
MODELLING THE STRUCTURED AND COMPLEX
DECISION SITUATIONS

Martin Hrubý1

1Brno Technical University, Faculty of Information Technology
Bozetechova 2, Brno, 61266, Czech Republic

hrubym@fit.vutbr.cz(Martin Hrubý)

Abstract

The paper deals with modelling and simulation of complex intelligent systems where the mod-
elled entities have to make certain decisions in conditions of for example competitive market.
We base this paper on our experiences in making models of competitive markets with elec-
tricity and other auxiliary services in area of Czech republic and Central Europe. The studied
problem is certainly an excellent example of multi–player competition on multi–market with
multi–commodity (a player has to decide what commodity is going to offer at which market in
competition to other players). In this paper, we are more focused on theoretical analysis of the
problem and its effective implementation in simulation models. We transform these situations
of strategic decisions of one or more intelligent entities to so called structured and complex de-
cisions. We are going to present a rather general solution to these systems built from elementary
decisions with a special emphasis on their effective simulation. We use a special mathemati-
cal formalism called Automated Information Net (AIN) to model relations between elementary
parts of the AI model. AIN can predict these computing iterations which would not bring new
information to simulation of our models. We save some simulation time by this principle. As
our background is mostly in area of economics modelling, we oftenly use market and produc-
tion examples to demonstrate rather theoretical problems. The use of our ideas is hopefully
wider.

Keywords: Modelling and simulation, game theory, decision making, complex systems,
market models

Presenting Author’s Biography
Martin Hrubý1 (born 1976 in Olomouc, Czech Republic) received his MSc.
in Computer science in year 2000 and Ph.D. in year 2004. His Ph.D. thesis
was oriented to heterogeneous modelling and simulation. Last few years
he is more focused to artificial intelligence and mathematical game theory.
His professional interest is in bringing theoretical disciplines like game
theory to practical use. As a coauthor, he cooperated in research and de-
velopment of models of market with electricity and auxiliary services. He
uses his practical experience in modelling AI to formulate more general
conclusions. He is also interested in GIS systems and computer games. He
speaks english and spanish.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
In our recent work we have been modelling intelligent
behavior of producers and traders in rather large and
complex market with electrical power and so called
ancillary services [3]. After many years of develop-
ment, the models became too complex for further main-
tenance and development, so we had to start thinking
about their optimization and easy reconfigurable pro-
gramming [5].

The mentioned models expresses decisions of intelli-
gent entities in conflict (competition) or cooperation
with other intelligent entities. This situation is well
known as a game situation, the intelligent entities are
usually called players and the complete mathematical
apparatus describing games is called the game theory
[1, 2]. One can find a plenty of theoretical papers [6]
about modelling these problems, but in our best knowl-
edge there is no public record about a practically im-
plemented model. There is also a theory called the
decision theory which is probably more general than
terms discussed here. Anyway, we treat the decisions
by meaning of artificial intelligence like task solving,
playing games, searching in state space and so on.

Having a model of an intelligent behavior has many
contributions and benefits: by experimenting with such
a model, we can better understand the reasons why the
modelled entity does what it does. At second (and this
is probably more utilizable), we can so predict future
behavior of the entity or of a group of them. In case of
market models, the future prices and market events are
very interesting for many people and institutions. The
main aim of this paper is to start a series of more ad-
vanced analysis of decision making which comes as a
generalized view to our practical experiments and ex-
perience in such a modelling.

There is a very important assumption and agreement
in the beginning and it is that we always prefer nu-
merical (simulation) solution to our situations instead
of the analytical one. Let us quickly define what we
mean by these two modelling approaches: in analyti-
cal modelling, we attempt to describe a system at very
abstract and general level using pure mathematical in-
ference rules. As a result we obtain a very simple and
powerful mathematical law in form of (for example)
mathematical formulas. We input some parameters and
get the result. Formulating such a law is probably very
difficult intellectual task and mostly impossible. One
may also agree that this approach is not very flexible to
changes of specification. On the other hand, we have
methods of numerical solution where basically numeri-
cal numerical experimenting method substitutes the an-
alytical reasoning by machine iterative processing.

So, doing models in numerical manner require certain
number of computational steps to finish the size of the
task. We are going to show that number of steps grows
with |S|Q where S shows a level of detail in our model
and Q inputs a dimension of the problem. This time
complexity might be extreme in practical model appli-
cations and any attempt to decrease number of evalu-

ated iterations is welcome. We published one possible
way in [5] and we are going to extend this result with
more wide approach in structured decisions.

