
DEVELOPMENT OF TERRAIN SIMULATION
APPLICATIONS WITH VRML-WEB3D AND

GRAPHIC LIBRARIES
Emilio Jiménez(1), Eduardo Martínez(2), Mercedes Pérez(2), Félix Sanz(2)

University of La Rioja, ETSII, 26004 Logroño, La Rioja, Spain
(1) Department of Electrical Engineering

(2)Department of Mechanical Engineering

emilio.jimenez@unirioja.es (Emilio Jiménez)

Abstract

 Terrain visualization applications are widely used in very diverse type of applications
(geophysical systems, training simulators, etc.), with many different uses: development of
roads, mines, dams, and general building works, establishment of water behavior in rivers or
dams, visual impacts, real military strategy simulation, simulation of natural phenomena such
as floods, volcanic eruptions, landslides and avalanches, etc.
 These applications usually require a high computational power, and then must be executed
in local computer systems; but they also require sometimes the capability of network
utilization (for instance in distributed simulation, in public access terrain visualization, in
distributed or multi-user simulation, etc.)
 The recent developments of three-dimensional visualization systems can be naturally
applied to terrain visualization targeted to the web, which traditionally had been implemented
with 2D systems due to the huge data volume involved.
 This work shows the steps and the methodology to follow in order to develop a virtual
interactive terrain visualization system, taking into consideration the different uses that can be
interesting to include in the practical applications for terrain visualization, and illustrating the
explanations with some real applications.
 The paper also includes the analysis of two of the possible technologies to achieve this
objective: VRML as an exponent of Web3D technology, and open source three-dimensional
graphic libraries. Their fundamental characteristics are considered, and their methodologies,
pros and cons are illustrated, based on the different applications that are presented.

Keywords: Web3D based simulation, virtual reality (VR), terrain visualization, graphic
libraries (GL), Virtual reality modeling language (VRML).

Presenting Author’s biography
Dr. Emilio Jiménez Macías. PhD in Electrical Engineering (with
Computer science, electronics and automation specialty), from the
Universities of Zaragoza and La Rioja, Professor at the Electrical
Engineering Department of the University of La Rioja, where he is
coordinator of the System Engineering and Automation Group, and main
researcher of the Modelling, simulation and optimisation of industrial
automated and logistics systems Group.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

mailto:emilio.jimenez@unirioja.es

1 Introduction
There exist several developments all over the world
and very recent semantics in 3D visualization, so it is
necessary to make a special effort in generating
surveys and standards. In this paper, we wish to
contribute to clarify the process of development of a
Terrain Visualization System (TVS) in real time by
providing a guide through the issues previously
commented and illustrating the stages with practical
examples.

We explain the pros and cons of some of the different
currently available options, offering criteria for an
appropriate development. In order to overcome the
limitations given by Web3D technologies in general,
and virtual reality modeling language (VRML) in
particular, a specific graphic engine developed with
open source graphic libraries is shown (Figure 1).
Some programs - used to rename the terrain textures
according to general VRML structures - and small
applets, as interaction tools between the user and the
3D scene, have been implemented in a virtual TVS of
La Rioja (one of the 17 autonomous regions in Spain,
with a surface of about 5000 Km2). They are used to
clarify and exemplify some issues throughout the
paper.

Figure 1. Virtual Terrain Visualization Systems: a)
with Web3D viewers b) with graphic engine

The paper is organized as follows. First, the basic
characteristics of a TVS will be briefly commented in
Section 2. The Web3D-VRML technologies are
introduced in Section 3 where their strong and weak
points are shown. Section 4 is devoted to explore the
VRML viewers and some tips to create the Digital

Terrain Elevation Model (DTEM) and to endow the
TVS with interactivity are provided. The development
of the graphic engine, and its libraries, which present
the 3D geometry of the scene, are discussed in Section
5. Finally, Section 6 concludes the paper and refers to
future work.

2 Territory Visualization
The spatial distribution of the terrestrial surface is a
continuous function, but on storing and representing
these values digitally it is necessary to reduce the
infinite number of points to a finite and manageable
number, so that the surface can be represented by a
series of discrete values [1] (surface discretization).
For this purpose digital terrain models (DTM) and
DTEM are used. DTM is a numeric data structure that
represents spatial distribution in quantitative and
continuous variables. These variables may be height,
slope, contour, and orientation, as well as any other
data applicable specifically to the terrain and its
characteristics at any given point. DTEM is a numeric
data structure that represents the height of the surface
of the territory. By definition it can be seen that
DTEM is a particular type of DTM. These DTEM are
stored fundamentally in two digital formats: a) as a
map of altitudes, that is, a two-dimensional matrix in
which each quadrant represents the corresponding
height of each point; b) by means of chromatic
representation of the altitudes, that is, an image either
in shades of gray or in color, where the color or shades
of gray in the image depends on the specific height of
each defined point. In general, for areas of lower
height are assigned darker colors, and areas of higher
altitudes have assigned lighter colors. The main
problem with this second storing method resides in the
color scaling assigned to the true terrain height.

