
ADMISSIBLE BEHAVIOUR BASED ANALYSIS OF
DEADLOCK IN PETRI NET CONTROLLERS

Gašper Mušič1, Drago Matko1

1University of Ljubljana, Faculty of Electrical Engineering
1000 Ljubljana, Třzǎska 25, Slovenia

gasper.music@fe.uni-lj.si(Gašper Mǔsič)

Abstract

The paper addresses the problem of verification of discrete control logic that is typically im-
plemented by programmable controllers. To make the resultsof such a verification approach
useful for the control, an adequate model of the process under control is needed, which is not
readily available in many cases. To facilitate the derivation of the process model an approach is
proposed in the paper, which combines the calculation of safety oriented interlock controllers
in terms of supervisory control theory (SCT), the corresponding calculation of admissible be-
haviour of the system, and specification of desired system operation by Petri nets. The interlock
part of the logic is designed by SCT while operational procedures are specified by a Petri net,
extended by input and output mappings. A potential deadlockin the controlled system is then
verified taking the admissible behaviour model as a process model. The analysis of the simul-
taneously operated supervisory control based interlock controller and Petri net based sequential
controller is based on the C-reachability graph. The paper isfocused on the calculation of the
graph. A corresponding algorithm is presented and some remarks about computational com-
plexity are given. The application of the algorithm is illustrated by a simple manufacturing cell
example.

Keywords: Petri nets, modelling, manufacturing systems, logic controllers.

Presenting Author’s Biography

Gǎsper Mǔsič received B.Sc., M.Sc. and Ph.D. degrees in electrical en-
gineering from the University of Ljubljana, Slovenia in 1992, 1995, and
1998, respectively. He is Associate Professor at the Faculty of Electrical
Engineering, University of Ljubljana. His research interest are in discrete
event and hybrid dynamical systems, supervisory control, and applications
in industrial process control.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM



1 Introduction

While the functionality of programmable logic con-
trollers (PLCs) is continuously expanding, the discrete
control logic remains the core of their operation. For
a long time, PLCs have been programmed in a rather
intuitive way using specialised graphical programming
languages such as ladder diagram [1]. Recently, much
attention has been given to formal methods and their
application in design and verification of PLC programs.
This is motivated by the growing complexity of the con-
trol problems, demands for reduced development time
and need for reuse of existing software modules on one
hand, and on the other hand by increasing demand of
society for a better control of technological risks.

Verification based approaches are dealing with formal-
ization of the specifications and verification of the pro-
gram against the formal specification [2]. The program
passes the verification when the behaviour specified by
the designer satisfies a set of properties. Properties can
be checked on the control model only or by considering
a model (possibly partial) of the process. The later is
a more realistic approach of verification, called model-
based [3].

To make the results of such a verification approach use-
ful for the control, an adequate model of the process un-
der control is needed, which is not readily available in
many cases. Different aspects of plant modelling for the
purpose of controller verification have been extensively
studied in [4, 5, 6]. An approach is presented there,
which enables a detailed and systematic modelling of
controlled processes employing a special modelling for-
malism.

In special cases, however, a suitable model for verifica-
tion may be obtained by considering a multilevel con-
trol structure and adopting a partially controlled plant
on the lower level as a plant model for the verifica-
tion of the upper level. Such a two-level approach is
proposed in our previous work [7] and is further elab-
orated in this paper. In particular, such an approach
may be used in applications involving PLCs, where a
large portion of the control code is dedicated to safety
measures, also called interlocks, and the corresponding
part of the logic in sometimes referred as locking con-
troller [8]. Assuming a two stage approach, where the
interlock logic is designed first and the sequential part
is then added atop of that, the admissible behaviour of
the plant imposed by the interlock logic may be adopted
as a plant model for verification of the sequential part.

In the presented approach the interlock part of the con-
trol logic is synthesized by the use of the supervisory
control theory (SCT) [9, 10]. The synthesis also gives
a model of the admissible behaviour of the process,
i.e. the behaviour of the process that complies with
the given interlock specifications. The sequential part
is then designed by Petri nets [11], which are used in
a sense of formal specification that is verified against
the admissible model derived during the interlock syn-
thesis. The basic property of interest is the absence of
deadlock. A corresponding reachability based analy-

sis technique is proposed, which builds a C-reachability
graph and enables a detection of any potential deadlock
in the system that is controlled by simultaneously oper-
ated supervisory control based interlock controller and
Petri net based sequential controller.

The motivation for the use of two modelling formalisms
is twofold: First, the supervisory control theory is well
suited for the interlock design. SCT is essentially safety
oriented, i.e., it enables the synthesis of a control pol-
icy that prevents the undesired behaviour of the con-
trolled plant. In most applications, however, there are
also requirements about desired behaviour of the plant
that should be enforced by the controller. The SCT
based synthesis and implementation of controllers that
force the system to exhibit desired behaviour is diffi-
cult, although some related results are reported in the
literature [12, 13]. Secondly, the Petri net framework
provides an intuitive way of modelling operation se-
quences, while the Petri net based supervisory control
methods are less elaborated, especially in terms of event
feedback, and little synthesis tools are available. The
proposed combined approach exploits the advantages
of both frameworks. Compared to other approaches that
are described in the literature, the main advantage of the
combined approach is that it eliminates the need for an
additional plant model for the purpose of verification of
the sequential controller. The corresponding model is
derived automatically during the interlock design stage.