In the beginning of the paper, we will define elemen-
tary and structured decision problems which are the the
topics of our main interest.

2 Introduction to decision problems
When talking about thinking and decision making, we
have to say that in the current state of AI machines (and
this will not be probably any surprise) cannot think by
the human meaning of that expression, but they can
reasonably choose one of some predefined actions (e.g.
predefined by their designer). This approach somehow
follows our human way of analytical thinking when the
human decomposes the situation to set of possible ac-
tions (opinions) and analyses how each action will pos-
sibly change his current state. The difference of new
and previous states is then his profit caused by choosing
the action. So, by saying that the machine does some
decision, we always mean that it somehow chooses one
of the predefined actions. The next step in AI devel-
opment would be probably a machine able to formulate
itself independently a language of its actions to choose
from.

We are going to study this area in more mathematical
manner. So, we start with a definition of a domain of the
problem, definition of a decision itself and their classi-
fication.

Domain

Let us have a situation when an intelligent entity has to
decide what strategy he/she is going to adopt in problem
with domain denoted by:

• a discrete set of actions Dd = {a1, a2, ...}, or

• by a continuous interval Dc = 〈f, t〉.

Decision

The entity must be able to evaluate each action of his
domain (D is Dc or Dd type) by some profit using
the utility function which we are going to denote by
u : D → U , where U is some universum of all pos-
sible profits (but usually we work with numbers). We
also expect that the profits are comparable, so that there
is some binary relation ≤ on {u(a)|a ∈ D}, so it is
possible to compare if a1 is better then a2. The entity
will probably choose a∗ ∈ D with the highest utility
u(a∗) and this a∗ is then the solution to our decision
situation. The solution a∗ represents some problem op-
timum for the entity (this term is more clear in context
of multiplayer games).

As we already mentioned in the introduction, we always
prefer simulation approach to the problem instead of
analytic and so, discretizing the problem is necessary –
if working with naturally continuous problem, we have
to transfer the continuous interval Dc to a discrete set
S = {s1, s2, ..., sn}. Let us use a term strategy instead

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

Map of single multiple
classes (players = 1) (players ≥ 2)

elementary C1 C3
problem (easy) (game theory)

structured C2 C4
problem AIN AIN × game theory

Fig. 1 Map of decision situations with complexity
classes C1 < C2 < C3 < C4

of action from now. The solution is again some strategy
s∗ ∈ S. The solution s∗ is preferred, when there is no
other s ∈ S for which u(s) > u(s∗). There might be
s ∈ S such u(s) = u(s∗). For these we say, that the
entity is indifferent between them and he/she chooses
randomly from all S∗ = {s ∈ S|u(s) = u(s∗)} (to
equilibrium becomes so called mixed). But we do not
study such situation in this paper. Anyway, methods
of choosing equilibria within state space of strategies is
not an issue in this paper.

Classification

Well, finding the highest u(s) is rather easy. We are
going to make it more difficult by adding these dimen-
sions/views/problems to the decision situations:

• to do it quickly – we certainly want to model our
problems effectively, so that the machine interpret-
ing them can react instantly. Real solved problems
have an extreme time complexity.

• to let some more intelligent entities to attend the
situation (in meaning of game theory) – decision
situations becomes more interesting when other
entities can affect mutually their profits. Choos-
ing a strategy from the state space is not as trivial
like in previous situations. There is a rather large
theory of games describing the strategic thinking
above the state space of all possible actions of me
and my opponents.

• to do the decision structured – we are going to
study situations when one decision is based on our
conclusion from another decision. The decisions
then create a hierarchy or a sequence.

The Figure 1 demonstrates all possible problem classes
in meaning of number of players and level of problem
and their solving. In our experience, these classes can
be ordered by their implementation difficulty. The eas-
iest class is C1 which also demonstrate the pure princi-
ple of the AI methods of decision making. C2−class
is fundamentally similar to C1, just the strategy set
is multidimensional or the utility function recursively
calls inner decisions (we will show C2 made by AIN
approach). C3 is harder then C2 as the state space
grows with number of players and we have to start us-
ing some optimizations to its evolution. Other reason
for putting C3 > C2 expresses its scientific problems

in game equilibrium definition (Nash, Stackelberg, cor-
related, ...) and so on. C4 is on the top of complex-
ity. C4 is the class where we recommend using AIN
technique to optimize the model structure and simula-
tion time necessary to do simple experimenting with a
model. AIN is a method developed in [4], now used to
optimize problems in decision modelling.