Starting from this point and taking as reference any of
the digital elevation models available nowadays on the
market, we can begin to create our own 3D terrain
model. For this purpose we must create a polygonal
surface in which the vertexes agree with the
coordinates taken from the appropriate DTEM.

The next step is to achieve that the 3D model that we
have created present realistic appearance; that is to
say, that it allows perceiving more details of any
height relative of one given point with respect to any
other. To achieve this objective we can think about the
possibility of incorporating a specific model texture.
The quickest method for achieving this realistic aspect
is by using ortophotographs of the terrain. An
ortophotograph is a digitally corrected photographic
presentation that represents an orthogonal projection
of an object, generated from real oblique photographs.
Thus we can take measurements as if we had a map
having the same values as on any map. Incorporating
these corrected photographs of a terrain model, we can
obtain a realistically acceptable representation (see
Figure 2).

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

Figure 2: Creation of a 3D terrain model from DTEM

and ortophotograph.

3 Web3D-VRML Technologies
One of the possible ways for implementing a territory
visualization system consists on using Web3D
technologies. The use of any of the Web3D
technologies available nowadays, allows us to develop
a 3D environment, capable to communicate on
Internet and adaptable to the specific necessities that
our system requires [2].

The term ‘Web3D’ [3] refers to any programming
language, protocol, archive format or technology that
may be used for creating or presenting interactive 3D
universes through Internet. Among these languages
for programming virtual universes, we can include as
open standards: VRML (Virtual Reality Modeling
Language), Java3D and X3D (Extensible 3D).

There are also a large number of solutions at
proprietary level (an other ones still being developed)
that satisfy the specific needs of the customers, gene-
rally aimed at electronic trade and entertainment pur-
poses, such as Cult 3D, Pulse 3D and ViewPoint, etc.

In spite of these possible multiple solutions, to use an
open standard presents important advantages; first the
specifications and documentation are well known; and
there are various applications of all kinds that support
these standards. We shall briefly analyze the available
standards, their main characteristics and their
advantages and disadvantages.

3.1 VRML

VRML is an archive format that allows the creation of
interactive 3D objects and worlds. The standard
VRML was created and developed by the VRML
Consortium, in principle a non-profit making
organization exclusively aimed at the development
and promotion of VRML as a standard 3D system on
Internet. VRML appeared in 1994, the first officially
recognized technology for the creation, distribution
and representation of 3D elements on Internet by the
ISO (International Standards Organization).

VRML is a hierarchic language of marks that uses
Nodes, Events and Fields to model static or dynamic
virtual realities. There are special Fields (EventIn and
EventOut) that allow the sending and reception of
events to other Fields.

With these special Fields and the command ROUTE,
one can control the flow of Events, directing the effect
of one action among other multiple objects to animate
a scene or simply to pass information to any of these
objects.

3.2 X3D

X3D is an open standard XML, a 3D archive format
that permits the creation and transmission of 3D data
between different applications, especially web
applications.

Its principal characteristics are:

X3D is integrated in XML;
• X3D is modular;
• X3D is extensible;
• X3D is shaped;
• X3D is compatible with VRML.
X3D, instead of limiting itself to a single static wide
specification - as in VRML that requires total adoption
to achieve compatibility with X3D - has been
designed with an architecture based on components
that give support for the creation of different profiles,
which can be individually used. These components
can be independently extended or modified, adding
new levels or new components with new
characteristics. Using this architecture, these
specification advances are faster and the development
of one area does not delay the evolution of the global
specification.

3.3 Java3D

 Java3D™ API is a set of classes to create
applications and applets with 3D elements [4]. It
offers to developers the possibility of managing 3D
complex geometries. The main advantage that this
API 3D presents against other 3D programming
environments is that it allows the creation of 3D
graphic applications, independently of the type of
system. It forms part of API JavaMedia. Therefore, it
can use of the versatility of Java language, and it can
support a great number of formats, including VRML,
CAD, etc.

