much greater then the time spent on writing the code
for animation.

6 Conclusions
The popular and growing Mathworks’ software offers
a lot of advanced features allowing to animate the
results of simulations and moreover to do it
programmatically. The paper shows the main tools
allowing to do this and presents some examples. It is
thought that using these advanced capabilities not only
improves the ‘readability’ of the results, but might
also help in better understanding the underlying
physics and debugging a user code. The scripts
presented in the paper serve as examples of practical
application of some of MATLAB’s tools and are
supposed to teach some useful techniques and
programming tricks. While it does not take much time
to explore the advanced capability of MATLAB
addressed in this paper, the usefulness of using it will
definitely surpass all expectations.

7 References
[1] http://www.mathworks.com.
[2] C. Moler. Numerical Computing with Matlab, Society

for Industrial Mathematics, 2004.
[3] D. Hanselman and B. Littlefield. Mastering MATLAB

7, Prentice Hall, 2004.
[4] S. Chapman. MATLAB programming for engineers, 3rd

edition, Thomson, 2005.
[5] R. Colgren. Basic MATLAB, Simulink, and Stateflow,

AIAA Education Series, 2007.
[6] O. Yakimenko. Introduction to digital computation,

AE2440 course notes, Naval Postgraduate School,
Winter, 2006.

[7] O. Yakimenko, V. Dobrokhodov, and I. Kaminer.
Autonomous video scoring and dynamic attitude
measurement, 18th AIAA Aerodynamic Decelerator
Systems Technology conference and seminar, Munich,
Germany, May 23-26, 2005.

[8] J. Lukacs and O. Yakimenko. Trajectory-shape-varying
Missile guidance for interception of ballistic missiles
during the boost phase, AIAA Guidance, Navigation
and Control conference and exhibit, Hilton Head, SC,
August 20-23, 2007.

[9] B. Eikenberry, O. Yakimenko, and M. Romano. A
Vision based navigation among multiple flocking
robots: Modeling and simulation, AIAA Modeling and
Simulation Technologies conference, Keystone, CO,
August 21-24, 2006.

[10] O. Yakimenko, R. Berlind, and C. Albright. Status on
video data reduction and air delivery payload pose
estimation, 19th AIAA Aerodynamic Decelerator
Systems Technology conference and seminar,
Williamsburg, VA, May 21-24, 2007.

[11] O. Yakimenko. Direct method for real-time prototyping
of optimal control, International conference Control-
2006, Glasgow, Scotland, August 30 - September 11,
2006.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

Appendix A. Example of animating 2D graphics using handles (‘Erase Mode’ method)
function badIndex=fftScan(xData,yData,window,overlap)
% This function accepts two vectors of input data (xData and yData),
% size of the segment for the fft analysis (window), and overlap
% It outputs the indices of the input data where PSD falls below 10e-5
% To see how it works you can try to run the following two lines:
% XData=randn(1000,1); XData(30:400)=0*XData(30:400); YData=randn(1000,1);
% fftScan(XData,YData,128,2)
PSDthreshold=10e-5;
%% Setting-up a two-plot figure window
ysc=max([abs(xData)' abs(yData)']);
figure('Name','Animation of Spectral Analysis for Camera')
i=1;
xOffset=xData(i:i+window);
yOffset=yData(i:i+window);
[Pxx,xww]=pwelch(xOffset,[],[],window,30);
[Pyy,yww]=pwelch(yOffset,[],[],window,30);
 subplot(2,2,1)
 plot(xData,'.b'), hold on
 xwin=plot([i i i+window i+window i],-ysc*[-1 1 1 -1 -1],'r');
 set(xwin,'EraseMode','xor')
 ylim(ysc*[-1 1])
 xlabel('Frame'), ylabel('x-offset (pixel)')
 title('Welch FFT Window');
subplot(2,2,2)
plot(yData,'.b')
hold on
ywin=plot([i i i+window i+window i],-ysc*[-1 1 1 -1 -1],'r');
set(ywin,'EraseMode','xor')
ylim(ysc*[-1 1])
ylabel('y-offset (pixel)');
xlabel('Frame');
title('Welch FFT Window');
 subplot(2,2,3)
 hx=semilogy(xww,Pxx,'.-r');
 set(hx,'EraseMode','xor')
 axis([0 15 10e-7 10e4]), hold on
 warnbarx=semilogy([0.1 15],5e-6*[1 1],'Color','g','LineWidth',12);
 set(warnbarx,'EraseMode','xor')
 grid on;
 xlabel('Frequency (Hz)'), ylabel('x-offset PSD (dB/Hz)')
 title('Welch PSD Estimate');
subplot(2,2,4)
hy=semilogy(yww,Pyy,'.-r');
set(hy,'EraseMode','xor')
hold on
warnbary=semilogy([0.1 15],5e-6*[1 1],'Color','g','LineWidth',12);
set(warnbary,'EraseMode','xor')
axis([0 15 10e-7 10e4]), grid on;
xlabel('Frequency (Hz)'), ylabel('y-offset PSD (dB/Hz)')
title('Welch PSD Estimate');

