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Abstract

This paper deals with a numerical solution of laminar incompressible steady flows of Newtonian
and non-Newtonian fluids. Geometrically different parts ofthe cardiovascular system are taken
into account, for instance bifurcations of vessels or a bypass of a restricted vessel. Only channel
geometries with rigid walls are used to model previously mentioned parts of the cardiovascular
system. Blood flow is considered to be Newtonian in the case ofvessels of large diameters as
aorta. On the other hand, with decreasing diameter of a vessel the non-Newtonian behavior
of blood can play a significant role. One could describe theseproblems using Navier-Stokes
equations and continuity equation (see [1]). In the case of Newtonian fluids one considers
constant viscosity compared to non-Newtonian fluids where viscosity varies and can depend
on the tensor of deformation. The model used for non-Newtonian fluids is a variant of power-
law. In order to find numerical solution, the system of equations is completed using artificial
compressibility method. Its principle is based on additionof the time derivative of pressure
divided by a specific constant into the continuity equation (see [2]). The space derivatives
are discretised using the cell centered finite volume method. An arising system of ordinary
differential equations is solved using explicit multistage Runge-Kutta method with given steady
boundary conditions. This way one can find steady solution ofunsteady system. The numerical
results for two and three dimensional cases of Newtonian andnon-Newtonian fluid flows in
different geometries are presented and compared.

Keywords: Finite Volume Method, Navier-Stokes equations,Newtonian fluids, Non-
Newtonian fluids, Runge-Kutta method.
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1 Introduction
The motivation for numerical solution of the fluid flow
of Newtonian and non-Newtonian fluids arises in many
applications, e.g. in the biomedicine, food industry,
chemistry, glaciology etc. Many common fluids are
non-Newtonian: paints, solutions of various polymers,
food products. Arterial flow phenomena such as flow
separation, recirculation and secondary flow motion in
atherosclerotic vessels is of great interest, because these
vessels present a substantial health risk and are major
causes of mortality and morbidity in the industrialized
word. The main points of non-Newtonian behaviour are
the ability of the fluid to shear thin or shear thicken in
shear flows, the presence of non-zero normal stress dif-
ferences in shear flows, the ability of the fluid to yield
stress, the ability of the fluid to exhibit relaxation, the
ability of the fluid to creep, see [3]. When the viscosity
decreases with increasing shear rate, the fluid is called
shear-thinning. In the opposite case where the viscos-
ity increases as the fluid is subjected to higher shear
rate, the fluid is called shear-thickening. Experimen-
tal tests reveal that blood exhibits non-Newtonian phe-
nomena such as shear thinning, creep and stress relax-
ation. In order to include all these features one can use
Oldroyd-B model. Only shear thinning is considered in
this work. The solution of flows in branching channels
and channels with bypass is important for modelling
of blood flow in arteries. The study of blood flow in
large and medium arteries is a very complex task be-
cause of the heterogeneous nature of the problem and
the extreme complexity of blood and arterial wall dy-
namics. Although blood is actually a non-Newtonian
suspension of cells in plasma, it is reasonable to model
it as a Newtonian fluid in vessels greater than approx-
imately 0.5 mm in diameter [4]. The occurring shear
rates are in a range where non-Newtonian effects are
only in minor significance to the flow parameters. This
type of flow could be described by conservation laws of
mass and momentum (Navier-Stokes equations), where
the influence of exterior forces and heat exchange is not
taken into account. In this case the model of a vessel is
a tube with rigid walls. The pulsatile character of blood
flow is not considered as well as the elasticity of arterial
walls.

2 Mathematical model
First, one considers a non-Newtonian fluids. The non-
Newtonian fluid is the fluid in which the viscosity
changes with the applied shear force. As a result, the
non-Newtonian fluids may not have a well-defined vis-
cosity.

The generalized system of two dimensional Navier-
Stokes equations and continuity equation for incom-
pressible laminar flows in conservative form is written
as follows

R̃Wt + Fx + Gy =
R̃

Re
∆W, R̃ = diag‖0, 1, 1‖.