Java3D is a grouping of high class interfaces and
libraries, which allows making good use of high
graphic loading speed by hardware. The calls to
Java3D methods are converted into Open GL or Direct
3D functions. Even though either conceptually or
officially Java3D form part of API JMF – its libraries
are installed independently of JMF. Java3D does not
directly support each possible 3D necessity, but
provides the capacity to implement it with Java code.

In other cases, VRML loaders are provided that
translate files from this format to appropriate objects
of Java3D. Browsers can visualize 3D environments
by means of a plug-in.

Java3D provides a high-level programming interface
based on the object-oriented paradigm. This fact

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

implies some advantages such as to obtain a more
powerful, faster and simpler development of
applications.

The programming of 3D applications is based on
“scene graph models” which connect separated
models with a tree-like structure, including geometric
data, attributes and visualization information. These
graphs give a global description of the scene, also
known as ‘virtual universe’ [5]. This permits us to
focus on geometric objects instead of the triangles
existing in the scene.

3.4 Comparisons

X3D takes the work realized by VRML97 and it
tackles matters that have not been specifically treated
so far. From the VRML basis taken as premise, X3D
provides more flexibility than VRML does. The main
change is the total rewriting of the specifications in
three different parts regarding: abstract concepts, file
formats and ways to access to the programming
language. Other modifications imply a greater
precision in illumination and event models, and to
rename some fields to obtain a solider standard.

The most important changes are:

• Graphic capacity expansion.
• A revised and unified applications programming

model.
• Multiple file coding to describe the same abstract

model, including XML.
• Modular architecture that permits ranges of

adoption levels and support for the different kinds
of market.

• Expansion of the specification structure.
The X3D scene graphics, the core of any X3D
application, are identical to the VRML97 scene
graphics. The original design of VRML graphic
structure and its node types were based on already
existing technology for interactive graphics. The
changes to include the progresses in commercial
hardware were carried out first in X3D graphics: the
introduction of new nodes and types of fields for data.

X3D has a single unified programming application
interface (API). This differs from VRML97, that has
an internal and external scripting API. The X3D
unified API simplifies and solves many of the
problems that existed with VRML97 as the result of a
more robust implementation.

X3D supports multiple codification archives, such as
VRML97 and XML (Extensible Markup Language),
or compressed binary, nowadays developing. It uses a
modular architecture that provides greater extensibility
and flexibility. The great majority of these
applications do not need the full power of X3D, nr the
support for all its platforms and defined functionalities
in its specification. One of the advantages of X3D is
that it is organized in components that can be used for

the implementation of a defined platform or specific
market.

X3D also includes the concept of profiles. They are a
predefined collection of components generally used
for certain applications and platforms, or in scenarios
like the geometric interchange between design tools.
Unlike VRML97, which requires total support from
the implementation, X3D allows a support for each
particular need. The mechanism of X3D components
also permits the companies to implement their own
extensions following a rigorous set of rules.

Furthermore, X3D specification has been restructured,
allowing a greater flexibility in the life cycle of this
standard, which adjusts itself to its own evolution. The
standard X3D is divided into three different
specifications that permit ISO to change the timing
and the way to adopt the concrete parts of the
specification.

One of the main differences between VRML/X3D and
Java3D, at a conceptual level, is that Java3D is
defined as a low-level 3D scenario programming
language. This means that the creation of 3D objects
and elements in Java3D does not only require the 3D
element building, but also the definition of all the
aspects related to the visualization and control of the
scenario capabilities.

Another remarkable aspect is the loss of velocity and
performance afforded by Java3D vs. other
VRML/X3D viewers developed in C/C++ [6] and vs.
viewers that directly use Direct 3D or OpengGL [7].
In spite of this, it is possible to use Java3D as a
VRML/X3D file viewer. It is only necessary to use
some of the VRML/X3D loaders developed for
Java3D. At present, the Web3D Consortium is
developing under GNU LGPL (Lesser General Public
License), Xj3D as a tool to show VRML and X3D
contents, completely written in Java. The main
advantages in using Java3D as VRML/X3D visor is its
execution capability in different platforms and the fact
that the final user is released of installing specific
plug-ins for the browser.

4 Use of VRML in the implementing of
territory visualization
4.1 Selection of VRML viewer

The first problem to solve when we tried to implement
the territory visualization system was to find a VRML
viewer able to reasonably support and manage the
great amount of data we wished to visualize. In the list
of Web3D viewers available on the market nowadays,
we can specially remark, among others, those
represented in Table 1.