2 Combined synthesis/verification app-
proach

In the combined approach, the evolution of the Petri net
is driven by the underlying layer of interlock control
logic that is modelled as a finite state machine. The link
between the two representations are input/output (I/O)
signals.

2.1 Events, I/O signals, and admissible behaviour

The supervisory control concept [9] deals with restric-
tions on the behaviour of a discrete event system im-
posed by an external controller – a supervisor, acting
by disabling events. The set of events is partitioned
into two disjoint subsets – controllable and uncontrol-
lable events:Σ = Σc ∪ Σu, Σc ∩ Σu = ∅. The uncon-
trollable events can not be disabled. The supervisor is
computed based on the open-loop system model and a
specification model. The key issues are the concept of
controllability and the concept of supremal controllable
sublanguage [10, 14].

The feasible set of input/output (I/O) signal pat-
terns is defined by the supervisorS and is implicitly
given by the discrete event model of the supervised
plant in a form of a deterministic generatorHa =
(X, Σ, δ, x0, Xm), which is derived by the supervisory
control synthesis procedure as a model of admissible
behaviour.

HereX is a set of states,Σ is a set of symbols associ-
ated with events,δ : X × Σ → X is a state transition
function and is in general a partial function on its do-

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM



main,x0 is the initial state andXm is a set of marker
states. A symbolσi ∈ Σ is generated at every transi-
tion. A finite set of symbols is called an event sequence.
The language generated byG is L(G). It is interpreted
as a set of all finite event sequences that may occur in
the automaton. The language marked byG is denoted
by Lm(G) and consists of event sequences that end in
marker states. LetΣ∗ denote a set of all finite sequences
of elements ofΣ including the empty sequence, and let
st denote a concatenation of sequencess, t ∈ Σ∗. A
prefix closure of a languageL ⊆ Σ∗ is then defined as
L = {s ∈ Σ∗; ∃t ∈ Σ∗, st ∈ L}. The automaton
is non-blocking, if it is capable to reach a marker state
from any reachable state, i.e.,Lm(G) = L(G).

As explained in [7], blocking is not considered at this
point, thereforeXm = X. LanguageL(Ha) =
La generated byHa contains all admissible event se-
quences.

An eventσ ∈ Σ may be regarded either as an external
event observed through the change in the state of the
corresponding I/O signal or may be actively triggered
by the controller. In any case, a change of the con-
troller input or output signal state is associated by every
eventσ ∈ Σ. This will be denoted byv′ = δv(v, σ)
andu′ = δu(u, σ). The sets of output and input states
are denoted asU := {u|u : A → {0, 1}} and V :=
{v|v : B → {0, 1}}, where A and B are the sets of con-
troller output and input signals, respectively. Next, a set
of total states is defined asW := {w|w = (x, u, v)}.

Considering event sequences that are generated by the
model of the admissible behaviourHa a new total state
automatonHw = (W,Σ, ξ, w0,Wm) is constructed,
whereW ⊆ X × U × V as defined above,Σ is the
set of events composing the admissible behaviour, and
ξ is the new state transition function defined as follows:

ξ(w, σ) =

{

(δ(x, σ), u′, v′) if δ(x, σ) defined
undefined if δ(x, σ) undefined

(1)
wherew = (x, u, v), u′ = δu(u, σ) andv′ = δv(v, σ)
as defined above. For convenience,ξ is extended from
domainW × Σ to W × Σ∗ in the usual way. Initial
state isw0 = (x0, u0, v0) and all states are marked,
Wm = W . Note thatL(Hw) = L(Ha) = La, which is
evident from (1).

2.2 Specification of operational procedures

Petri nets as a tool for modelling and specification of
manufacturing systems are described in a number of
sources, such as [11, 10]. A Place/Transition Petri net
can be described as a bipartite graph consisting of two
types of nodes, places and transitions. Nodes are inter-
connected by directed arcs. State of the system is de-
noted by distribution of tokens (called marking) over
the places. For the purpose of simulation and pos-
sible implementation by industrial controllers, the in-
put/output interpretation can be added. One of such ex-
tensions is a class of Petri nets calledReal-Time Petri
Nets(RTPN) [15]. Formally, a RTPN is defined as an
eight tupleRTPN = (P, T, I,O,m0, D, Y, Z) where
P = {p1, p2, . . . , pk}, k > 0 is a finite set of places;

T = {t1, t2, . . . , tl}, l > 0 is a finite set of transitions
(with P ∪ T 6= ∅ andP ∩ T = ∅); I : P × T → N is
a function that specifies weights of arcs directed from
places to transitions;O : P × T → N is a function
that specifies weights of arcs directed from transitions
to places;m : P → {0, 1, 2, . . .} is a marking,m0 is
the initial marking.D : T → R

+ is a firing time-delay
function;Y : T → B is an input signal function, where
B is the set of Boolean expressions on the setB of in-
put signals;Z : P → 2A×{0,1} is a physical output
function, whereA is the set of output signals.