3 Elementary decision problems
We define the decision problem to be Π = (S, C, u),
where:

• S is a final set of strategies (actions) which define
what choices a player has,

• C is a context of the decision (set of objects) –
this information describe for example internal at-
tributes of a player or specific rules in a decision
situation.

• u(s) is a utility function which gives an utility (or
profit) to each s ∈ S.

And the solution is some sort of

s∗ = arg[maxs∈S{u(s)}] (1)

In an implementation point of view to the problem, we
model the utility function as a mathematical function of
strategy s ∈ S and decision context C:

u(s) = function(s, C) (2)

3.1 C1–class: the introduction

Algorithm 1 C1–class: Simple decision algorithm
res = {}
for s in S:

res[s] = utility(s, C)
solution = res.max()

The time complexity of Alg. 1 is mostly done by com-
plexity of enumerating the utility(s, C) function and,
of course, by its |S|–times repetition and finding the
highest computed utility (also linear). Optimizing the
”utility” function is required.

We may extend this concept in many varieties, like find-
ing the first good–enough solution, or, if there is more
than one equally ranked solutions, we choose then ran-
domly among them. Again, selecting the right solution
is not the topic of this paper.

Definition (elementary decision): Let Π = (S, C, u) is
a decision problem. If its context C contains only con-
stant objects, then Π is elementary. Hopefully it is clear
what we mean by an object in terms of computer sci-
ence. Object a = 3 is a constant, object Π is a decision.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

price s 10 20 30 40
profit 200 1200 2200 3200

Fig. 2 C1–class situation. Profit made by
utility1(s, 100)

3.2 C3–class: Game theory involved

The game is defined as

Γ = (Q;S1, S2, ...SN ;u1, u2, ..., uN) (3)

where Q is set of |Q| number of players, Si; i ∈ Q
are strategy sets and ui are utility functions of players
i ∈ Q.

Elementary decision becomes more complex when
there are more decision makers who compete each
other. There are two basic approaches that we have to
implement in our model:

1. Utility function of a player is not only a function of
his parameters but also of his colleagues/enemies.
Model of utility function becomes more complex.
But generally, it is still some function(s, C) of
context C and profile s ∈ S (|s| ≥ 2). Final
form of existence of utility function is an imple-
mentation detail. Saying that there are |Q| utility
functions ui should emphasize that each player has
generally different payoff in certain profile s ∈ S.

2. State space of the situation grows with number of
players. Generally there are |S1 × S2 × ...× S|Q||
items (cells).

Let us demonstrate multi–player decision making
(game theoretical) by a simple market situation with
constant demand of 100 items. We are starting with
a single–player in form C1.

Player p1 has fixed production cost fc1 = 5 per item
and variable cost vc1 = 3 per item. His production
capacity is cap1 = 100. Selling ti items he makes a
profit:

utilityi(si, {ti, vci, capi, fci}) = ti·(si−vci)−capi·fci

(4)

We can see (Figure 2) that the player is free to
choose any strategy from {10, 20, 30, 40}, surely the
40−strategy, or higher if possible until some form of
elasticity demand would start decreasing the demand.

What about the situation if two players are involved and
consumers behave that:

• they buy first from the cheaper player and if all
is sold out, then they buy the rest from the more
expensive player,

s1 / s2 10 20 30 40
10 −150,−1200 200,−900 ... 200, 100

20 350,−1200 350,−200 ... 1200, 100

30 850,−1200 850,−200 ... 2200, 100

40 1350,−1200 1350,−200 ... 1350, 1800

Fig. 3 C3–class situation. Profit made by utilityi(s,X)

• if both play the same price strategy, consumers
buy randomly with uniform distribution, so every
player i with an offer oi sells oi

o1+o2
· demand, if

demand < o1 + o2, otherwise they both sell all.

Let us see the second situation with a second player p2

having cap2 = 200, fc2 = 8 and vc2 = 6.

A now begins the complicated way of analyzing the
game matrix and finding the solution. Our question is:
what strategy will players p1 and p2 choose in this situ-
ation? Both have to decide somehow.

Again, the model of such a decision is a sequence of
computing the state space and its analysis.