When carrying out a 3D visualization of an
environment on Internet, it is necessary to bear in
mind that the final representation on screen depends
on the viewer chosen. Moreover, as it is to be

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

expected, neither all the viewers present the same
behaviour, nor they are designed and programmed in
the same way. So it is important to be very clear about
which viewer is going to be used, in order to achieve
the best possible results according to the needs of the
application being developed.

Table 1: Web 3D Viewers

Regarding the technological characteristics of these
viewers, we can distinguish between those based on
the use of a plug-in in the browser or those that use
Java applets. Furthermore, we can find different
proprietary solutions that use their own archive
formats to store virtual scenes. Although these
proprietary solutions can be better adjusted to the
specific needs of a determined development at a given
moment, they lack the advantage to work on an open
standard recognised universally. So it is subjected to
the decisions made by the proprietary company of that
format and solution. However, the use of a system
based on an open standard allows us to take our own
virtual environment to the different developments that
the standard.

For instance, Viewpoint Media Player uses a file
format based on XML and includes the interaction
capability through the use of scripting – continuous
lines of interpreted commands –. Scripting vs. VRML
presents a similar capability to interact directly with
the environment in terms of execution time. When
communicating with the Viewpoint Media Player
plug-in from the HTML page, we can count on the
possibility of using either JavaScript or Flash 5.

Adobe Atmosphere and Deep View are different
applications mainly used by Adobe to give to its PDF
documents the possibility to include 3D contents.
Adobe stopped the development of Adobe
Atmosphere in December 2004, and presently it uses
the Deep View technology developed by
HighHemisphere. In this case, Universal 3D (U3D)
file format is used [8].

Emma 3D is an open-source development based on
Ogre3D graphic motor and uses an archive format
similar to VRML. Cult3D allows the visualization of
models imported directly from 3D Studio and other
formats, as well as basic animation and interaction
with the scene. For example, if we use CosmoPlayer
as viewer, we must take into account that it is old
software. That implies it cannot make good use of the

graphic capabilities of new 3D graphic cards, and it
make mainly the rendering with software instead of
with hardware.

On the other hand, if we use Xj3D, as well as any
other viewer based on applets, we must remember that
we use a viewer running in Java. Therefore, we must
have the Java Virtual Machine (JVM) from Sun
Microsystem installed and, according to the particular
viewer, we may also need the Java3D library. In this
case, to use the Java3D library allows us to accede to
the graphic capabilities of nowadays-available 3D
graphic cards. However, using JVM involves certain
declines in the performance of the application, since it
is an interpreted programming language [9], - or semi-
interpreted language because a pre-compilation is
carried out at the level of byte codes.

In Table2 [10], a comparison in the loss of
performance and speed of Java3D against other
VRML/X3D developed in C/C++ and directly using
Direct 3D or OpengGL can be observed.

Table 2: Comparison of performances between Java
and C++

Another important aspect for choosing a viewer is to
know on which platforms it can run, and which is
likely to be the possible range of users who will have
access to the application. In principle, any viewer
developed in Java has the advantages and
disadvantages inherent in Java applications [11], that
is, its capability for multiplatform execution and its
dependence on the JVM of Sun Microsystem.
Moreover, focusing on the developments of the
VRML open standard, we can observe in Table 3 a
summary of the different operative systems in which it
is possible to execute each one of these viewers.

Table 3: Summary of the running capability in
different platforms

In the decision-making process of choosing a viewer,
the use of proprietary solutions was discarded in order
to make good use of the advantages of an open
standard such as VRML. As previously shown,
VRML viewers can be sorted in two main groups

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

according to the technology employed: those which
make use of JVM and those which incorporate plug-
ins for the browser by means of ActiveX. The
principal disadvantage the former group presents
against the latter one is the loss of performance and
velocity, unlike applications compiled at machine-
code level [12]. This is the reason for discarding the
use of any VRML viewer developed in Java; the
specific needs of an application of territory
visualization demands mainly high performance in
refresh velocity of the visualization (Frames per
second - FPS) and in memory use.

Finally, once the capability of the remaining viewers
to execute the specific application developed has been
tested, we decided to use the Bitmanagement Software
viewer (BS Contact). At present, Bitmanagement
Software and Octaga develop the leading viewers for
the visualization of Web3D VRML/X3D technologies.
The other viewers are a step behind as regards
performance and updating to the development of new
standards such as X3D.