In the following the paper only deals with safe RTPN,
i.e. m(p) ≤ 1,∀p ∈ P . The output function of a place
sets the related output signals to the specified values
when the place is marked.

2.3 RTPN control of discrete-event process

To enable a detailed analysis of potential deadlock in a
RTPN that is controlling a process under a restriction
of a discrete event supervisor, the firing rule of a RTPN
must be defined. A firing rule from [15] is here adopted
with a slight modification.

In a standard Petri net theory a transitiont ∈ T is said
to be enabled ifm(p) ≥ I(p, t),∀p ∈ •t. Here•t ⊆ P
denotes the set of places which are inputs to a transition
t ∈ T . This definition also holds for a RTPN but such
a transition is called astate enabledtransition. A set of
state enabled transitions of a RTPN under markingm is
Te(m) := {t|t is state enabled underm}.

Next a transitiont ∈ T is defined asinput enabled
under an input statev ∈ V when eval(Y (t), v) =
1. Functioneval(e, v) denotes an evaluation of the
Boolean expressione ∈ B by the given input statev.
A set of input enabled transitions of a RTPN under in-
put statev is Ti(v) := {t|t is input enabled underv}.

A transition is defined asoutput enabledwhen all the
preceding control actions have actually been executed.
A transition t ∈ T is output enabled under an output
stateu ∈ U whenZ(p) = {(a1, i1), . . . , (an, in)} ⇒
u(aj) = ij ,∀(aj , ij) ∈ Z(p),∀p ∈ •t. A set of output
enabled transitions of a RTPN under output stateu is
To(u) := {t|t is output enabled underu}.

The firing rule of a RTPN can now be defined as fol-
lows: (i) a transitiont ∈ T is enabled if it is state
enabled, input enabled and output enabled, i.e.,t ∈
Te ∩ Ti ∩ To; (ii ) an enabled transition may or may
not fire, which depends on the firing time-delay func-
tion associated with it: a transition with zero time delay
fires immediately when enabled, a transition with non-
zero time delay fires immediately after delayD(t) ex-
pires (the corresponding timer starts when transition is
enabled); (iii ) a firing of a transition is immediate and
removes a token from each of the input places of the
transition and adds a token to each of the output places
of the transition. A single transition firing at a time is
assumed andm[t〉m′ denotes thatt may fire underm,
resulting inm′.

Given Petri netN and markingm, a markingm′ is said
to be immediately reachable (m′ ∈ R1(N ,m)) if there

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM



exists a transitiont such thatt is state enabled under
m and its firing results inm′, i.e, m[t〉m′. A marking
mk is said to be reachable from a markingm0 (mk ∈
R(N ,m0)) if there exists a sequence〈m0m1 . . . mk〉
such thatmi ∈ R1(N ,mi−1) for 0 < i ≤ k. The
notion od reachability can be extended by considering
input and output signals of a RTPN:

Definition 1 Given a RTPNNR, marking m, input
state v, and output stateu, marking m′ is said to
be immediatelyIO-reachableunder I/O statev, u, i.e.,
m′ ∈ RIO

1 (NR,m, v, u), if there exists a transitiont
such thatt is state enabled, input enabled, and output
enabled underm, v, andu, respectively, and the firing
of t results in the markingm′.

The paper is focused on the operation of a con-
troller modelled by a RTPN and acting on a discrete-
event systemHw. Therefore a C-reachability (control-
reachability) is defined as follows:

Definition 2 Given a RTPNNR with markingm, and
coupled to a discrete-event systemHw, markingm′ is
said to be immediatelyC-reachableunder total state
state w, i.e., m′ ∈ RC

1 (NR,m,Hw, w), when it is
immediately IO-reachable under I/O statev, u, where
w = (x, u, v).

The admissible firing sequences define the C-
reachability setRC(NR,m0,Hw) of a RTPNNR cou-
pled toHw:

Definition 3 Given a RTPNNR with initial mark-
ing m0, and coupled to a discrete-event systemHw

with initial state w0, marking m′ is said to beC-
reachable, i.e., m′ ∈ RC(NR,m0,Hw) if there
exists a sequence〈m0m1 . . . mk〉 such that mi ∈
RC

1 (NR,mi−1,Hw, wi−1) and wi−1 = ξ(w0, s); s ∈
La for 0 < i ≤ k. By definition, m0 ∈
RC(NR,m0,Hw)

Hw is assumed to be in the initial statew0 when a cor-
responding RTPN is marked by the initial markingm0.
The changes of the input/output signal state are driven
by the evolution of the two models, the total state au-
tomaton model of admissible behaviour of the plant and
the RTPN model of operational sequences.

