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Abstract

This paper presents an overview of a data analysis method based on self-organizing maps
(SOM), a well-known unsupervised neural network learning algorithm, which was applied to
a lead-free wave soldering process. The aim of the study was to determine whether the neural
network modeling method could be a useful and time-saving way to analyze data from a
discrete manufacturing process, such as wave soldering, which is a widely used technique in
the electronics industry to solder components on printed circuit boards. The data variables
were mostly various process parameters, but also some solder defect numbers were present in
the data as a measure of the product quality. The data analysis procedure went as follows. At
first, the process data were modeled using the SOM algorithm. Next, the neuron reference
vectors of the formed map were clustered to reveal the desired dominating elements of each
territory  of  the  map.  At  the  final  stage,  the  clusters  were  utilized  as  sub-models  to  indicate
variable dependencies in these sub-models. The results show that the method presented here
can be a good way to analyze this type of process data, because interesting interactions
between certain process parameters and solder defects were found by means of this data-
driven modeling method.

Keywords: Neural Networks, Self-Organizing Maps, Wave Soldering, Process Analysis.

Presenting Author’s biography
Mika Liukkonen, born in Jyväskylä, Finland, August 22, 1979, graduated
from the University of Oulu, Finland, as M.S. (eng.) in 2007. His main
research interest includes process engineering, process modeling,
industrial data processing, and data mining. He is currently preparing the
Ph. D. degree in process informatics.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

mailto:mika.liukkonen@uku.fi


1 Introduction
Today, new environmental regulations [1,2] are
forcing the electronics industry to reduce and even
cease the usage of hazardous products, such as lead-
bearing materials and substances containing volatile
organic compounds (VOC). The implementation of
lead-free and low VOC processes sets new
requirements for process optimization also in the case
of wave soldering, because the earlier process
conditions determined for lead-containing
manufacturing materials may not be applicable to the
lead-free process as such. In addition, even switching
from one lead-free solder alloy to another may lead to
changes in the product quality if the process
parameters are kept the same [3]. Hence, it can be
considered an advantage if the manufacturing
processes in the electronics industry can be optimized
by data-driven modeling because that way the amount
of testing and other experimental activities can be
reduced. Additionally, a good computational model
helps in reducing the costs of learning through trial
and error, which makes the whole manufacturing
process more efficient.

In current industrial processes, there is a general trend
of a growing demand for methods that could be used
to analyze different process parameters and their
relationships fast and conveniently. Firstly, the
demand for new analysis and modeling methods can
arise, as already mentioned, from the need for
optimizing the processes by using new materials and
substances approved by new legislation. These kinds
of materials and media are, in the case of electronics
manufacturing, lead-free solders and solder pastes,
lead-free components and other materials, and water-
based or low VOC fluxes. The main problem is that
switching to a new material can lead to an obligatory
change in certain process parameters, because
otherwise  the  quality  of  the  products  may  drop.  For
example, in the case of using a lead-free solder in
wave soldering, the suitable process window for
process parameters is observed to be narrower than in
a comparable tin-lead process [4].

The second reason for seeking new analysis and
modeling methods is that, because large amounts of
numerical data and other information are available in
current industrial processes, any novel method that
makes it easier to reveal interactions between different
process parameters can be considered an
improvement. This is because the already existing
information can be then exploited more efficiently.
Thirdly, the tightening requirements for process
optimization and for increasing the production rates
without affecting too much the quality of the products
set their own demands on production planning in
different manufacturing processes. A general method
that could be used to reach the optimal process
efficiency by defining the ideal process parameters
unambiguously would be a valuable and powerful
tool.

In electronics production, the traditional methods used
in process improvement through data analysis have
been mathematical data-driven methods such as
statistical data processing methods or analytical and
simulative methods [5]. For example the process
optimization has often been performed using linear
programming, dynamic programming or simulation-
based methods. However, the use of advanced data-
driven modeling methods, such as neural networks, in
process analysis has been, so far, quite restricted in the
field of electronics industry. Interesting questions are
whether neural network modeling could be used
successfully in the analysis of an electronics
manufacturing process, and whether this kind of
approach could lead to fruitful results more easily and
faster than traditional analysis methods?