Algorithm 2 C3–class: Game decision algorithm
res = {}
for s1 in S:

for s2 in S:
res[(s1,s2)] =

utility_1((s1,s2), C)

solution = res.gametheory()

An example of implementing the utility function is de-
scribed more in details in section 6. Also, finding opti-
mum res.gametheory() is a job for game theory meth-
ods and is not an issue in this moment.

4 Introduction to AIN
In this section, the AIN method will be introduced. AIN
is the core to this paper and AIN is used to organize the
highest level of decision problems (C3, C4).

AIN (Automatic Information Net) is a modelling
method originally developed for modelling of heteroge-
neous systems [4]. During development of market mod-
els we noticed that the AIN method can by applied also
in game–theory models, especially to organize structure
of models and to do automated optimizations during the
simulation run–time.

The principle of AIN lies in construction of a net
[OS,R] (oriented graph) of OS objects and their inter-
connections R ⊆ OS×OS. An edge r = (o1, o2), r ∈
R; expresses that o2 derives its value from the value of
o1–object, so

o2 = function(..., o1, ...) (5)

Computing in AIN (evolution) stands on continual
keeping the system of OS objects mutually consistent

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

through their relations. So, if any object o ∈ OS
changes its value, then all o• = {x ∈ OS|(o, x) ∈ R}
(poset of o) must be automatically re–evaluated (•o de-
notes a preset of o).

The AIN evolution context is an tuple AC = (M,CH).
The evolution AC1 � AC2 periodically turns the
AIN system between so called marked state (M ⊆
OS,CH = ∅) and changed state (M = ∅, CH ⊆ OS).

More formally, one evolutionary step is transform-
ing the AIN–context AC = (M,CH) to AC ′ =
(M ′, CH ′), so that:

1. In the marked state, all o ∈ M are reevaluated and
if o changes its value, it is then inserted to the CH
set.

CH ′ = {ch ∈ M |reeval(ch) = true};M ′ = ∅

2. In the changed state, all
⋃

o∈CH o• are inserted to
the M set.

M ′ =
⋃

o∈CH

o•;CH ′ = ∅

3. If M = CH = ∅, the system becomes stable and
the evolution terminates.

M ′ = ∅;CH ′ = ∅

More formal and rigorous definition could be found in
[4] where we describe also sequential (processes) part
of the AIN specification.

Algorithm 3 Simple example of an AIN-model
a=2
d=3
b=a+1
c=b+d

2 a a+1

3 d

b+d

b

c

Fig. 4 AIN model for the example

The example (Algorithm 3) has its graphical form in
Figure 4 and the computation evolves as follows:

({2, 3}, ∅) � (∅, {2, 3}) �

({a, d}, ∅) � (∅, {a, d}) �

({a + 1, b + d}, ∅) � (∅, {a + 1}) �

({b}, ∅) � (∅, {b}) �

({b + d}, ∅) � (∅, {b + d}) �

({c}, ∅) � (∅, {c}) �

(∅, ∅)

In the beginning, only the objects o with •o = ∅ like
{2, 3} are marked. The system evolves until it reaches a
stable state when no object reacts on someone’s change
– so, from some context the system evolves (∅, ch) �
(∅, ∅). This is the final state of the evolution.

Obviously, evolution of a particular AIN-system does
not terminate if that system contains some bad cycle.
But this is possible in any language. Normally the AIN-
evolution terminates after proceeding of final number
of evolutionary steps. Effect of here presented opti-
mization also assumes that the system gets stabilized in
(much) less steps than without control of AIN (so that
really saves some simulation time).

5 Applying the AIN in basic problems

Let us have a look on Figure 5 with an empty game
matrix of ({A,B};SA, SB ;UA, UB), S = SA × SB .
All cells of the matrix have to be evaluated with prof-
its U(S) so, that in the next phase we could use game
theory analysis to find the required solution. We call
cellModel the general algorithm which computes the
utility for all s ∈ S.

A/B s1 s2 ... sK

s1

s2

...
sK

Fig. 5 Game matrix for two players game

We express the cellModel as an AIN-system
cellAIN = [OSc, Rc] with objects of global and
local meaning. Objects sA, sB will hold current row
(A–player) and column (B–player) strategy, objects
uA, uB will be filled with currently evaluated profits of
the players. So, sA, sB , uA, uB ∈ OSc. To be more
formal, we expect •sA, •sB , uA• and uB• to be empty
sets (see Figure 6).

sA

cellAIN

uA uB

sB

Fig. 6 AIN system for iterating

We are now going to describe two methods of appli-
cation of AIN (so called Simple iterating and Global
instances) and two other related notes about possible
model persistence and parallelization.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

5.1 Simple iterating

In the simple iterating, the cellAIN sweeps across the
matrix as illustrated in the following algorithm.