Considering the notion of C-reachability the deadlock-
free operation of a RTPN controller can now be defined:

Definition 4 A RTPN system(NR,m0) coupled toHw

is deadlock-free when for every C-reachable marking
m ∈ RC(NR,m0,Hw) there exists a markingm′

that is immediately C-reachable fromm, i.e., m′ ∈
RC

1 (NR,m,Hw, w), wherew = ξ(w0, s); s ∈ La.

3 Analysis of deadlock
To be able to analyse the existence or absence of dead-
lock in the RTPN controlling a discrete-event process
a new kind of reachability graph is proposed that enu-
merates all admissible event and transition sequences.

3.1 C-reachability graph

Nodes of the graph are pairs(m,w), wherem is a
marking of the RTPN whilew is the state of the au-
tomatonHw. The construction starts in the initial state
(m0, w0), wherew0 = (x0, u0, v0). A set of feasible
events is then searched for. This is a subset of feasible
eventsΓ(x0) of the automatonHa. More precisely, the
set is composed of two subsets. One is the set of all
events feasible atx0 and not generated by the RTPN.
Second is the set of events generated by actions of the
marked places of the RTPN and defined by the output
functionZ, which are also feasible atx0.

Let ΣCTRL denote a set of events triggered by RTPN,
andΣSP a set of events that are not generated by the
RTPN (ΣSP = Σ − ΣCTRL). Let ΣA(m) denote the
set of events generated by actions of the marked places
of the RTPN. The set of feasible eventsΣF atHa in the
statex and RTPN marked bym is then given by

ΣF (x,m) = Γ(x) ∩ (ΣSP ∪ ΣA(m)) (2)

Then a node(m0, wi) wherewi = ξ(w0, σi) is added
for ∀σi ∈ ΣF (x0,m0) and the arc from(m0, w0) to
(m0, wi) is labelledσi.

Next the set of immediately C-reachable markings
RC

1 (NR,m0,Hw, w0) is determined. For every cor-
responding markingmi ∈ RC

1 (NR,m0,Hw, w0) a
node(mi, w0) is added to the graph and the arc from
(m0, w0) to (mi, w0) is labelledti whereti is the tran-
sition leading fromm0 to mi. In case of conflicting
transitions, all possible firing sequences are enumerated
as in standard reachability analysis.

The procedure is repeated for every added node, and
duplicate nodes of the graph are merged. The procedure
stops when there are no new nodes or all new nodes are
duplicate nodes.

In the described way a new kind of reachability graph
is derived. A set of nodes is associated with every
reachable marking and the transitions between nodes
are of two types: (i) transitions of a RTPN connect
nodes associated with distinct markings, (ii ) transitions
related to events in a model of admissible behaviour
connect nodes associated with the same marking. Since
the derived graph includes input and output events of
a controller it is called theC-reachability graphof a
RTPN controller. It must be noted that only the order-
ing of events is considered, while timing information of
a RTPN is omitted.

The resulting graph can be interpreted as an automa-
ton where transitions of a RTPN are considered as
additional events in the system. Such an automa-
ton is denoted asCG = (N,ΣCG, ζ, n0, Nm) where
N ⊆ RC(NR,m0,Hw) × W is a set of nodes in the
graph,ΣCG ⊆ Σ ∪ T is the set of transition labels,
ζ : N × ΣCG → N is a transition function defined by
arcs of the graph,n0 = (m0, w0) is the initial state, and
Nm is the set of marker states.

It is important to note that since the construction is
driven by sequential specification, only a small subset

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM



of possible I/O combinations is actually enumerated in
CG.

Finally, the C-reachability graph is used to analyse a
potential blocking of a controller. The following propo-
sition is applied:

Proposition 1 A control specification given as a RTPN
system (NR,m0) with transition set T and act-
ing on a discrete-event systemHw is deadlock free
if a corresponding C-reachability graphCG =
(N,ΣCG, ζ, n0, Nm):

(i) contains at least one transition of the RTPN, i.e.
one of transitions appears at least once as a label
of an edge in the graph,∃t ∈ T, n, n′ ∈ N,n′ =
ζ(n, t), and

(ii) may be interpreted as a nonblocking automaton,
givenNm = {n0}.

Proof: For a non-blocking automaton withNm =
n0, ∀s ∈ L(CG),∃s′, ss′ ∈ L(CG), ζ(n0, ss

′) = n0.
It is therefore clear that it can return to initial state from
any reachable state. Consider now the case that the au-
tomaton is in staten = (m,w) wherem 6= m0. Clearly
if the automaton can return to the initial staten0 =
(m0, w0), there exists a firing sequence〈mm′ . . . m0〉
with m′ ∈ RC

1 (NR,m,Hw, w). Next, the case when
the automaton is in staten = (m0, w) is considered. In
this case the return to the initial state of the automaton
is not sufficient for the RTPN being deadlock free as the
initial state may be reached without a change in mark-
ing and consequently without firing a single transition.
But if ∃t ∈ T, n′ = ζ(n, t), for somen, n′ ∈ N there
must also existm′ ∈ RC

1 (NR,m0,Hw, w), such that
m0[t〉m

′. Therefore an immediately C-reachable mark-
ing can be found for every reachable marking including
m0, which means the RTPN is deadlock free according
to Def. 4.