The benefits of the neural network modeling method,
or an artificial neural network, ANN, are its flexible
modeling abilities and its ability to reveal nonlinear
and complex dependencies. For instance, it has been
proposed that adaptive neural network methods are
more efficient than traditional ones when the
functional relations between data elements are
nonlinear [6]. Moreover, many studies have indicated
already that ANNs can be useful and efficient methods
for modeling biological and industrial type of data
[6,7,8,9,10,11]. However, the applications have been
so far principally in the field of dynamical processes,
such as energy producing, whereas there have been
quite few neural network applications in the field of
electronics industry. Thus, studying the suitability of
ANN-methods to more discrete manufacturing
processes, such as wave soldering, requires some
further attention.

In  this  study,  the  aim  was  to  determine  whether  the
neural network modeling method could be a useful
and time-saving way to analyze a batch-like industrial
process, where materials and process substances are
combined to make separate and individual, but still
similar, products. The wave soldering process, which
is one of the techniques used to solder components on
printed circuit boards, is ideal for this kind of study,
because the process has quite many adjustable factors
that  can  easily  have  an  effect  on  product  quality  or,
more accurately, on the occurrence of some solder and
other defect types.

The returns of this study show that the applied neural
network method could be utilized to reveal interesting
multidimensional dependencies between some wave
soldering process parameters. The results indicate that
the method makes it quite easy to find relations in
large data sets faster than conventional data processing
and  analysis  methods.  As  a  result,  because  the
detection of relations is made easier, it is possible to
reduce the amount of resources spent on learning
through trial and error, which releases these resources
to some other, perhaps more productive, work. In
addition, if the optimal process conditions could be
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confined more easily and faster, large cost reductions
could be achieved.

2 Wave soldering process and data
2.1 Process

Wave soldering is a mechanized soldering technique
that allows components and lead wires to be attached
to a printed circuit board (PCB) as it is transported
over a wave of molten solder [12]. In a typical setup
the  PCB,  on  which  components  have  been  placed,  is
transported through a wave soldering machine by
using an automatic conveyor. The sides of the board
are  attached  to  the  conveyor  system,  so  that  the
underside of the board is exposed to the processing
stages.

The wave solder process consists of three main stages
as shown in Fig. 1. (1) At the first stage, the surface of
the PCB assembly, with components already been
adjusted to it, moving along the conveyor is wetted by
the fluxing system containing the flux pump and the
necessary devices to deliver the flux. The main
purpose of fluxing is to improve the wetting of the
surfaces and to protect the metal parts from oxidation
during soldering. (2) The second stage is for pre-
heating the PCB usually in several zones that can
include, for instance, convection, tubular resistance or
infrared types of heating elements. Pre-heating
activates the flux, reduces the thermal shock resulting
from thermal expansion and, in addition, removes the
possible moisture and undesired substances from the
surface  of  the  PCB.  (3)  At  the  last  stage,  the
components are soldered to the board using the solder
wave at the third stage, where the wave-like molten
solder is pumped through a slit to the underside of the
board. A smaller and more intensive chip wave can
also be used in addition to the main solder wave to get
the solder into the narrowest spaces between the
components.

Fig. 1 The wave soldering process

2.2 Data

The acquired process data consisted of process
information gathered from some test measurements, in
which  PCBs  were  put  through  the  wave  soldering
process using a lead-free solder, more accurately an
SAC (Sn-Ag-Cu) solder. In the case of the modeling
data, only water or low VOC -based fluxes were used
in the fluxing phase of the soldering process. The size
of the used data matrix was 418x40 (418 rows, 40
variables in columns). The data variables were mostly
various process parameters, but also some solder
defects as a measure of the product quality were
present. The variables used in the modeling and the
numbers of model inputs for each variable can be
viewed in Tab. 1.