%% Animating Welch PSD estimates
size=length(xData);
badIndex(1)=0;
while i<(size-window)
 set(xwin,'XData',[i i i+window i+window i],'YData',-ysc*[-1 1 1 -1 -1]);
 set(ywin,'XData',[i i i+window i+window i],'YData',-ysc*[-1 1 1 -1 -1]);
xOffset=xData(i:i+window);
yOffset=yData(i:i+window);
 [Pxx,xww]=pwelch(xOffset,[],[],window,30);
 [Pyy,yww]=pwelch(yOffset,[],[],window,30);
set(hx,'XData',xww,'YData',Pxx);
set(hy,'XData',yww,'YData',Pyy);
 set(warnbarx,'Color','g'); set(warnbary,'Color','g');
 if min(Pxx)<5*PSDthreshold || min(Pyy)<5*PSDthreshold
 set(warnbarx,'Color','y'); set(warnbary,'Color','y');
 end % if end
 if min(Pxx)<PSDthreshold || min(Pyy)<PSDthreshold
 set(warnbarx,'Color','r'); set(warnbary,'Color','r');
 badIndex=[badIndex; i]; % There is a failure in the target tracking
 end % if end
i=i+overlap; pause(0.001)
end
badIndex(1)=[];
return

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

Appendix B. Example of animating 2D scene using handles (‘Erase Mode’ method)
function x=Animation(speed, psi, theta, phi, alpha, beta,...
 speedI,psiI,thetaI,phiI,alphaI,betaI)
% This script 'animates' the data received during ballistic missile intercept
% simulation. It requires six input vectors of parameters for both missile and
% interceptor:
% speed - defining missile's full speed time history,
% psi,theta,phi - defining Euler angles histories (orientation of {b}
% wrt {n}),
% alpha,beta - defining angle of attack and sideslip angle
% histories.
% To see how it works you can try to run the following six lines:
% N=100; time=0:N;
% psi=pi/2*ones(N,1); theta=pi/2*cos(pi/N/3*time); phi=zeros(N,1);
% alpha=0.3*sin(2*pi/N*time); beta=zeros(N,1);
% speed=2000*sin(pi/N/2*time);
% Animation(speed,psi,theta,phi,alpha,beta,...
% speed,pi+psi,theta,phi,alpha,beta);
%
NumbofFrs=length(speed)-1;
time=0:NumbofFrs;
%% Define Ballistic Missile's geometry (3 stages)
% The geometry is defined for a half of the missile
xBMs{1}=[0 0 2 3 16 19 30 32];
yBMs{1}=[0 1.85 1.85 1.1 1.1 0.65 0.65 0];
xBMs{2}=[0 0 1 2 14 16];
yBMs{2}=[0 1.31 1.31 0.65 0.65 0];
xBMs{3}=[0 0 2];
yBMs{3}=[0 0.65 0];
% Define geometry for the second half
for iMS=1:3
nP=length(xBMs{iMS});
for i=1:nP-1
xBMs{iMS}=[xBMs{iMS} xBMs{iMS}(nP-i)];
yBMs{iMS}=[yBMs{iMS} -yBMs{iMS}(nP-i)];
end
% Place the missile to the center of the image and scale it so that it
% occupies 2/3 of the screen
sca=max(xBMs{iMS})-min(xBMs{iMS});
xbm=3*(xBMs{iMS}-sca/2)/sca; % Missile geometry is defined in NED
ybm=3*yBMs{iMS}/sca; % frame {b} (x-axis is pointe North)
% The final (full, centered and scaled) geomery
Missile{iMS}(:,1)=xbm'; Missile{iMS}(:,2)=ones(length(xbm),1);
Missile{iMS}(:,3)=ybm';
end
%% Define Interceptor's geometry (2 stages)
% The geometry is defined for a half of the missile
xIMs{1}=[0 0 1.6 1.7 1.74 1.83 2 2.1 2.6 2.8 4.5 4.7 6 6.63];
yIMs{1}=[0 0.265 0.265 0.17 0.17 0.29 0.33 0.17 0.17 0.3 0.3 0.17 ...
 0.17 0];
xIMs{2}=[0 0 0.04 0.13 0.3 0.4 0.9 1.1 2.8 3 4.3 4.93];
yIMs{2}=[0 0.17 0.17 0.29 0.33 0.17 0.17 0.3 0.3 0.17 0.17 0];
% Define geometry for the second half
for iIS=1:2
nP=length(xIMs{iIS});
for i=1:nP-1
xIMs{iIS}=[xIMs{iIS} xIMs{iIS}(nP-i)];
yIMs{iIS}=[yIMs{iIS} -yIMs{iIS}(nP-i)];
end
% Place the missile to the center of the image and scale it so that it
% occupies 2/3 of the screeng
sca=max(xIMs{iIS})-min(xIMs{iIS});
xim=3*(xIMs{iIS}-sca/2)/sca; % Missile geometry is defined in NED
yim=3*yIMs{iIS}/sca; % frame {b} (x-axis is pointed North)
% The final (full, centered and scaled) geomery
Interceptor{iIS}(:,1)=xim'; Interceptor{iIS}(:,2)=ones(length(xim),1);
Interceptor{iIS}(:,3)=yim';
end
%% Define the initial frame for Missile
figure('Name','Side-View Animation')
subplot(1,2,1)
R_psi = [cos(psi(1)) sin(psi(1)) 0;
 -sin(psi(1)) cos(psi(1)) 0;
 0 0 1];
R_theta = [cos(theta(1)) 0 -sin(theta(1))
 0 1 0;