There is often a need to extend the requirement for a
control specification to be deadlock free. Commonly it
is also required for all parts of the sequential behaviour
to be eventually reachable. In terms of Petri net termi-
nology, this requires any transition within the Petri net
to eventually become enabled, starting from any mark-
ing reachable from initial marking. Such a Petri net is
live [11]. To adapt this notion to sequential specifica-
tion in terms of RTPN acting on a process under super-
vision, the following definition is applied.

Definition 5 A RTPN system(NR,m0) with transition
setT and coupled toHw is C-live when for every C-
reachable markingm ∈ RC(NR,m0,Hw) any transi-
tion t ∈ T will eventually be fired.

The C-liveness can also be checked from the C-
reachability graph in a similar way as the absence of
deadlocks. The difference is that since any transition
must be eventually fired, all transitions must appear in
the C-reachability graph. This is summarized in:

Proposition 2 RTPN system(NR,m0) with transition
setT and coupled toHw is C-live if a corresponding
C-reachability graphCG = (N,ΣCG, ζ, n0, Nm):

(i) contains all transitions of the RTPN, i.e.∀t ∈
T,∃n, n′ ∈ N,n′ = ζ(n, t)

(ii) may be interpreted as a nonblocking automaton,
givenNm = {n0}.

Proof: By construction, any node of CG maps
to a reachable marking of the RTPN. If all transitions
appear as the labels of arcs of CG this corresponds to
eventual firing of any transition from the initial mark-
ing. If CG can return to the initial state from a given
node, the firing sequence can also continue to any other
node of the CG, which means any transition of RTPN
can eventually be fired, starting from every reachable
marking.

Note that although in general most of the spontaneous
events is uncontrollable in the sense of supervisory con-
trol and most of the controlled events is also control-
lable, this correspondence is not strict. An uncontrol-
lable eventσ1 ∈ Σu may be generated by the RTPN,
thereforeσ1 ∈ ΣCTRL, e.g., the start of an emergency
procedure, which must not be disabled. On the other
hand a controllable eventσ2 ∈ Σc may be generated
externally (σ2 ∈ ΣSP ), e.g., an operator request that
may be blocked by the supervisor.

3.2 Calculation of the C-reachability graph

To further illustrate the procedure of composing the
graph a sketch of the corresponding calculation pro-
cedure is given. The graph is represented asCG =
(N,A) where N is a set of nodes in a form of or-
dered pairs(m,w) as described above, andA is a set
of arcs, given asA ⊆ N × (Σ ∪ PN.T ) × N . An arc
between nodesn1 and n2 is denoted(n1, e, n2), and
e ∈ Σ ∪ PN.T is either an I/O event or Petri net tran-
sition. The procedure is summarized in the following
algorithm:

Algorithm 1:

w := (x0, u0, v0);
NCG := (m0, w); (* a node related to initial mark-
ing of a RTPN, initial state of the automaton, and
initial state of I/O signals *)
CG.N :={NCG};
CG.A :=∅;
RSET :={m0};
(* events that are not triggered by RTPN *)
ΣSP := spontaneous(G, PN);
U := {NCG}; (* list of unexplored nodes *)
while U 6= ∅ do

choose a nodeNCG ∈ U ;
(* related marking of RTPN *)
m := marking(NCG);
(* related state ofHa *)
x := state(NCG);

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM



(* related state ofHw *)
w := total state(NCG);
(* events triggered by actions in marked
places *)
ΣA := actions(PN, m,NCG);
(* feasible events list *)
ΣF := Γ(x) ∩ (ΣSP ∪ ΣA);
for ∀σ ∈ ΣF do

w′ := (δ(x, σ), δu(u, σ), δv(v, σ));
newNCG := (m,w′);
if not a duplicate nodethen

CG.N := CG.N∪ {newNCG};
CG.A := CG.A∪

{(NCG, σ, newNCG)};
U := U ∪ {newNCG};

else
adjust connections of the duplicated
node;

end

end
(* enabled transitions *)
TEN := getEnabledTransitions(PN, m);
(* condition-enabled transitions *)
TCEN := checkConditions(PN,TEN , NCG);
(* check if actions in the input places have
been executed: *)
TACEN := checkActions(PN,TCEN , NCG);
(* transitions that may be triggered *)
for ∀t ∈ TACEN do

u := getFiringVector(PN, t);
(* calculate a new marking *)
m’ := m + (PN.O-PN.I) u;
newNCG := (m’, w);
if not a duplicate nodethen

CG.N := CG.N∪ {newNCG};
CG.A := CG.A∪

{(NCG, t, newNCG)};
U := U ∪ {newNCG};

else
adjust connections of the duplicated
node;

end

end
(* remove the node from the list of unex-
plored nodes *)
U := U - {NCG};

end

3.3 Complexity

The state size of the constructed C-reachability graph
depends heavily on the type and properties of the pro-
cess considered and the related operational procedure
specification. However, some conclusions can be made
considering a typical application.