Tab. 1 Data variables

3 Modeling methods
3.1 SOM

Kohonen’s self-organizing map [6] is a well-known
unsupervised learning algorithm, and its common
purpose is to facilitate data analysis by mapping n-
dimensional input vectors to the neurons for example
in a two-dimensional lattice. In this lattice, the input
vectors with common features result in the same or
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neighboring neurons. This preserves the topological
order of the original input data. The map reflects
variations in the statistics of the data sets and selects
common features, which approximate to the
distribution of the data points. Each neuron is
associated with an n-dimensional reference vector,
which provides a link between the output and input
spaces and thus describes the common properties of
the neuron. This lattice type of array of neurons,
which  is  called  the  map,  can  be  illustrated  as  a
rectangular, hexagonal, or even irregular organization.
Nevertheless, the hexagonal organization is used most
often, as it best presents the connections between the
neighboring neurons. The size of the map, as defined
by the number of neurons, can be varied depending on
the application; the more neurons, the more details
appear.

The SOM analysis includes an unsupervised learning
process.  At  first,  random  values  for  the  initial
reference vectors are sampled from an even
distribution, whereby the limits are determined by the
input data. As the learning proceeds, the input data
vector is mapped onto a given neuron (best matching
unit, BMU) based on a minimal n-dimensional
distance between the input vector and the reference
vectors of the neurons. The nearest neighbors of the
central activated neuron are also activated according
to a network-topology-dependent neighborhood
function, a Gaussian distribution. The common
procedure is to utilize an initially wide function,
which is subsequently reduced in width during
learning to the level of individual neurons. After this
procedure, the reference vectors of activated neurons
will become updated. The procedure features a local
smoothing effect on the reference vectors of
neighboring neurons leading eventually to a global
ordering [13].

3.2 Clustering

The K-means method is a well-known non-
hierarchical cluster algorithm [14]. The basic version
of the K-means is started by randomly selecting K
cluster centers, assigning each data point to the cluster
whose mean value is closest in the Euclidean-
distances-sense. Then, the mean vectors of the points
assigned to each cluster are computed and used as new
centers in an iterative approach.

3.3 Methods in practice

The  raw  data  were  coded  into  inputs  for  the  self-
organizing map. All input values were variance scaled.
The SOM having 225 neurons in a 15x15 hexagonal
arrangement was constructed. The linear initialization
and batch training algorithms were used in the training
of  the  map.  A  Gaussian  function  was  used  as  the
neighborhood function. The map was taught with 10
epochs and the initial neighborhood had the value of
6. The SOM Toolbox [15] was used in the analysis
under a Matlab-software [16] platform.

The K-means algorithm was applied to the clustering
of the trained map or, more precisely, to the clustering
of the reference vectors. By clustering the map the
interactions can be detected more easily, and the
clusters can then be treated as sub-models of the main
model, which was formed by the SOM-algorithm.
After training and clustering, the desired reference
vector elements of clustered neurons were visualized
in a two-dimensional space to reveal the possible
interactions between data variables.

4 Results
The map was obtained by training a self-organizing
network using the soldering data as inputs. The map is
shown  in  Fig.  2.  The  SOM  was  then  clustered
according to the ten known flux types by using the K-
means algorithm. These clusters are also illustrated in
Fig. 2.

Fig. 2 SOM using the data of a soldering process

As a result of the flux-specific inspection, interesting
multidimensional correlations between certain process
variables were found after clustering the modeled
wave soldering process data. Two examples of these
correlations are illustrated here. In Fig. 3 and Fig. 4,
the neurons of the trained SOM map are presented
according to the selected variable components of their
reference vectors. For example, the number of balled
solders is presented as a function of the solder wave in
Fig. 3. A tremendous variation between the behaviors
of different flux types can be clearly observed. In the
case of flux 3, the appearance of balled solders
decreases with the growth of the solder wave
intensity. In contrast, in the case of flux 2 the number
of balled solders on the PCB increases linearly with
the solder wave.
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Fig. 3 The number of balled solders presented as a
function  of  the  solder  wave  [rpm]  by  using  the
reference vectors of neurons.