(1)
where the Reynolds number defined asRe = dw∗/ν in
2D andRe = dhw∗/ν in 3D is an important parame-

ter of the flow. Quantityw∗ is a characteristic velocity
(the speed of upstream flows),ν = η/ρ is the kinematic
viscosity,d is a length scale (the width of the channel),
dh = 4S/O is the hydraulic diameter,S is the area
section of the duct andO is the wetted perimeter. In
equation (1),W = (p, u, v)T is the vector of solution,
R̃ = diag‖0, 1, 1‖, andF = (u, u2 + p, uv)T , G =
(v, uv, v2 + p)T denote inviscid fluxes,(u, v) is the di-
mensionless velocity vector (u = u∗/q∞, v = v∗/q∞),
p denotes the dimensionless pressure (p = p∗/ρq2

∞
),

t is the dimensionless time (t = t∗q∞/l), andq∞ is
defined as a velocity of incoming flow (q∞ = u∗).

In the case of non-Newtonian fluids the power-law flu-
ids are considered. The dominant difference from the
Newtonian behaviour is shear thinning or shear thick-
ening. From variety of power-law fluids we choose the
simplest one:

τ(e) = 2ν0|e|re, (2)

whereτ is the stress tensor,e = (eij), i, j = 1, 2 is
the strain tensor with componentse11 = ux, e12 =
e21 = (vx + uy)/2, e22 = vy, |e| denotes the Eu-
clidean norm of a tensor,ν0 is a positive constant re-
lated to the limit of generalized viscosityµg(κ) when
κ → 0, r is a constant of the model. The model captures
the shear thinning fluid ifr ∈ (−1, 0), shear thickening
fluid if r > 0, andr = 0 corresponds to the Newtonian
fluid. For the non-Newtonian fluids the system of 2D
Navier-Stokes equations and the continuity equation in
two dimensional case written in the dimensionless con-
servative form reads

R̃Wt + Fx + Gy =
R̃

Re
(Rx + Sy) (3)

whereR = (0, g11, g21)
T , S = (0, g12, g22)

T , gij =
2|e|reij , i, j = 1, 2 and components ofeij defined
above.

(g11)x + (g12)y = 2|e|rxux + |e|ry(uy + vx) + |e|r∆u
(g21)x + (g22)y = |e|rx(uy + vx) + 2|e|ryvy + |e|r∆v

(4)
Let us stress that subindicesx and y denote partial
derivatives with respect tox andy and that∆ stands
for the 2D Laplacian. At the inlet the Dirichlet bound-
ary condition for velocity vector(u, v)T is prescribed,
at the outlet the pressure value is given. On the wall the
zero Dirichlet boundary conditions for the components
of velocity are used.

2.1 Boundary conditions

At the inlet the Dirichlet boundary condition for the ve-
locity components(u, v) = (q∞, 0) is prescribed and
the pressurep is computed by extrapolation from a do-
main. At the outlet the value of the pressure is pre-
scribed byp = p2, wherep2 is the dimensionless value
of the pressure, that is higher then the initial value of the
pressure at the inlet to ensure pressure gradient. The ve-
locity components are extrapolated at the outlet. On the
walls one considers the non-permeability and no-slip
conditions for the velocity and the value of the pressure
is taken from inside of the domain.
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3 Numerical solution by finite volume
method

In what follows a steady state solution is considered.
In such a case the artificial compressibility method can
be used. The continuity equation is completed with the
term pt/a2, wherea2 > 0. The pressure satisfies the
artificial equation of state:p = ρ/δ, in which ρ is the
artificial density,δ is the artificial compressibility, that
is connected to the artificial speed of sound by relation
a = δ−

1

2 , see [2]. Then system of governing equations
has the form

Wt + Fx + Gy =
R̃

Re
(Rx + Sy) , (5)

whereW = (p/a2, u, v)T . The equation (5) can be
rewritten in the following way

Wt = −(F̃x + G̃y) (6)

where

F̃ = F − 1

Re
R, G̃ = G − 1

Re
S (7)

F andG are inviscid fluxes defined above andR and
S are viscous fluxes representing right hand side in the
case of Newtonian or non-Newtonian fluid, see also [5]
and [6].

The system of equations (6) is integrated overDij (fi-
nite volume cells is shown in Fig. 1). After applying
mean value theorem on left hand side and Green’s the-
orem on right hand side we get

Wt |ij= − 1

µij

∮

∂Dij

F̃dy − G̃dx. (8)

The integrals on the right hand side are numerically

Fig. 1 Finite volume cell

approximated by

Wt |ij= − 1

µij

4
∑

k=1

F̃ij,k∆yk − G̃ij,k∆xk. (9)

The system of ordinary differential equations ((9)) with
given steady boundary conditions is then solved by the

multistage Runge-Kutta method.