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

 sin(theta(1)) 0 cos(theta(1))];
R_phi = [1 0 0;
 0 cos(phi(1)) sin(phi(1));
 0 -sin(phi(1)) cos(phi(1))];
Rm_n2b = R_phi*R_theta*R_psi; % Rotation from {n} to {b}
imMis=Rm_n2b'*Missile{1}'; % Missile's coordinates in {n}
Mis=fill(imMis(2,:),-imMis(3,:),'c');% Projection onto y-z plane of {n}
set(Mis,'EraseMode','xor')
axis(2*[-1 1 -1 1]), axis equal, hold on
plot(0,0,'r.') % Center of the figure
plot([0 0],[0 -.1],'Color','k','LineWidth',2) % Gravity vector
R_beta = [cos(beta(1)) sin(beta(1)) 0;
 -sin(beta(1)) cos(beta(1)) 0;
 0 0 1];
R_alpha = [cos(-alpha(1)) 0 -sin(-alpha(1))
 0 1 0;
 sin(-alpha(1)) 0 cos(-alpha(1))];
Rm_n2v = R_alpha*Rm_n2b; % Rotation from {n} wrt {v}
Speed=[speed(1); 0; 0]/1000; % Speed magnitude in {v}
imSpd=Rm_n2v'*Speed; % Projection onto y-z plane of {n}
SpM=plot([0 imSpd(2)],[0 -imSpd(3)],'Color','r','LineWidth',2);
set(SpM,'EraseMode','xor');
textSpeed=text(imSpd(2)+.1,-imSpd(3),'Speed');
set(textSpeed,'EraseMode','xor');
xlabel('East (y_{LTP})'), ylabel('Up (-z_{LTP})')
set(gca,'XTickLabel',{}), set(gca,'YTickLabel',{})
title('Ballistic Missile Attitude')
%% Display initial frame and time
textFrame=text('Color',[0.8471 0.1608 0],'FontAngle','italic',...
 'Position',[0.9 2.75],'String',['Frame ' num2str(1) ' out of '...
 num2str(NumbofFrs)],'BackgroundColor',[1 1 1]);
textTime=text('Color',[0.8471 0.1608 0],'FontAngle','italic',...
 'Position',[0.9 2.35],'String',['Time ' num2str(time(1),'%.2f')...
 ' sec'],'BackgroundColor',[1 1 1]);
%% Define the initial frame for Interceptor
subplot(1,2,2)
R_psi = [cos(psiI(1)) sin(psiI(1)) 0;
 -sin(psiI(1)) cos(psiI(1)) 0;
 0 0 1];
R_theta = [cos(thetaI(1)) 0 -sin(thetaI(1))
 0 1 0;
 sin(thetaI(1)) 0 cos(thetaI(1))];
R_phi = [1 0 0;
 0 cos(phiI(1)) sin(phiI(1));
 0 -sin(phiI(1)) cos(phiI(1))];
Ri_n2b = R_phi*R_theta*R_psi; % Rotation from {n} to {b}
imInt=Ri_n2b'*Interceptor{1}'; % Interceptor's coordinates in {n}
Int=fill(imInt(2,:),-imInt(3,:),'r');% Projection onto y-z plane of {n}
set(Int,'EraseMode','xor');
axis(2*[-1 1 -1 1]), axis equal, hold on
plot(0,0,'r.') % Center of the figure
plot([0 0],[0 -.1],'Color','k','LineWidth',2) % Gravity vector
R_beta = [cos(betaI(1)) sin(betaI(1)) 0;
 -sin(betaI(1)) cos(betaI(1)) 0;
 0 0 1];
R_alpha = [cos(-alphaI(1)) 0 -sin(-alphaI(1))
 0 1 0;
 sin(-alphaI(1)) 0 cos(-alphaI(1))];
Ri_n2v = R_alpha*Ri_n2b; % Rotation from {n} wrt {v}
Speed=[speedI(1); 0; 0]/1000; % Speed magnitude in {v}
imSpd=Ri_n2v'*Speed; % Projection onto y-z plane of {n}
SpI=plot([0 imSpd(2)],[0 -imSpd(3)],'Color','r','LineWidth',2);
set(SpI,'EraseMode','xor');
textSpeedI=text(imSpd(2)+.1,-imSpd(3),'Speed');
set(textSpeedI,'EraseMode','xor');
xlabel('East (y_{LTP})'), ylabel('Up (-z_{LTP})')
set(gca,'XTickLabel',{}), set(gca,'YTickLabel',{})
title('Interceptor Attitude')
%% Add the 'Next Frame' and 'Auto' buttons
uicontrol('string','Next Frame','units','normalized','pos',[.66,.15,.13,.06],...
 'callback','set(gcf,''userdata'',1)');
auto = uicontrol('string','Auto','units','normalized','pos',[.8 .15,.08,.06],...
 'style','togglebutton','callback','set(gcf,''userdata'',1)');
set(gcf,'userdata',0); goFlag=0;
%% Start animation
for j = 2:NumbofFrs
%% i) Define current stage for Missile and Interceptor