Algorithm 4 Simple iterating
forall sA in Su

forall sB in Su {
start evolution;
U1(sA, sB) := uA;
U2(sA, sB) := uB ;
}

The evolution starts with (∅, {sA, sB}) and after cer-
tain number of steps it terminates. Then, uA and uB

contains evaluated profits.

Let Sq is a sequence of unrolled state space S. Then
ci denotes number of computing steps done when com-
puting the i−the profile in the Sq sequence. It is obvi-
ous, that number of steps will differ between each two
cells ci and cj (this will be shown in the following case
study), but in summary will∑

i∈{1,...,|Sq|}

ci << c1|Sq| (6)

5.2 Global instances

This approach leads probably to the best results and the
effectiveness of the simulation grows with complexity
of cellAIN model (when reduced number of steps do
its effect).

The constructed AIN-system consists of |SA × SB | in-
stances of cellAIN , it means that each cell c (with a
corresponding strategy profile s∗c ∈ S) of game matrix
has its own instance of cellAINs∗c model connected to
a corresponding vector of strategy cells s∗c . The evo-
lution starts from (SA ∪ SB , ∅) context. All particular
operations in cellAINs are now evaluated simultane-
ously. We enclose a practical case study demonstrating
this principle.

5.3 Persistence

This representation of a model is ideal to make the
model persistent. It means, that the computer pro-
gram interpreting the AIN–system can export and save
[OS,R] and re–load it back next time when executed.
In fact, the context of re–loaded AIN-system would be
(∅, ∅). Then the particular experiment which modifies
e ⊆ OS can be computed in much less steps then the
whole system [OS,R]. Persistent existence of objects is
a basic feature of language like Smalltalk and Self. Un-
fortunately, these languages are not so fast in executing
their programs, so we have to use C/C++.

5.4 Parallelization

Other contribution to making the simulation even more
efficient is to make the marked step in parallel. It
means, in AC = (M, ∅) state, we can split the M–set
to as many subsets M1,M2, ...,Mcpus we want (where

a)

CostsA

OfferA

CostsB

OfferB

Trade - sells

StrategyA StrategyB

soldA soldB

ProfitA ProfitB

Demand

b)

cap

offerYes

FC

strategy>=(FC+VC)

VC strategy

yes

offerNo

no

offer

Fig. 7 a) Main view on the model (cellModel) b) Model
of offer

cpus is a number of CPUs available). The marked state
is then evolved as follows:

Algorithm 5 Parallel execution of the marked state
(M1,M2, ...,Mcpus) = split(M)
create cpus threads i ∈ {1..cpus}:
CH ′

i = markedstate(Mi)
CH ′ =

⋃
i CH ′

i

6 Experimental case study
Let us have an example of a primitive oligopoly market
with a price competition, where the cellModel is de-
fined in Algorithm 6 and AIN-like illustration on Figure
7.

The system is defined using parameters which should
be rather clear: variable costs (vci), fixed costs (fci),
demand, production capacities (capi).

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

Algorithm 6 Simple market model
profit_i=receipts_i-costs_i
receipts_i=strategy_i*sold_i
costs_i=vc_i * sold_i + fc_i
sold_i=sells(demand,

[(amount_1,strategy_1),
(amount_2,strategy_2),...])

amount_i=offer(strategy_i, vc_i,
fc_i, cap_i)

Cells Building Initial Reeval Index
time calc. time steps reevals

100 0,00988 0,00014 880 ”X”
200 0,02171 0,00059 1720 1,95
400 0,03768 0,00142 3360 1,95
800 0,07509 0,00283 6640 1,98

1600 0,14496 0,00557 13120 1,98
3200 0,30989 0,01515 26080 1,99
6400 0,71796 0,02629 51840 1,99

12800 1,77498 0,04839 103360 1,99
25600 4,98704 0,09239 206080 1,99
40000 10,3814 0,14230 321600 1,56

Fig. 8 Model building times (steps0)

The model is constructed in computer memory respect-
ing the method ”Global instances” and the AIN initiates
the first evolution process. We made a prototype model
for purpose of this paper. See Figure 8 with measured
experimental times of model initialization. The table 9
shows sequence of experiments (referred to 160 × 160
matrix, 25600 cells) and response time to particular in-
puts. At first, the model is initiated. Then, we change
the global variable demand and the whole simulation is
recomputed in 81% of original time. Other experiments
goes on. When we input a new fixed cost of A–player,
the whole run takes only 0.25 of time.