4.2 Creating MDT

Once the different available Web3D technologies have
been analysed and the one to be used has been chosen,
as well as the necessary Web3D viewer, we have to
determine the specific needs of the system we want to
implement. The first step to develop this 3D territory
visualization system is to have a terrain DTEM. In
order to use this model, it is necessary to obtain the
corresponding terrain height for each of the
coordinates X and Y of the specific area that is to be
visualized.

There is at present the possibility of knowing free the
height of any point on Earth with a resolution of
approximately 1 kilometre. This is possible thanks to
files such as GTOPO30 (Global Topographic Data
horizontal grid spacing of 30 arc seconds) of the U.S.
Geological Survey’s Center (USGS) for Earth
Resources Observation and Science (EROS). Without
any doubt this is a highly useful tool, but in our case
they do not reach the desired precision, so it was
necessary to resort to other greater resolution local
databases. In this case as a starting point for the
generation of DTEM, a database with a 5-metre spatial
resolution was used. This database is in a dBASE
format and occupies several Gigabytes. In order to
work with it, it was necessary to create a program that
allowed consulting automatically through coordinates
X and Y represented in Universal Transverse Mercator
projection (UTM). So it was possible to sequence
terrain mesh generation process. For this purpose, a
program using PERL (see Figure 2) was created which
permitted covering the whole area, a total surface of
more than 5.000 Km2, and extracting the
corresponding height coordinates.

Although the program worked correctly, the main
problem found was slowness in the consulting
process, as the different databases used were not

correctly indexed. In order to solve this problem we
had to resort to a program in C++ Builder that makes
the automatization of the indexation of the different
databases. Subsequently, another specific application
was necessary to chose the area from where the data
would be extracted and the required scan of the mesh
(see Figure 3).

Figure 3: Application in C++ for the creation of
DTEM

Once we are able to obtain the height (altitude) of
each of the desired co-ordinates, the following step is
to organize the resulting information into an
appropriate form for its posterior treating and
processing. In this case it was decided to build a
structure in horizontal rows and vertical columns,
which would be totally adaptable to the function of
mesh, scan which could be chosen at any moment.
Furthermore, it can be noted that in the above
diagram, the visualized surface was divided into
different Zones (areas) with the aim of being able to
facilitate dynamic up-loading and down-loading in
attention to the relative position of the observer/user
(see Figure 4).

Figure 4: Division in Zones (Areas) of the surface to

be visualized (116x75 Km2). Each colour represents a
zone (an area)

From this point different tests were carried out to
adjust the size of the mesh scan to the specific needs
of each application. In this case we are concerned with
a territory visualization application in which the user
is going to make a flight over the terrain at a
determined height, such that it is not necessary to have
to rely on an excessive mesh precision, as it is not
going to afford anything visually important for the

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

observer [13]. So in the end a compromise decision
was taken between resolution fidelity and required
detail as against visualization refreshing velocity (the
previously mentioned FPS), opting for the value of
100 metres mesh scan. This value is more than
sufficient to maintain an acceptable realism in the
environment topography as well as also allowing fluid
navigation.

4.3 Incorporation of textures/ortophotographs

The following step to achieve a realistic visualization
of the territory is to incorporate a series of textures
into the terrain DTEM which we have generated, such
that the textures from the aerial photographs of the
terrain affords sufficient realism in the final
visualization.

This is achieved starting from the corresponding
terrain ortophotographs. In this case the format of the
ortophotographs is JPG over an extension of 4x2.5
Kms, which constitutes 10 Km2 surface area. On
carrying out a simulation of the VRML environment,
it is necessary that the model files and texture files are
not excessively unwieldy. This presupposes the need
to subject the texture/ortophotographs to a partition
process according to the dimensions and scene
structure previously explained. To carry out this
partition a specific C++ program was employed (see
Figure 7).

As well as this it is necessary to create the maximum
precision in the optimum resolution of textures for its
posterior resolution during simulation. In order to find
this maximum resolution tests were carried out from
0,5 m/pixels up to 4.0 m/pixels. In the end it was
found that using resolutions lower than 2 m/pixels did
not really afford much improvement in scene realism,
due to the treatment the different viewers offered in
these textures. As well as this, using such high-
resolution textures in the different viewers obliged a
notable increase in the size of these viewers and in the
loading of work made by the viewers, together with
the corresponding loss of visualization refreshing (the
FPS). Therefore it has been determined that the
texture resolution in our application will be 2
m/pixels.