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 11 Copyright © 2007 EUROSIM / SLOSIM

if time(j)<6 % Interceptor booster burns out
 iMS=1; iIS=1;
elseif time(j)<130 % Missile 1st stage burns out
 iMS=1; iIS=2;
elseif time(j)<240 % Missile 2nd stage burns out
 iMS=2; iIS=2;
else
 iMS=3; iIS=2;
end
%% ii) Define rotation matrix from {n} to {b} and rotate the missile
R_psi = [cos(psi(j)) sin(psi(j)) 0;
 -sin(psi(j)) cos(psi(j)) 0;
 0 0 1];
R_theta = [cos(theta(j)) 0 -sin(theta(j))
 0 1 0;
 sin(theta(j)) 0 cos(theta(j))];
R_phi = [1 0 0;
 0 cos(phi(j)) sin(phi(j));
 0 -sin(phi(j)) cos(phi(j))];
Rm_n2b = R_phi*R_theta*R_psi; % Rotation from {n} to {b}
imMis=Rm_n2b'*Missile{iMS}'; % Missile's coordinates in {n}
set(Mis,'XData',imMis(2,:),'YData',-imMis(3,:)); % y-z plane projection
%% iii) Define rotation matrix for the Missile's speed vector
%% and rotate it
R_beta = [cos(beta(j)) sin(beta(j)) 0;
 -sin(beta(j)) cos(beta(j)) 0;
 0 0 1];
R_alpha = [cos(-alpha(j)) 0 -sin(-alpha(j))
 0 1 0;
 sin(-alpha(j)) 0 cos(-alpha(j))];
Rm_n2v = R_alpha*Rm_n2b; % Rotation from {n} wrt {v}
Speed=[speed(j); 0; 0]/1000; % Speed magnitude in {v}
imSpd=Rm_n2v'*Speed; % Projection onto y-z plane of {n}
set(SpM,'XData',[0 imSpd(2)],'YData',[0 -imSpd(3)]);
set(textSpeed,'Position',[imSpd(2)+.1 -imSpd(3) 0]);
%% iv) Define rotation matrix from {n} to {b} and rotate the interceptor
R_psi = [cos(psiI(j)) sin(psiI(j)) 0;
 -sin(psiI(j)) cos(psiI(j)) 0;
 0 0 1];
R_theta = [cos(thetaI(j)) 0 -sin(thetaI(j))
 0 1 0;
 sin(thetaI(j)) 0 cos(thetaI(j))];
R_phi = [1 0 0;
 0 cos(phiI(j)) sin(phiI(j));
 0 -sin(phiI(j)) cos(phiI(j))];
Ri_n2b = R_phi*R_theta*R_psi; % Rotation from {n} to {b}
imInt=Ri_n2b'*Interceptor{iIS}'; % Interceptor coordinates in {n}
set(Int,'XData',imInt(2,:),'YData',-imInt(3,:)); % y-z plane projection
%% v) Define rotation matrix for the Interceptor's speed vector
%% and rotate it
R_beta = [cos(betaI(j)) sin(betaI(j)) 0;
 -sin(betaI(j)) cos(betaI(j)) 0;
 0 0 1];
R_alpha = [cos(-alphaI(j)) 0 -sin(-alphaI(j))
 0 1 0;
 sin(-alphaI(j)) 0 cos(-alphaI(j))];
Ri_n2v = R_alpha*Ri_n2b; % Rotation from {n} wrt {v}
Speed=[speedI(j); 0; 0]/1000; % Speed magnitude in {v}
imSpd=Ri_n2v'*Speed; % Projection onto y-z plane of {n}
set(SpI,'XData',[0 imSpd(2)],'YData',[0 -imSpd(3)]);
set(textSpeedI,'Position',[imSpd(2)+.1 -imSpd(3) 0]);
%% vi) Count frames
set(textFrame,'String',['Frame ' num2str(j) ' out of ' ...
 num2str(NumbofFrs)]);
set(textTime,'String',['Time ' num2str(time(j),'%.2f') ' sec']);
%% vii) Wait for any control button to be pushed
while goFlag==0
 if get(auto,'value')==1
 goFlag=1;
 elseif get(gcf,'userdata')==1
 goFlag=1; set(gcf,'userdata',0)
 else
 pause(0.25)
 end
 end
 goFlag=0; pause(0.1)
end

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 12 Copyright © 2007 EUROSIM / SLOSIM

Appendix C. Example of animating 2D and 3D scenes using ‘Creating Movie’ approach
The anim_floor function below is the main function. It sequentially calls draw_floor, draw_robot, and
draw_dev functions (appearing after anim_floor below) to produce the bird-eye view of the rendezvous
geometry and draw_3D function to visualize what would robot’s camera see. The input signals are:

- vector time(:) holding the time stamps of the simulation;
- three-dimensional array states(1:3,1:3,:), composed of time histories of robots’ x-y position and

yaw angle;
- two-dimensional array thrusters(:,1:3), describing time histories of thrusters’ orientation; and
- two-dimensional array camera(:,1:6), containing time histories of cameras and lidars orientation.