First it should be noted that the number of iterations
of the main loop ofAlgorithm 1equals the number of
nodes (states) in the C-reachability graph. The number
of nodes will therefore be of the primary concern.

The number of nodes in the graph is typically mostly re-
lated to the complexity of RTPN. This is because the re-
lated specification of the operational procedure extracts
only a small subset of states from the admissible be-
haviour model.

In the following only the case where all events in the
admissible behaviour model are related to I/O signals
of the RTPN is considered. Furthermore, the given es-
timation is limited to the class of safe Petri nets with no
concurrency (state machines). The number of possible
markings in such a net equals the number of places.

At every marking, a set of new nodes in the C-
reachability graph is generated, according to the switch-
ing of the I/O signals. If the number of signalsNs

that can switch at particular marking is taken into ac-
count, and there is no information on their restrictions,
all possible orderings are considered. The maximum
number of added nodes is thenNs!. An additional node
is inserted for every transition firing. Letnp denote the
number of places in the RTPN, and letNti denote the
number of outgoing transitions from placepi. The esti-
mated upper bound for the number of nodes in the graph
is then

Nnodes ≤

np
∑

i=1

Ns! · Nti
(3)

Clearly only the proper estimation ofNs can give a use-
ful result. The number of output signals that can switch
by a particular marking is known. It is given by the
number of actions at the marked place, i.e the number
of elements inZ(pi). It is more difficult to estimate
the number of possible events that are not triggered by
the RTPN. In Sect. 3.1 these events were denoted by
ΣSP (spontaneous events). Further look at equation
(2) shows thatNs is actually the number of elements
in the union of allΣF (x,m) at fixedm. Since this is
rather difficult to estimate, only the maximum number
of spontaneous events in a sequence at a given marking
is estimated. LetNSP (pi) denote this estimate and let
NA(pi) denote a number of actions related to marked
placepi. The estimate of the upper bound for the num-
ber of nodes is then

Nnodes ≤

np
∑

i=1

(NSP (pi) + NA(pi))! · Nti
(4)

The estimate is rather conservative, because all event
orderings were considered. To achieve a better esti-
mate, a restrictions on the event orderings given by ad-
missible behaviour model should be taken into account.

4 Example
To illustrate the concept of C-reachability graph an
example is given, which is simple enough to exhibit
interesting properties, but in the same time based on
the equipment used in industrial applications. The ex-
ample deals with a part of a laboratory scale modu-
lar production line composed of five working stations
controlled by five programmable logic controllers [13].

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM



T e s t i n g P r o c e s s i n g

R o t a t i n g
t a b l e

H o l d i n g
p i s t o n

Fig. 1 Part of the production line

X0 X1

ar1

ar0

Fig. 2 Model of the rotating table

The stations perform distribution of workpieces, test-
ing of workpieces, processing, manipulation and sort-
ing. Every working station is further composed of a set
of pneumatic pistons, gears, two state sensors, electro-
pneumatic actuators, which form a mechanical setup
that can be controlled by a PLC to perform a required
operation.

The central part of the line is considered, i.e., the
processing station, consisting of a rotational table,
that moves a workpiece between consequent phases, a
drilling machine, and a testing device. Next working
station includes a manipulator that transports the work-
piece further. The setup is shown in Fig. 1.

The setup is similar to the one used in [16], except that a
much closer view to the process is taken in this paper. In
[16] the SCT is used to coordinate the operating phases,
while the example presented here is dealing with the
control logic inside a particular phase. Switching of I/O
signals in desired operational procedures is modelled
as well as the behaviour in erroneous conditions in the
process.

To keep the presentation simple enough a particular de-
tail will be studied, i.e. the interlock between rotat-
ing table an a holder that fixes a workpiece before it
is drilled. The table is driven by an electric motor,
switched on (ar1) and off (ar0). The table has four
stop positions, indicated by a proximity switchsp. The
switch closes (sp1) when the table comes into a posi-
tion, and releases (sp0) when the position is left. For
the example, only the switching of the actuatorar is
considered. The simplified finite state machine model
of the table is shown in Fig. 2.

The holding piston is driven by an electro-pneumatic
valve switching the pressure on and off. Initially, the
piston is in the forward position and it moves backwards
whenaf = 1 and forwards whenaf = 0. The pis-

X0 X3

X1 X2

ah1
ah0

sb1

sb0

ah0
ah1

sb0

Fig. 3 Model of the piston

ton is equipped by two limit switches, indicating back-
ward (sb) and forward (sf ) position. The movement is
limited to the distance between the two limit switches.
Only one of the two switches (sb) is used in the exam-
ple. The simplified finite state machine model of the
piston is shown in Fig. 3. The interesting feature of
the piston is that moves forwards in case of the loss of
supply pressure. Since the piston must be moved back-
wards before the table can start rotating, the potential
loss of pressure presents an interesting problem from
the control design viewpoint.