6.1 Computing the game equilibrium

We have not spoken about computing the final results
yet – it means, about solving some sort of stable point
of the game system. There are many possible interpre-
tations of game equilibrium. They all are mentioned in
theoretical research papers of game theory and in the
game-theoretic literature.

Step Change Reevals steps
steps0

0 Initial 206080 X
1 Demand = 200 166641 0,81
2 FC0 = 20 51361 0,25
3 VC1 = 4 52641 0,26
4 CAP0 = 100 153921 0,75
5 Demand = 400 165204 0,8

Fig. 9 Reaction time to the experiments (160×160 ma-
trix)

In the applied point of view, as we do in our research,
we understand this last computation phase to be another
AIN-system connected to the ”matrix AIN-system”.
They both make a pair (matrix, equilibrium solver)
which is some [OSp, Rp] where eq ∈ OSp is an ob-
ject containing the resulting information (it points to the
equilibrium profile).

When doing heterogeneous or inner games, we may in-
terconnect them in this way. For example, equilibrium
object eq of some game may be included in preset of
cellModel of another game. The whole system then
works as a complex.

7 Structured decision problems
At the beginning, the most simple view on structured
decisions is that we have to choose one action from
strategy set S1 and one from S2, so we have to make
two decisions and these two correlate. We can trans-
form this situation to choosing from strategy set S =
S1 × S2, to a decision Π = (S1 × S2, C, u). This ap-
proach is not very efficient for many reasons and we
rather prefer a two step decision (where the order of
steps is important) – for example Π1 = (S1, C1, u1)
and Π2(S1) = (S2, C2, u2);S1 ∈ C2 with:

u2 = function2(s2, C2 ∪ {S1})

u1 = function1(s1, C1 ∪ {Π1(result)})

Let us start thinking about structured problems, so
about problems where one decision is composed of
other decisions – the context of decision is not con-
stant and includes results of other decisions and the sub-
decisions make a tree hierarchy.

We may recognize situations where:

• context is constant for the whole decision, so
that we can make this decision before the
main decision process. Symbolic transcription:
A1, ..., An ⇒ B.

• context is parameterized by the s strategy profile
of the main decision (has to be instantiated for
each cell), so that the evaluation of sub-decision
is a part of evaluation of each profile. Symbolic
transcription: B(A1(sB), ..., An(sB)).

• there is a mixture of constant and parameter-
ized sub-decisions. The most general situa-
tion. Symbolic transcription: A1, ..., An ⇒
C(B1(sC), ..., Bn(sS)).

Implementation of these three possibilities is proba-
bly clear. We would like to show an implementation
made by AIN approach showing all derived contribu-
tion, mainly in modelling point of view and efficient
simulation view.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

8 AIN implementation of the decision
Let us have an N− player game situation Γ =
(Q;S1, S2, ...SQ;U1, U2, ..., UQ), S denotes set of
strategy profiles and cellModel(s, C); s ∈ S is a some
sort of model of utility functions Ui.

We are going to transfer such a specification to AIN
system Σ = [OS,R]. The system Σ will contain:

1. AIN objects for all strategies. Let Su =
⋃

i Si.

2. AIN objects for all objects of context C.

3. AIN objects (subnets) reprezenting cellModels.
Cells = {cellModel(s, C)|s ∈ S}.

4. AIN object Σr keeping a result to the decision.
This object is responsible for computing some
form of equilibria.

Σr reprezents a result to Σ decision situation. We ex-
pect that Σr objects may be shared with other decisions.
Set of objects SO is finally composed of:

OS = Su ∪ C ∪ Cells ∪ {Σr}

Final interconnection of objects inside the OS set de-
pends on particular cellModel, but very generally R
would contain some subset of:

1. Rs = {(si, cellModel(s, C))|s =
(s1, s2, ..., s|Q|) ∈ S, 0 ≤ i ≤ |Q|}

2. Rc = {(c, cellModel(s, C))|s ∈ S, c ∈ C]}

3. Rr = {(s,Σr)|s ∈ S}

R′ = Rs ∪Rc ∪Rr

Resulting R will be a minimal working subset of R′.
Static minimalization of R is a topic for another re-
search. Size of R determine a number of objects which
will be marked for reevaluation during the very step of
AIN evolution. Also construction of cellModel is ex-
tremely important for effectiveness of computation.