The geometry of the floor and three robots used in almost every function is defined not as a set of global
variables but rather in the global_props function shown the last.

function anim_floor(time,states,thrusters,camera)
% This function animates the bird-eye and 3D view of the rendezvous animation
% For the bird-eye view it sequentially calls another functions:
% draw_floor, draw_robot, and draw_dev
% For the 3D view it calls draw_foto functions
%
[robot_props, floor_props] = global_props;
mov = avifile('robotmov.avi','quality',100,'Compression','Indeo3','fps',5);
 [m,n] = size(time);
for i = 1:ceil(m/100):m
 subplot(1,2,1);
 draw_floor(time(i));
 for j = 1 : 3
 pos=states(1:3,j,i);
 draw_robot(pos,robot_props(j));
 switch j
 case 1
% draw camera field of view
 draw_dev(j, pos, 'Cam', camera(i,1));
% draw 360 vectored variable thruster
 draw_dev(j, pos, 'Thruster', thrusters(i,1:3));
% draw lidar beam
 draw_dev(j, pos, 'Lidar', camera(i,[1:2,4:5]));
 case {2,3}
 end
 end
% draw camera’s snap-shot
 subplot(1,2,2);
 data=states(1:3,1:3,i)';
 alf= camera(i,1)+states(3,1,i);
 draw_3D(1, data, alf,0,0)
mov = addframe(mov,getframe(gcf));
end
mov = close(mov);

function draw_floor(t)
% This function plots the rectangular floor
[robot_props,floor_props]=global_props;
hold off
BlueFloor=floor_props.dim;
fill([BlueFloor(2,3) BlueFloor(3,2)], [BlueFloor(1,1) BlueFloor(1,2)],'w'), hold on
axis equal, axis([BlueFloor(2,2) BlueFloor(3,2) BlueFloor(1,1) BlueFloor(2,1)]);
title('Bird''s Eye View');
xlabel('y-axis (East) (m)'), ylabel('x-axis (North) (m)')
text('Color',[0.8471 0.1608 0],'FontAngle','italic',...
 'Position',[.1 .1],...
 'String',['time=' num2str(round(100*t)/100)])

function draw_robot(pos,robot)
% This function plots the robot (top view)
x=pos(1); y=pos(2); t=pos(3); % postion/orientation of robot
% Converting robot's corners from {b} to {n}
r2n = [cos(t) -sin(t) 0;
 sin(t) cos(t) 0;
 0 0 1];
RobCrns=r2n*robot.crns'+[x;y;0]*ones(1,8);
fill(RobCrns(2,1:4,1),RobCrns(1,1:4,1),robot.dc)
radius=abs(robot.crns(1));
line([y y+radius*sin(t)],[x x+radius*cos(t)], 'Color', 'y')

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 13 Copyright © 2007 EUROSIM / SLOSIM

function draw_dev(me,pos,type,u)
% This function plots diverging rays corresponding to thrusters and lidar
robot_props=global_props;
x=pos(1); y=pos(2); t=pos(3);
switch type
case 'Cam'
 a=u+t;
 clr= robot_props(me).lc;
 sFoV= robot_props(me).sfov;
 rx=40/x; ry=40/y;
 patch(y*[1 1+ry*sin(a-sFoV) 1+ry*sin(a+sFoV) 1],...
 x*[1 1+rx*cos(a-sFoV) 1+rx*cos(a+sFoV) 1],...
 clr, 'LineStyle', 'none', 'FaceAlpha', .25);
case 'Thruster'
 mag=u(1)*10;
 a=u(2)+t+pi;
 clr='c';
 sFoV=.05;
 rx=mag/x; ry=mag/y;
 patch(y*[1 1+ry*sin(a-sFoV) 1+ry*sin(a+sFoV) 1],...
 x*[1 1+rx*cos(a-sFoV) 1+rx*cos(a+sFoV) 1],...
 clr, 'LineStyle', 'none', 'FaceAlpha', .25);
case 'fThruster'
 mag=u(1)*10;
 d=- robot_props(me).crns(1);
 a=u(2)+t;
 clr='c';
 len=.3;
 sFoV=.05;
 rx=mag; ry=mag;
 patch([y+d*sin(t) y+ry*sin(a-sFoV)+d*sin(t) y+ry*sin(a+sFoV)+d*sin(t) y+d*sin(t)],...
 [x+d*cos(t) x+rx*cos(a-sFoV)+d*cos(t) x+rx*cos(a+sFoV)+d*cos(t) x+d*cos(t)],...
 clr, 'LineStyle', 'none', 'FaceAlpha', .25);
 plot([y+d*sin(t), y+d*sin(t)+len*sin(a)], [x+d*cos(t), x+d*cos(t)+len*cos(a)], 'm');
case 'bThruster'
 mag=u(1)*10;
 d= robot_props(me).crns(1);
 a=u(2)+t+pi;
 clr='c';
 len=.3;
 sFoV=.05;
 rx=mag; ry=mag;
 patch([y+d*sin(t) y+ry*sin(a-sFoV)+d*sin(t) y+ry*sin(a+sFoV)+d*sin(t) y+d*sin(t)],...
 [x+d*cos(t) x+rx*cos(a-sFoV)+d*cos(t) x+rx*cos(a+sFoV)+d*cos(t) x+d*cos(t)],...
 clr, 'LineStyle', 'none', 'FaceAlpha', .25);
 plot([y+d*sin(t), y+d*sin(t)+len*sin(a)], [x+d*cos(t), x+d*cos(t)+len*cos(a)], 'm');
case 'Lidar'
 r12 = u(1); b12 = u(2); r13 = u(3); b13 = u(4);
 x2 = x+r12*cos(t+b12); y2 = y+r12*sin(t+b12);
 x3 = x+r13*cos(t+b13); y3 = y+r13*sin(t+b13);
 plot(y2+.1*randn(1,10),x2+.1*randn(1,10),'.')
 plot(y3+.1*randn(1,10),x3+.1*randn(1,10),'.')
end