Another important aspect in the speeding up of
simulation was the inclusion of detail levels [14], such
that it was possible to lighten the viewer load without
losing realism or quality for the observer. In order to
achieve this detail levels through the use of different
texture levels was established, depending on the
distance of the observer from them.

• From 0 to 1,500 metres: 2 m/pixels resolution.
• From 1,500 to 5,000 metres: 4 m/pixels resolution.
• From 5,000 metres to eye-sight reach: without

texture and only the net-meshing is observed.
Another noteworthy treatment of the ortophotographs
are the reference co-ordinates. The ortophotographs
are represented in UTM (see Figure 5a) and which

have to be adjusted to the co-ordinate system used in
VRML simulation (see Figure 5b), for which it is
necessary to make a vertical inversion of the
ortophotographs through an informatic application
(for instance, it is sufficient to use any Photo-Editor
program). In this way ortophotograph UTM co-
ordinate systems and VRML environment systems
become pefectly harmonized.

 (a) (b)

Figure 5: Ortophotograph Reference System

4.4 User Interaction Tools

The method which allows VRML to increase
(improve) user interaction is through JavaScript Code
(usually denominated VRML Script) in Java. The
writing of VRML Script codes presupposes the
incorporation of different interaction methods within
VRML virtual scene, whilst through the use of Java
codes it is possible to interract with the scene from a
series of external applets. Thus, the programmer is
completely free to create his own user interface
through Java libraries [15] and then through External
Authoring Interface (EAI), and be able to connect with
virtual scene. For the use of VRML Script or Java it is
necessary to resort to VRML package libraries: whilst
VRMRL Script uses the VRML, VRML.node and
VRML.field, on using Java applets we have to fall
back on VRML.external.

Figure 6: External Applets User Interraction

Concentrating on the use of applets to connect with
VRML scenes through EAI library, we must count on
the following elements:

• HTML Archives: in the same HTML page we must
include references to VRML files and applet.

• Applets: Applets are presented in the usual generic
coding of any applet, but it must also include the
necessary coding to communicate with VRML
Scene. They allow to accede to VRML secenes and
control them.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

• Node references: in order to read certain
information in the VRML scene or to control certain
parametres, it is necessary to make reference to a
specific scene-node which contains this information
or parametres.

• Teading and writing VRML scene: Once a specific
scene-node is referenced its fields can be acceeded
through these functions. Their use is limited to
access to those fields defined as eventOut and
exposedField.

• Receiving VRML scene events: In the case of
needing to receive events produced be the scene we
must implement in our applet EventOutObserver:
“public class compass extends Applet implements
EventOutObserver” interface.

4.5 Pros and cons in using VRML for territory
visualization.

One of the advantages of implementing the VRML
visualization system is having to recur to the back-up
of an open standard, with all that this implies, from
available documentation to the possibility of using
different design tools which support this standard.

However this presents the great disadvantage or
limitation of end dependence on an external viewer on
which there is no real control. Although using of EAI
library allows certain control and interaction with the
VRML viewer and VRML scene, in effect we do not
have access to low-level viewer methods and
configuration, as is the case with algorhythm
renderings.

5 Development of a graphic motor for
territory visualization
5.1 Open-coded 3D visualization

In order to resolve the problems expressed in the
previous paragraph, on generating an appropriate
system for territory visualization the first step is to
know what graphic libraries are at present available
which meet our needs. Torque Game Engine (TGE),
TV3D SDK , 3D GameStudio or Reality Engine are
different systems for 3D viewing and they all belong
to different companies under different kinds of
licencing. Although any of these developments could
meet our specific needs, today various open-coded
projects exist which offer comparable technical
performances to the above-mentioned. Within these
open-coded projects can be specially mentioned:
Crystal Space, OGRE, Irrlicht, Nebula Device 2,
RealmForge GDK, OpenSceneGraph, Axiom.

In Table 1 we can see the main characteristics of the
various open-code developments. As can be seen,
some of these projects are still under initial
developmente and thus do not yet present a sufficient
degree of reliability in some specific aspects of their
functions.

Table 4: Synopsis of different open-coded graphic
library characteristics

Finally, after evaluating the possibilities of the
different libraries presented, it was decided to use
OpenSceneGraph, basically due to its independence of
the platform used, and above all for its appropriate
construction and its expansion possibilities. The main
disadvantage was its lack of specific documentation,
but this problem is minimized through a series of
practical examples that afforded basic knowledge of
the different capabilities and functioning of the
library.