To maintain the interlock between the table and the pis-
ton the behaviour presented by automaton in Fig. 4 is
imposed. The start of the table rotation (ar1) is only
allowed when the piston is drawn back (sb = 1). If the
supply pressure is lost, this would result insb0. The
only allowed action is then to stop rotation (ar0). (The
requirement to immediately force the rotation stop can
not be achieved by the supervisor). Another require-
ment that is imposed by automaton in Fig. 4 is to pre-
vent controlled forwards movement of the piston (ah0)
while the table is rotating.

The specification is controllable and results in the ad-
missible behaviour of the process as shown in Fig. 5

Next, an operational procedure for the process is im-
posed. An example of the procedural specification is
shown in Fig. 6. The interpretation of places and tran-
sitions is given in Tabs. 1 and 2.

S0 S1

S2 S3

S4

sb1

sb0

ar1
ar0

sb1

sb0

ar0

ah0

sb0

ah1, ah0

Fig. 4 Table - piston interlock specification

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM



A5 A3 A4

A1 A2 A6

ah1

ah0

ar0

sb0 sb0
sb1

sb0
sb1

ah0
ar1

ar0

Fig. 5 Admissible behaviour

Fig. 6 Specification of the operational procedure

A RTPN defined this way is verified against the pre-
viously derived open-loop process model. The initial
states of the input signals that are not part of the admis-
sible behaviour model may be left undefined or may be
fixed at specific value. In our case signalsack andsp
are set undefined, whilestart andcycle are assumed
to be 1. The initial position of the piston is assumed in
front (sb = 0). The initial state of all output signals is
assumed to be 0.

For the given case the constructed C-reachability graph
consists of 12 nodes and 17 transitions, and is shown
in Fig. 7. The analysis of the graph shows the system
operation is blocking after placep4 is marked. This is
because an attempt has been made to switch theah sig-
nal off while the table is rotating. The supervisor blocks
the required action and since the firing rule of the RTPN
assumes all actions are completed before an outgoing
transition is triggered, the operation is deadlocked.

To overcome the error, the specification is modified ac-
cording to Tab. 3. The newly constructed C-reachability
graph consists of 25 nodes and 41 transitions, and is
shown in Fig. 8. It can be observed that the automaton
can reach the initial state from any reachable state and
that every transition of the RTPN occurs at least once
as an event label in the graph. The application of the
Propositions 1 and 2 on the graph therefore shows the
system operation is now deadlock free and C-live.

Tab. 1 RTPN transition conditions

Y (t1)=start
Y (t2)=sb
Y (t3)=cycle
Y (t4)=sp
Y (t5)=NOT sb
Y (t6)=sb
Y (t7)=NOT sb
Y (t8)=ack AND NOT sb
legend:
ack - error acknowledgement
cycle - start of the cycle
sb - back position sensor
sp - table position sensor
start - start of operation

Tab. 2 RTPN place actions

Z(p1)={(l start, 1),(lerror, 0)}
Z(p2)={(l start, 0),(ah, 1)}
Z(p3)=∅
Z(p4)={(ar, 1),(ah, 0)}
Z(p5)={(ar, 0)}
Z(p6)={(ah, 1)}
Z(p7)={(l error, 1),(ah, 0),(ar, 0)}
legend:
l start - initial st. indicator
l error - error indicator
ah - activate the piston
ar - table rotation

For the application of the estimate of the number of
nodes to the given case, an estimate of the number of
spontaneous events at every marking is first needed. In
this case the task is relatively simple since there are
only two spontaneous events:sb0 andsb1 (events re-
lated to signalsack, cycle, sp andstart are not part of
the admissible behaviour model and are not taken into
account). Furthermore, no spontaneous events can oc-
cur at the initial marking (m0(p1) = 1). By taking into
consideration also the RTPN output function, and again
considering only events that take part in the model of
the admissible behaviour, (4) gives an estimate of 75
for the number of nodes in the graph. Obviously, this is
only a very coarse estimate of the real number.

Tab. 3 Corrected RTPN place actions

Z(p1)={(l start, 1),(lerror, 0)}
Z(p2)={(l start, 0),(ah, 1)}
Z(p3)=∅
Z(p4)={(ar, 1)}
Z(p5)={(ar, 0),(ah, 0)}
Z(p6)={(ah, 1)}
Z(p7)={(l error, 1),(ah, 0),(ar, 0)}

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM



X1, 1 X2, 1

X2, 2 X2, 3

X3, 2 X3, 3

X4, 2 X4, 3 X4, 4 X4, 6

X4, 1 X4, 5

t1

ah1

sb1

sb0
t2

sb1

sb0
t3 t3

sb1

sb0

ar1

sb1

sb0

ah0 ah0

sb0

Fig. 7 C-reachability graph with deadlock

5 Conclusions and future works

The algorithm for the calculation of the C-reachability
graph presented in the paper enables the detailed anal-
ysis of potential deadlock in the discretely controlled
processes. The prerequisite is that a discrete-event
model of the plant is available. Such a model can eas-
ily be obtained when the interlock layer is designed by
the supervisory control theory, which gives a model of
admissible behaviour.