8.1 Composition: A1, ..., An ⇒ B

Set of mutually independent decisions A1, A2, ..., An

which have their AIN equivalents in set of AINs Σ1 =
[OS1, R1],Σ2, ...,Σn will make global resulting AIN:

ΣAs = [OS1 ∪OS2 ∪ ... ∪OSn, R1 ∪R2 ∪ ... ∪Rn]

with decision objects {Σr1,Σr2, ...Σrn}.

If this set of decisions should be presump-
tion for B (A1, ..., An ⇒ B), where B =
(SB , CB , cellModelB), {Σr1,Σr2, ...Σrn} ⊆ CB then
we obtain Σ = ΣAs ∪ ΣB .

8.2 Composition: B(A1(sB), A2(sB), ..., An(sB))

This type of structured decision solves B =
(SB , CB , uB) where computing of uB depends on de-
cisions A1(sB), A2(sB), ..., An(sB) made in context
of profile sB ∈ SB .

sB sb1 sbn

cell sA1 sA11 sA1n

uA1 uA1(sb1)

The AIN system ΣB will be constructed as it was de-
scribed above. Just its cellModel reprezenting uB for
all sb ∈ SB has to include an instance (a clone) of com-
position of A1, ..., An, all having sb in their context, so
an edges from sb to cellModelAi will be included in
resulting AIN.

8.3 C4–Class

AIN implementation of C4–class decision problem is
a composition of AIN implementation and game ap-
proach. It means that all decisions are results of game
conflict and the profile variable s ∈ S is a vector of pure
strategies of all players in the game. The rest is similar
to methods described above.

9 Conclusion and future work
In this paper, we have presented a method of modelling
complex decision problems. We recognized decisions
in situation where there is only one decision maker in-
volved (C1) or situations with more decisions makers
(C3) where the methods of game theory must by em-
ployed. The main result of the paper is in efficient mod-
elling and simulation of more advanced decision situa-
tions (C2, C4) with structured problems when making
one decision is dependent on making another decision.
It is even more difficult with more player, it means in
game theory situations.

The presented theory is not finished and is still in devel-
opment. We implemented a very efficient AIN kernel
and few demonstration models based on the described
method. Everything is promising that contributed ap-
proach leads to a very efficient modelling of multiplayer
structured decisions and mainly to their fast executing
on PC computers and experimenting with them.

Acknowledgment: This work has been supported
by the Grant Agency of Czech Republic grant No.
GP102/06/P309 ”Modelling and Simulation of Intel-
ligent Systems” and the Czech Ministry of Educa-
tion under the Research Plan No. MSM 0021630528
”Security-Oriented Research in Information Technol-
ogy”.

10 References
[1] Aumann, R. J.: Game Theory, The New Palgrave:

A Dictionary of Economics, Volume 2, edited by

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

J. Eatwell, M. Milgate, and P. NewMann, pp. 460-
482, Macmillan, London, 1987

[2] Myerson, R. B.: Game Theory: Analysis of Con-
flict, Harvard University Press, 2004

[3] Hruby, M., Toufar, J.: Modelling the Electric-
ity Markets using Mathematical Game Theory,
In: Proceedings of the 15th IASTED Interna-
tional Conference on Applied Simulation and
Modelling, Rhodos, 2006, CA, s. 352-357, ISSN
1021-8181

[4] Hruby, M.: Formal Specification of the HELEF
Simulation Language, In: Proceedings of 37th
Internation Conference MOSIS’03, Ostrava, CZ,
MARQ, 2003, s. 143-148, ISBN 80-85988-86-0,
2002

[5] Hruby, M., Bednar, J.: Automated Optimizations
of Models Based on Game Theory, In: Proceed-
ings of INISTA 2007, Istanbul, Turkey, 2007

[6] Song, Y. et all: Analysis of Market Power in
Oligopolistic Electricity Market Based on Game
Theory, Proc. Power Systems and Communica-
tions Infrastructures for the Future, Beijing, 2002

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