In Fig. 4, the differing behavior between three
separate fluxes can be seen. For all these three fluxes,
the number of solder bridges decreases as the power of
the  solder  wave  pump  is  increased.  However,  the
overall patterns and locations of the flux plots are
essentially dissimilar to each other, and they can be
easily seen as separate models.

Fig.  4  The  number  of  solder  bridges  presented  as  a
function  of  the  solder  wave  [rpm]  by  using  the
reference vectors of neurons.

5 Discussion
The aim of the study was to discover whether the
neural network modeling method could be a useful
and time-saving way to analyze a batch-like industrial
process, such as wave soldering. The findings indicate
that  the  approach  described  in  this  paper  is  a  useful
way  to  model  the  wave  soldering  process  data  that
were under examination. By using the selected
method, interesting relations were found quite fast and
easily, the relations which would have been much
more difficult to find using traditional data processing
methods.

It has been suggested that the wave soldering process
parameters can be optimized using statistical methods,
namely variance analysis, Pareto diagrams, and
finally, regression analysis after eliminating any
insignificant effects [5]. By using the statistical
method, the optimal values for certain soldering
parameters, such as chip wave, flux quantity and surge
plate height, could be found to obtain a minimum
number of solder bridges and wetting defects [5].
However, this kind of approach demands a very
careful design of experiments and much testing work,
and, on the other hand, does not work properly if there
are a lot of missing values present in the input data. In
addition,  if  the  data  set  to  be  analyzed  is  large  and
includes many variables, applying the statistical
methods may become quite laborious.

At the beginning of this study it was suggested by
process experts that, in the case of solder bridges, the
most important wave soldering parameters affecting
the bridging problem would be track speed, chip and
main solder wave intensities, and the back plate
height, all of which have an influence on the contact
time for the board and the solder. Additionally, the
experts suggested the flux type and quantity, and the
flux properties, such as the solid content and the acid
number of the flux, to have a minor influence on the
bridging phenomenon. Furthermore, it is estimated
[17] that merely the contact time itself may contribute
over 30 % to the bridging in lead-free wave soldering,
the effect of preheat temperature being ca. 30 %,
whereas the flux quantity may contribute less than 10
% to the formation of solder bridges.

In the case of these data, though, the effect of flux
quantity, i.e. the flux pump frequency, to the bridging
problem was  not  very  clear.  Instead,  the  solder  wave
seems to have an impact on the formation of solder
bridges, but this influence is clear only when the flux
type is taken into account also, which can be observed
in Fig. 4. By using any of the three fluxes presented in
Fig. 4, the increase in the solder wave intensity seems
to have a positive effect on the soldering quality, if
only the bridging problem is considered. A new
problem arises if the optimization of the process has to
be done by considering several defect types at a time.
As  can  be  easily  noticed  in  Fig.  3,  increasing  the
solder  wave  intensity  may  also  have  a  bad  effect  on
product quality, so compromises must be made if
optimizing is wanted to be done all-inclusively.

Nonetheless, it must be borne in mind that the
presented results must be considered to be tentative,
and more research should be made on the subject. It is
still possible that there is an unknown factor that has
been contributing to the differing behavior between
separate  fluxes.  One reason for  this  could  be  that  the
test arrangements for gathering the data were not
planned properly considering the SOM-method used
in the analysis stage. It must be taken into account that
the model can not reveal any features that are not
already present in some form in the modeling data.
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Preferably, the purpose of the method used is to refine
the  raw  data  to  a  form  that  can  be  interpreted  more
easily.

Hence, if the data space, defined by the data points in
it, is lacking observation points in some crucial areas,
the defined overall process conditions could easily
favor some flux types over others and somewhat
distort the results. Thus, hasty conclusions should not
be drawn concerning, for example, putting the flux
types into some order based on their tendencies to
defect formation. On the other hand, the flux type is
rarely switched to another one in a real industrial
process unless some external factor makes the switch
obligatory. This is because replacing the flux with a
totally new one often leads to a new optimization
routine concerning the whole process. Of course, it
might be useful, in general, to consider more deeply
whether more time should be put to determine which
flux is finally selected to the process concerned.