function draw_3D(ME,FLR,psi,theta,phi)
% This function produces the 3D view from one of the robots
[robot_props, floor_props]=global_props;
% psi=yaw, theta=pitch, phi=roll
X=FLR(ME,1); Y=FLR(ME,2); T=FLR(ME,3);
%% Defining parameters of the square in {n} (NED)
BlueFloor=floor_props.dim; % Square's corners starting from the origin
NumbofPts=length(BlueFloor);
%% Defining camera (attached to the robot's top)
hc= robot_props(ME).crns(end); % Camera's height above the ground
Camera = [X; Y; hc]; % Camera's position in {n}
sFoV= robot_props(ME).sfov; % Semi-field of view (horizontal)
AsRatio= robot_props(ME).ar; % Frame's aspect ratio' (horizontal/vertical)
f= robot_props(ME).f; % Focal length (m)
R_phi = [1 0 0;
 0 cos(phi) sin(phi);
 0 -sin(phi) cos(phi)];
R_theta = [cos(theta) 0 -sin(theta)
 0 1 0;
 sin(theta) 0 cos(theta)];
%% Defining two other robots in {b} (NED) attached to the robot's bottom
if ME==1, ROBOT1=2; ROBOT2=3; end

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 14 Copyright © 2007 EUROSIM / SLOSIM

if ME==2, ROBOT1=1; ROBOT2=3; end
if ME==3, ROBOT1=1; ROBOT2=2; end
%% Defining light green and dark green colors
RobPos=[FLR(ROBOT1,1),FLR(ROBOT1,2),0; % Origin of the robot's {b} in {n}
 FLR(ROBOT2,1),FLR(ROBOT2,2),0];
RobOr= [FLR(ROBOT1,3);FLR(ROBOT2,3)]; % Orientation of {b} wrt to {n}
L(1,:)=robot_props(ROBOT1).lc;
D(1,:)=robot_props(ROBOT1).dc;
L(2,:)=robot_props(ROBOT2).lc;
D(2,:)=robot_props(ROBOT2).dc;
CRNS{1}=robot_props(ROBOT1).crns;
CRNS{2}=robot_props(ROBOT2).crns;
NumbofRbts=length(RobOr);
for u=1:NumbofRbts
R_r2n(:,:,u) = [cos(RobOr(u)) -sin(RobOr(u)) 0;
 sin(RobOr(u)) cos(RobOr(u)) 0;
 0 0 1];
end
%% Defining a camera frame
Uscale=f*tan(sFoV);
Vscale=Uscale/AsRatio;
%% i) Converting the square to the camera frame
R_psi = [cos(psi) sin(psi) 0;
 -sin(psi) cos(psi) 0;
 0 0 1];
R_n2c = R_phi*R_theta*R_psi; % Rotation from {n} wrt {c}
imrs=R_n2c*(BlueFloor'-Camera*ones(1,NumbofPts));% Coordinates in {c}
azimuth=atan2(imrs(2,:),imrs(1,:));
u0 = f*imrs(2,:)./imrs(1,:); % x-coordinate in {f} (right)
v0 =-f*imrs(3,:)./imrs(1,:); % y-coordinate in {f} (right)
%% ii) Counting the number and indices of Visible and Invisible points
indVis=find(imrs(1,:)>0); indInv=find(imrs(1,:)<=0);
nVis=length(indVis); nInv=NumbofPts-nVis;
%% iii) Reodering the points
if (nVis~=1) & (min(indInv)>1 & max(indInv)<NumbofPts)
 fict=indVis;
 indVis=(max(indInv)+1):NumbofPts;
 indVis=[indVis 1:(min(indInv)-1)];
end
%% iv) Assigning fictituous points as substitutes for invisible points
u(2:nVis+1)=u0(indVis);
v(2:nVis+1)=v0(indVis);
inleft=indVis(1)-1; if inleft<1, inleft=inleft+NumbofPts; end
inright=indVis(nVis)+1; if inright>NumbofPts, inright=inright-NumbofPts; end
tau1=abs((-sFoV-azimuth(indVis(1)))/(azimuth(inleft)-azimuth(indVis(1))));
tau2=abs((sFoV-azimuth(indVis(nVis)))/(azimuth(inright)-azimuth(indVis(nVis))));
imrLeft=imrs(:,inleft)*tau1+imrs(:,indVis(1))*(1-tau1);
imrRight=imrs(:,inright)*tau2+imrs(:,indVis(nVis))*(1-tau2);
ul = f*imrLeft(2)/imrLeft(1); % Coordinates of fictituous points in {f}
vl =-f*imrLeft(3)/imrLeft(1);
ur = f*imrRight(2)/imrRight(1);
vr =-f*imrRight(3)/imrRight(1);
u(1)=(-Vscale-vl)*(u(2)-ul)/(v(2)-vl)+ul; v(1)=-Vscale;
u(nVis+2)=(-Vscale-vr)*(u(nVis+1)-ur)/(v(nVis+1)-vr)+ur; v(nVis+2)=-Vscale;
%% v) Converting robots centers from {n} to {c}
imRts=R_n2c*(RobPos'-Camera*ones(1,NumbofRbts)); % Robots coordinates in {c}
distRts=[norm(imRts(:,1),2) norm(imRts(:,2),2)]; % Distance from the origin of {c}
azimuthRts=atan2(imRts(2,:),imRts(1,:)); % Robots azimuths in {c}
for jr=1:NumbofRbts
 % vi) Converting robot's corners from {b} to {n}
 Robot=CRNS{jr};
 cyl=sqrt(Robot(1)^2+Robot(2)^2); % Cylinder around the robot
 RobCrns(:,:,jr)=R_r2n(:,:,jr)*Robot'+RobPos(jr,:)'*ones(1,8);
 % vii) Default zeroing of left and right planes' coordinates (in {f})
 uR(:,2*jr-1) = zeros(4,1); vR(:,2*jr-1) = zeros(4,1);
 uR(:,2*jr) = zeros(4,1); vR(:,2*jr) = zeros(4,1);
 uRcolor(:,:,jr)=[L(jr,:);D(jr,:)];
 if abs(azimuthRts(jr))-sFoV<pi/2 && distRts(jr)*sin(abs(azimuthRts(jr))-sFoV)<cyl
 %% viii) Converting visible robot's corners from {n} to {c}
 imRtsCrns(:,:,jr)=R_n2c*(RobCrns(:,:,jr)-Camera*ones(1,8)); % Coordinates in {c}
 %% ix) Determining the closest edge and two adjacent panels (left and right)
 [dv,in]=min([norm(imRtsCrns(1:3,1,jr)),norm(imRtsCrns(1:3,2,jr)),...
 norm(imRtsCrns(1:3,3,jr)),norm(imRtsCrns(1:3,4,jr))]);
 inL=in+1; if inL>4, inL=inL-4; end
 inR=in-1; if inR<1, inR=inR+4; end
 Panel(:,:,2*jr-1)=[imRtsCrns(:,in,jr),imRtsCrns(:,inL,jr),... % Left panel
 imRtsCrns(:,inL+4,jr),imRtsCrns(:,in+4,jr)];