5.2 OpenSceneGraph

OpenSceneGraph [16] is a recently-developed graphic
library which incorporates the different primitive basic
concepts of OpenGL. This language uses C++ as a
programming language as well as presenting
independence of tha platform, besides being an open-
coded development. Among the possible uses of this
library we find scientific visualization, virtual
engineering and game development.

OpenSceneGraph employs scene graph techniques to
contain all the information relevant to the generated
scene. A scene graph is a data-structure which allows
the creating of a scene hierarchic structure, such that a
father-son series is maintained among the different
elements. For example, father-node position and
variation positions affect son-nodes. In this way a
various link robot-arm can be created, each one
dependent on the previous, and simply applying an
initial link-movement, the rest of the dependent links
will automatically move according to the defined
structure. Another important father-son relation
exploited by the scene-graph techniques is the
possibility of defining envolving volumes which
group close elements, so that during element
download processes which are to be represented on-
screen, it is not necessary to fall back on sons of a
father-node already discarded.

5.3 3D model creation

In order to achieve a correct and agile territory
visualization, it is first necessary to carry out a correct
modelation of the scene to be represented.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

As is to be expected, due to the great quantity of
information to be treated, it is necessary to establish a
correct and ordered structuration to facilitate and
flexibilize its management or handling. At the
software level the solution is to maintain at all times a
similar quantity of information (textures and DTM),
which allows a fluid handling of information. To
achieve this we resort to a dynamic up-load and down-
load of the scene being treated according to the
position of the user at each moment. This process of
scene up-load and down-load is carried out through a
data base which pages the different scene areas and
allows us to decide which part or parts are necessary
to bear in mind at each moment (see Figure 12). At the
theoretical level the date base limits are not defined,
but in practice the larger the size, the more the process
performance of dynamic up-loading and down-loading
is affected. Due to this it is very probable a data base
re-estructurion may have to be carried out, according
to communities and provinces, always searching for a
way to limit the data-base size to the specific
necessities at each moment according to the surface
over which the user moves.

Apart from this division in zones (areas), a division in
horizontal rows is also carried out. In this way the
facilitation and optimization of the selection process
of the different scene graphs is carried out, whether
they should be rendered or not.

Besides relying on a correct scene structuring it is also
necessary to have available a correct system of
multiresolution textures to reduce the load during
rendering [27]. In order to achieve this a PagedLOD
node is available which allows the settings of several
texture resolution levels, such that according to the
distance between the observer view-point and the
model can be visualized at each level.

The rendering task in OpenSceneGraph is divided into
three stages. The first is Update, in which changes in
executing time of the scene-graph are made; the
second is the Cull discard in which the list of scene
elements which will be rendered in the last stage is
formulated; and lastly is the process of rendering in
itself (Draw).

In order to use this tool, three resolution levels have
been established (2 m/pixel, 4 m/pixel or mesh)
according to the distance (under 1,000 metres, from
1,000 to 5,000 metres, or over 5,000 metres) as
previously mentioned in detail levels.

Through this structure, with the appropriately chosen
ranges of rendering for each of the levels, constant
refreshing velocities from 20 to 30 FPS is achieved,
even during the loading of the application (Figure 7).

On the other hand it is important, though not strictly
necessary, to generate the entire geometry of the scene
in the binary format provided by OpenSceneGraph’s
own graphic library. This binary format (IVE)
facilitates the initial process of scene loading by the

system, thus lessening wait-time for the user on
loading the application.

Figure 7: Application Capture during FPS at that

moment

5.4 Incorporating independent tools to the
visualization

One of the most important aspects in a territory
visualization application is the ability of the user to
navigate with ease and without environment problems.
For this purpose usually user interaction by means of
the mouse moving over the scene visualization on
screen is employed. Thus it will be necessary to
provide the application with the capability of receiving
and responding to the events with the mouse (which
are) being produced in such visualization. This can be
achieved creating a new class from the program
“Producer::KeyboardMouseCallback” and putting into
use the appropriate behaviours. For example, in the
case of territory visualization, the user must always be
above ground level, and, generally, at a determined
height (altitude). It is therefore necessary to employ a
collision detection system, which prevents the user
from penetrating through the terrain itself as he moves
over the scene. For this purpose we can make use of a
specifically designed visitor in OpenSceneGraph’s
“IntersectVisitor”. Apart from facilitating 3D
visualization of the scene, it is also necessary to create
a user-friendly interface (see Figure 8), with which the
user can interact simply and which affords him the
capability to control or obtain information from the
scene (for example, recuperating observer position at
each moment to present it on screen).