The potential applicability of the algorithm is limited
by the complexity of the graph. Therefore an estimate
for the number of nodes in the graph was given. Al-
though very coarse, it enables to estimate whether the
construction of the graph is feasible. An improvement
of the estimate is foreseen for the future work. Another
issue for the future work is to explore techniques for
reachability analysis without the explicit enumeration
of the state-space.

The combined synthesis/verification approach enables
a relatively high automation of the control synthesis for
the manufacturing systems. Once the model of the plant
and the specification models are developed an appropri-
ate computer tool may perform all the necessary calcu-
lations and even generate the control code. Only a small
amount of additional programming is then needed to
obtain an operating logic controller.

6 References

[1] S.S. Peng and M.C. Zhou. Ladder diagram
and petri-net-based discrete-event control design
methods.IEEE Trans. on Systems, Man, and Cy-
bernetics - Part C, 34:523–531, 2004.

[2] G. Frey and L. Litz. Formal methods in plc-
programming. InProc. of the SMC’2000. 2000.

[3] M. Rausch and B.H. Krogh. Formal verification
of plc programs. InProceedings of American

X1, 1 X2, 1

X6, 5 X6, 1 X2, 2 X2, 3

X6, 3 X6, 2 X3, 2 X3, 3

X6, 4 X6, 6 X4, 2 X4, 3

X4, 6 X4, 4

X5, 6 X5, 4

X5, 2 X5, 3

X5, 1 X5, 5

X7, 1

X7, 2 X7, 3

t1

ah1

sb1

sb0
t2

sb1

sb0
t3 t3

sb1

sb0
ar1

sb1

sb0
t4 t4

t10

sb1

sb0
ar0 ar0

sb1

sb0
ah0 ah0

sb0

t5

ah1

sb1

sb0

t7

sb0

ah0 ah0
sb1

sb0

ar0 ar0

sb1

sb0

t12

Fig. 8 C-reachability graph for the corrected case

Control Conference, pages 234–238, Philadel-
phia, PA, USA, June 1998.

[4] H.-M. Hanisch, A. L̈uder, and J. Thieme. A mod-
ular plant modelling technique and related con-
troller synthesis problems. InProc. IEEE Inter-
national Conference on Systems, Man, and Cyber-
netics, pages 686–691, October 1998.

[5] L. Pinzon, A. Jafari, and H.-M. Hanisch. Mod-
elling admissible behaviour using event signals.
IEEE Trans. on Systems, Man, and Cybernetics
- Part C, 34:1435–1448, 2004.

[6] H.-M. Hanisch, A. Lobov, J.L. Martinez Lastra,
R. Tuokko, and V. Vyatkin. Formal validation
of intelligent automated production systems to-
wards industrial applications.International Jour-
nal of Manufacturing Technology and Manage-
ment, 8:892–904, 2006.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM



[7] G. Mušič and D. Matko. Petri net control of sys-
tems under discrete-event supervision. InECC’03
European Control Conference. Cambridge, UK,
2003.

[8] M. Rausch, A. L̈uder, and H.-M. Hanisch. Com-
bined synthesis of locking and sequential con-
trollers. In Int. Workshop on Discrete Event
Systems (WODES96), pages 133–138, Edinburgh,
UK, Aug. 1922 1996.

[9] P.J. Ramadge and W.M. Wonham. Supervisory
control of a class of discrete event processes.
SIAM J. Control and Optimization, 25:206–230,
1987.

[10] C.G. Cassandras and S. Lafortune.Introduction to
Discrete Event Systems. Kluwer Academic Pub-
lishers, Dordrecht, 1999.

[11] T. Murata. Petri nets: Properties, analysis and ap-
plications.Proc. IEEE, 77:541–580, 1989.

[12] V. Chandra, S.R. Mohanty, and R. Kumar. Auto-
mated control synthesis for an assembly line using
discrete event system control theory. InProceed-

ings of the American Control Conference, pages
4956–4961. Arlington VA, 2001.

[13] G. Mušič, B. Zupaňcič, and D. Matko. Model
based programmable control logic design. In
Preprints of the 15th Triennial IFAC World
Congress. Barcelona, Spain, 2002.

[14] W.M. Wonham. Notes on Control of Discrete
Event Systems: ECE 1636F/1637S 2003-2004.
Systems Control Group, Dept. of ECE, University
of Toronto, 2003.

[15] M. Zhou and E. Twiss. Design of industrial
automated systems via relay ladder logic pro-
gramming and petri nets.IEEE Trans. on Sys-
tems, Man, and Cybernetics - Part C, 28:137–150,
1998.

[16] M.H. Queiroz and J.E. Cury. Synthesis and im-
plementation of local modular supervisory con-
trol for a manufacturing cell. InProc. 6th In-
ternational Workshop on Discrete Event Systems
(WODES’02), pages 377–382, Zaragoza, Spain,
October 2002. IEEE Computer Society.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM