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 15 Copyright © 2007 EUROSIM / SLOSIM

 Panel(:,:,2*jr) =[imRtsCrns(:,in,jr),imRtsCrns(:,inR,jr),... % Right panel
 imRtsCrns(:,inR+4,jr),imRtsCrns(:,in+4,jr)];
 %% x) Determining more distant panel (left or right) to be shown first
 dl=norm(mean(Panel(:,:,2*jr-1),2));
 dr=norm(mean(Panel(:,:,2*jr),2));
 tt=[0,1];
 if dl<dr, tt=[1,0]; uRcolor(:,:,jr)=[D(jr,:);L(jr,:)]; end
 %% xi) Computing {f}-coordinates of the farther and closer panels
 for jt=1:2
 uR(:,2*jr-1+tt(jt))= f*Panel(2,:,2*jr-2+jt)./Panel(1,:,2*jr-2+jt);
 vR(:,2*jr-1+tt(jt))=-f*Panel(3,:,2*jr-2+jt)./Panel(1,:,2*jr-2+jt);
 end
 end % The end of the 'if' structure
end % The end of the 'for' loop
ord=[2,1]; if distRts(2)<distRts(1), ord=[1,2]; end
% u(5)=u(1); v(5)=v(1);
% uR(5,:)=uR(1,:); vR(5,:)=vR(1,:);
fill([-1 1 1 -1], [-1 -1 1 1], 'w','FaceAlpha', 1)
patch(u,v,'c','FaceAlpha', 1);
patch(uR(:,2*ord(1)-1),vR(:,2*ord(1)-1),uRcolor(1,:,ord(1)), 'FaceAlpha', 1);
patch(uR(:,2*ord(1)), vR(:,2*ord(1)), uRcolor(2,:,ord(1)), 'FaceAlpha', 1);
patch(uR(:,2*ord(2)-1),vR(:,2*ord(2)-1),uRcolor(1,:,ord(2)), 'FaceAlpha', 1);
patch(uR(:,2*ord(2)), vR(:,2*ord(2)), uRcolor(2,:,ord(2)), 'FaceAlpha', 1);
axis equal, axis([-Uscale Uscale -Vscale Vscale]);
title (['SimImage from ' robot_props(ME).name])

function [robot,floor]=global_props();
%% Defining the first robot (as a structure)
d2r=pi/180;
robot(1).name='Blue';
robot(1).sfov=23*d2r;
robot(1).f=.1;
robot(1).ar=4/3;
robot(1).lc=[0.6 .6 1];
robot(1).dc=[0 0 1]; % Define light green and dark colors
a=.288/2; b=.288/2; h=.6;
robot(1).crns=[...
 -a, -b, 0; % Robot's corners starting from the left-bottom-floor
 a, -b, 0; % and going clockwise (1-2-3-4);
 a, b, 0;
 -a, b, 0;
 -a, -b, -h; % The same pattern is repeated at the above-floor
 a, -b, -h; % level (5-6-7-8), i.e. 5 is located above 1, etc.
 a, b, -h;
 -a, b, -h];
clear a b h d2r
%% Defining two other robots
robot(2)=robot(1); robot(2).name='Red';
robot(2).lc=[1 .6 .6]; robot(2).dc=[1 0 0];
robot(3)=robot(1); robot(3).name='Green';
robot(3).lc=[0.6 1 .6]; robot(3).dc=[0 1 0];
%% Defining the floor (as a structure)
floor.dim=[0, 0, 0; % Square's corners starting from the origin
 4.9, 0, 0; % (left bottom) and going clockwise
 4.9, 4.3, 0;
 0, 4.3, 0];