6 Conclusions and future works
Throughout this article we have set out the basic steps
to be followed for the development of territory
visualization application. In first place we have
presented the basic characteristics of a territory
visualization system. Following that we have included
a brief study of the different applicable technologies
basing ourselves on VRML, X3D and Java3D. From
this base we have proceeded to detailing the different
necessary steps to put into practice a territory
visualization system based on VRML, from the choice
of viewer to the incorporation of Java-developed user-

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

interraction external tools. Also aspects such as
DTEM creation and the incorporation of model
photorealist have been explained.

Figure 8: User Interface

From the aforementioned it can be deduced that the
use of VRML for the creation of territory visualization
is viable, but always at the behest of depending on an
external element entrusted with scene visualization,
over which one does not have real control, nor is its
codification known, nor can its programming be
modified. In order to overcome these short-comings
the development of a specific graphic motor through
the use of open-coded has been proposed. With this
objective in mind, different existing open-coded
graphic libraries and their basic functioning
characteristics have been analyzed, to finally detail the
steps followed in the implementation of territory
visualization by means of OSG library.

One of the potential capabilities of the developed
system which may be exploited in the future, is the
different 3D geometries, with the end purpose being to
facilitate aspects such as territory management,
distribution and planning, as a further onward step in
geographical information systems.

7 References
[1] Giger, C.: “Digital Elevation Models and Digital

Terrain Models”, Technical Presentation,
GeoInformation Technologies Group, Swiss
Federal Institute of Technology, Zurich,
Switzerland. 2002.

[2] Lindstrom, P., and Pascucci, V. (2001).
“Visualization of Large Terrains Made Easy”,
Proceedings of IEEE Visualization 2001, IEEE,
Piscataway, NJ, 363-371.

[3] Web 3D Consortium - Open Standards for Real-
Time 3D Communication. http://www.web3d.org/

[4] Sowizral H, Rushforth K, Deering M. The Java
3D API Specification. Addison-Wesley, 1998.

[5] Burrows, A. L.; England, D.: Java 3D, 3D
graphical environments and behaviour, Software-
Practice and Experience, 359-376, 2002.

[6] Burns, A., Wellings, A.J. Real-time Systems and
Programming Languages. Addison Wesley, 2001

[7] Mason Woo and others: OpenGL programming
guide, Addison-Wesley, 1999.

[8] Universal 3D Format.
http://www.intel.com/technology/systems/u3d/

[9] Barr, R.; Haas, Z. J.; van Renesse, R.: JiST: an
efficient approach to simulation using virtual
machines, Software-Practice and Experience, 540-
576, 2005

[10] Evaluating Java for Game Development. March
4th 2002. Jacob Marner

[11] Kilgore RA, Healy KJ, Kleindorfer GB. The
future of Java-based simulation. Winter
Simulation Conference, December 1998; 1707–
1712.

[12] Wellings, A.J. Concurrent and Real-time
Programming in Java. Wiley, 2004

[13] AYENI, O.O., 1982, Optimum Sampling for
Digital Terrain Models: A Trend Towards
Automation. Photogrammetric Engineering &
Remote Sensing, 48(11), 1687-1694.

[14] Blow, J.: Terrain Rendering at High Levels of
Detail. Proceedings of Games Developers
Conferences, 2000.

[15] Gosling J, Joy B, Steele G. The Java Language
Specification. Addison-Wesley, 1996.

[16] R. Osfield, D. Burns, OpenSceneGraph.
http://www.openscenegraph.org. 2003.

[17] Guedes, L.C., Gattass, M., and Carvalho, P.C.P.
(1997). “Real-Time Rendering of Photo-Textured
Terrain Height Fields”, Proceedings of
SIBGRAPI 97, Campos de Jordao, SP, Brazil, 18-
25.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

	1 Introduction
	2 Territory Visualization
	3 Web3D-VRML Technologies
	3.1 VRML
	3.2 X3D
	3.3 Java3D
	3.4 Comparisons

	4 Use of VRML in the implementing of territory visualization
	4.1 Selection of VRML viewer
	4.2 Creating MDT
	4.3 Incorporation of textures/ortophotographs
	4.4 User Interaction Tools
	4.5 Pros and cons in using VRML for territory visualization.

	5 Development of a graphic motor for territory visualization
	5.1 Open-coded 3D visualization
	5.2 OpenSceneGraph
	5.3 3D model creation
	5.4 Incorporating independent tools to the visualization

	6 Conclusions and future works
	7 References