Wn
i,j = W

(0)
i,j

W
(r)
i,j = W

(0)
i,j − αr∆tRW

(r−1)
i,j , r = 1, . . . , m

Wn+1
i,j = W

(m)
i,j , m = 3,

whereWn
ij denotes an approximation ofW at grid point

(xi, xj) and at a timet = tn, ∆t = tn − tn−1 is the
time step, and

RW
(r−1)
i,j = R̃W

(r−1)
i,j − DWn

i,j .

The coefficients areα1 = 0.5, α2 = 0.5, α3 = 1.0
and the termDWn

ij is the artificial viscosity term of
Jameson’s type,see [7].

The numerical method is of the second order in time
and space. The form of residualR̃Wn

i,j depends on the
method used for the space discretization, which is in
this case the finite volume method in the cell centered
formulation:

R̃Wi,j =
1

µij

4
∑

k=1

[(

F i
k−

1

Re
F v

k

)

∆yk−
(

Gi
k−

1

Re
Gv

k

)

∆xk

]

,

(10)
whereF i = F, Gi = G are inviscid fluxes andF v =
(0, ux, vx)T , Gv = (0, uy, vy)T are viscous fluxes, the
indexk corresponds to the side of a finite volume. The
artificial viscosity termDWn

i,j depends in this case on
the second derivatives of the pressure and is used to im-
prove stability of the solution. The dissipative artificial
viscosity term is constructed as follows:

DW = DxW + DyW

DxW = di+ 1

2
,j − di− 1

2
,j

DyW = di,j+ 1

2

− di,j− 1

2

di+ 1

2
,j =

hi+ 1

2
,j

∆t
ǫ
(2)

i+ 1

2
,j
(Wi+1,j − Wi,j)

νi,j =
|pi+1,j − 2pi,j + pi−1,j |
|pi+1,j | + 2pi,j + |pi−1,j |

ǫ
(2)

i+ 1

2
,j

= κ(2)max(νi+1,j , νi,j),

whereκ(2) has to be chosen in order to achieve conver-
gence of the method.

In order to satisfy the stability condition the time step is
chosen as (for details see, [8]):

∆t = min
i,j,k

CFL µij

ρA∆yk + ρB∆xk + 2
Re

(

(∆xk)2+(∆yk)2

µij

) ,

(11)

ρA =| û | +
√

û2 + 1 ρB =| v̂ | +
√

v̂2 + 1,

| û |, | v̂ | are the maximal values of the components of
velocity vector inside the computational domain.

The computation is performed until the value of the L2-
norm of residual satisfy RezWn

ij ≤ ǫERR with ǫERR
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small enough (MN denotes the number of grid cells in
the computational domain), where

RezWn
ij =

√

√

√

√

1

MN

∑

ij

(

Wn+1
ij − Wn

ij

∆t

)2

. (12)

4 Numerical results
In this section we present the numerical results of New-
tonian and non-Newtonian flows in different channel
geometries. First, numerical results for channels with
one entrance and two exit parts are presented. Figures 2
and 3 show the fluid velocity distribution for Reynolds
number 1500 for Newtonian and non-Newtonian fluid
in a branching channel. One can observe that the ve-
locity profiles for non-Newtonian fluid are elongated
compared to Newtonian fluid. The peak values of ve-
locity seems to be higher for non-Newtonian fluid. The
convergence history is presented. Second, numerical
results for the case with splitting outlet channels is
shown on figures 4 and 5 in the terms of the fluid veloc-
ity distribution for Reynolds number 1500. Again the
same characteristic differences can be observed as in
the previous case. Third,the three dimensional branch-
ing channel for Reynolds number 300 is shown on fig. 6
and fig. 7 for the case on non-Newtonian fluid. Fig. 6
shows axial cut in the middle of the channel while the
fig. 7 shows radial cuts in the different places along
the channel. In the same form are presented results for
Newtonian fluid on fig. 8 and fig. 9. 3D results in the
axial cut shows slight differences compared to 2D re-
sults. Fourth, fig. 10 and fig. 11 shows the fluid ve-
locity distribution for the 3D Newtonian fluids in the
splitting channel. The history of convergence of the
residuals of the vectorW = (p, u, v, w)T is presented.
By the symbolq the velocity magnitude is denoted,
i.e. q =

√
u2 + v2 + w2. Finally we present results

of Newtonian fluid flow in the channel with bypass.
Figures 12 and 13 show isolines of velocity in 3D for
Re = 500. The figure 12 shows a bypass and 13 shows
a main channel that represents a vessel. There is no
comparism with an experiment at this moment, but the
results seems to be qualitatively correct.
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