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 16 Copyright © 2007 EUROSIM / SLOSIM

Appendix D. Example of animating 3D scene using handles (‘Erase Mode’ method)
%% Defining payload and its 'trajectory'
xb = [1 1 -1 -1 1 1 -1 -1];
yb = [1 -1 -1 1 1 -1 -1 1];
zb = [-1 -1 -1 -1 1 1 1 1];
Npoints = 600;
t = linspace(0,Npoints,Npoints);
phi = 0.4*sin(t*4*pi/Npoints);
theta = 0.4*cos(t*4*pi/Npoints);
psi = t*1*pi/Npoints;
el = linspace(-20,0,Npoints);
si = linspace(6,2,Npoints);
%% Setting the initial view
fig = figure(1)
set(fig,'DoubleBuffer','on');
axis equal
set(gca,'xlim',si(1)*[-1 1],'ylim',si(1)*[-1 1],'zlim',si(1)*[-1 1],...
 'View',[-14,el(1)],'Visible','off')
R_phi = [1 0 0;
 0 cos(phi(1)) sin(phi(1));
 0 -sin(phi(1)) cos(phi(1))];
R_theta = [cos(theta(1)) 0 -sin(theta(1))
 0 1 0;
 sin(theta(1)) 0 cos(theta(1))];
R_psi = [cos(psi(1)) sin(psi(1)) 0;
 -sin(psi(1)) cos(psi(1)) 0;
 0 0 1];
R_n2c = R_phi*R_theta*R_psi; % Rotation from {n} to {c}
for k=1:8
zz=R_n2c*[xb(k); yb(k); zb(k)];
x(k)=zz(1); y(k)=zz(2); z(k)=zz(3);
end
MS=24/si(1);
h_top = patch(x([1:4]),y([1:4]),z([1:4]),'b',...
 'Marker','o','MarkerSize',MS,'MarkerFaceColor','r');
hold
h_bottom= patch(x([5:8]),y([5:8]),z([5:8]),'b',...
 'Marker','o','MarkerSize',MS,'MarkerFaceColor','r');
h_front = patch(x([1,2,6,5]),y([1,2,6,5]),z([1,2,6,5]),'b',...
 'Marker','o','MarkerSize',MS,'MarkerFaceColor','r');
h_back = patch(x([2,3,7,6]),y([2,3,7,6]),z([2,3,7,6]),'b',...
 'Marker','o','MarkerSize',MS,'MarkerFaceColor','r');
h_left = patch(x([3,4,8,7]),y([3,4,8,7]),z([3,4,8,7]),'b',...
 'Marker','o','MarkerSize',MS,'MarkerFaceColor','r');
h_right = patch(x([4,1,5,8]),y([4,1,5,8]),z([4,1,5,8]),'b',...
 'Marker','o','MarkerSize',MS,'MarkerFaceColor','r');
%% Starting animation
for j=2:Npoints
pause(0.005);
R_phi = [1 0 0;
 0 cos(phi(j)) sin(phi(j));
 0 -sin(phi(j)) cos(phi(j))];
R_theta = [cos(theta(j)) 0 -sin(theta(j))
 0 1 0;
 sin(theta(j)) 0 cos(theta(j))];
R_psi = [cos(psi(j)) sin(psi(j)) 0;
 -sin(psi(j)) cos(psi(j)) 0;
 0 0 1];
R_n2c = R_phi*R_theta*R_psi;
for k=1:8
zz=R_n2c*[xb(k); yb(k); zb(k)];
x(k)=zz(1); y(k)=zz(2); z(k)=zz(3);
end
MS=24/si(j);
set(h_top, 'XData',x([1:4]), 'YData',y([1:4]), 'ZData',z([1:4]),'MarkerSize',MS);
set(h_bottom,'XData',x([5:8]), 'YData',y([5:8]), 'ZData',z([5:8]),'MarkerSize',MS);
set(h_front, 'XData',x([1,2,6,5]),'YData',y([1,2,6,5]),'ZData',z([1,2,6,5]),'MarkerSize',MS);
set(h_back, 'XData',x([2,3,7,6]),'YData',y([2,3,7,6]),'ZData',z([2,3,7,6]),'MarkerSize',MS);
set(h_left, 'XData',x([3,4,8,7]),'YData',y([3,4,8,7]),'ZData',z([3,4,8,7]),'MarkerSize',MS);
set(h_right, 'XData',x([4,1,5,8]),'YData',y([4,1,5,8]),'ZData',z([4,1,5,8]),'MarkerSize',MS);
set(gca,'xlim',si(j)*[-1 1],'ylim',si(j)*[-1 1],'zlim',si(j)*[-1 1],'View',[-14,el(j)])
end

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 17 Copyright © 2007 EUROSIM / SLOSIM

	Introduction
	Accessing object properties via its handle
	MATLAB tools for creating animations
	‘Creating Movies’ approach
	‘Erase Mode’ method
	Creating standalone movies

	Practical examples
	Cause for animations
	Conclusions
	References