At this stage, the question that might be raised is, why
use so complicated modeling methods, such as neural
networks, in the analysis? Why not just pick one flux
type  at  a  time  and  analyze  its  process  data,  for
instance, with some conventional statistical method?
There are two aspects that defend the use of the neural
network method presented in this paper. Firstly, if the
data to be analyzed involve a lot of missing values, the
conventional methods would be difficult and very
time-consuming to apply. Instead, by using the batch
algorithm -based SOM method presented here, this
problem does not appear, because the possible missing
values  in  the  data  are  simply  ignored  while  counting
the reference vector values. Secondly, if the data set to
be  analyzed  is  very  large,  it  could  be  a  very  time-
consuming operation and demand a lot of resources to
separate the desired subsets from it before the actual
analysis stage. Thus, by using the method presented
here, considerable cost savings could be reached
because the resources used in the analysis could be
used in some other productive work. The method even
makes it possible to analyze the process and detect the
dependencies  online,  which  could  be  useful  in  some
industrial cases.

It has been suggested [6] that the main applications of
the  SOM method are  in  visualizing  complex data  for
example in a two-dimensional space, and in creating
abstractions based on the data. Dividing the data
vectors to classes, i.e. the neurons, and counting their
generalized descriptions, i.e. the reference vectors, can
reveal process features that can be otherwise very
difficult to observe. Additionally, the SOM is a
nonlinear method, quite simple to modify and use, and
the fact that the missing values of the data do not have
to be substituted separately is a considerable
advantage in cases where the data to be handled are
more or less incomplete. Under these circumstances,
the method presented here is a valuable alternative
among the other modeling methods.

The method presented in this paper can be further
illustrated as in Fig. 5. At the first stage, there is a data
set from the process containing values for process
parameters. Then, the SOM is generated using the data
as model inputs. Next, the map is clustered according
to desired elements of the data to reveal the
dominating element of each territory of the map. At
the final stage, the clustered map can be used to form
sub-models that are able to reveal and visualize
relations between selected variables in a convenient
and user-friendly way. In one sense, the method can
be seen as refining the raw data into a more illustrative
form that can be visualized graphically.

Fig. 5 Schematic presentation of the method used

As can be easily noticed by examining Fig. 3 and Fig.
4, the overall data point patterns in these figures seem
rather confusing. It is not possible to detect any clear
interaction between the solder wave intensity and the
defect numbers without knowing the flux clusters that
are also presented in these figures. On the whole, the
reference vector values seem to be located
haphazardly in the illustrated two-dimensional space.
In contrast, after illustrating the flux clusters as sub-
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models, the interactions between solder wave and
soldering quality are revealed. This leads to the fact
that, in this case, creating and studying sub-models is
the best way to reveal the interactions.

In electronics production, the process conditions
determined for lead-containing manufacturing
materials and VOC-containing substances may no
longer be applicable or at least optimal. On the other
hand, the correct adjustment of the wave solder
process is, of course, important as such to produce
soldered PCBs with high quality and to minimize
ineffective process tuning. In this respect, the
successful computerized modeling of the process has
several advantages including the reduction of process
costs; a more efficient process and reduced material
loss are achieved as learning through trial and error is
decreased. Additionally, the resources that were
previously spent in time-consuming analysis work can
be now released for some other beneficial purposes.
The findings presented in this research seem very
promising considering the successful use of the
analysis method developed.

6 Conclusion
Because of the growing need for optimizing industrial
processes due to, for example, material replacements
in a process, developing new methods for process
analysis is very important. The results presented in
this paper show that the applied SOM-based neural
network method is an efficient and fruitful way to
model data acquired from the electronics industry. By
means of this data-driven modeling method, some new
findings were discovered concerning the dependencies
between the process parameters and some solder
defects.

However, further research is still needed to validate
the method more widely in the field of electronics
production processes. In addition to wave soldering,
manufacturing electronics includes other important
processes, such as paste printing, component
placement, testing, and also other soldering methods.
In analyzing the wave soldering process, though, the
findings seem this far very encouraging considering
the successful use of the analysis method developed.
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