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Abstract

Modeling and simulating exploited ecosystems is a complex process that most often requires to
manipulate a complex model. Indeed, experts have to use heterogeneous models and assemble
them to build the global model, possibly in an incremental manner. We argue that a multi-model
methodology and simulation tool enabling to partly automate the modeling and simulation pro-
cesses and help grasp the complexity of the real systems are needed. Based on the pattern ori-
ented modeling and the multi-agent approach, our proposition is data-oriented. We use a society
of models based on agents that interact through the environment and enable coupling of models
through environment mediated influences. We specify three roles for modeling agents: (1) the
model-agent handles an expert’s model; (2) the controler-agent watches upon the environment;
(3) the observer-agent builds observable objects. Goals of model-agents are structured by the
inputs and outputs of the agents that have a specific semantic and shape. The environment is
organized by the data (artefacts) in which patterns, produced by model-agents, are outlined. In
this paper, we exhibit the framework and methodology of our proposition. We also try to show
that our model-agent-based approach can help experts build their models in collaboration with
agents and we exhibit the local processes that enable us to envision automation of the modeling
process. At last, we use a didactic simulation scenario of a theoretical exploited fish population
to exhibit our methodology and simulation tool.
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1 Introduction
We focus on the modeling and simulation processes
of exploited fish populations in dynamic environments.
The goal is to understand how environmental and eco-
nomic phenomena impact the viability of exploited ma-
rine ecosystems. Beyond this object of study, the pur-
pose is to build a modeling methodology and a simu-
lation tool to handle complex models. In other words,
experts have to manipulate different models, existing
or to be stated, that need to be rationally assembled.
Hence, simulation environments enabling the coupling
of models of different natures are needed. But the chal-
lenge is also to partly automate modeling and simula-
tion processes. Therefore, we propose a modeling and
simulation framework enabling experts to handle model
heterogeneity and autonomous and proactive behaviors
for automatic building and analysis of models.

We suggest that the modeling process should be data
oriented. When studying a system, experts have spe-
cific information at hand available with specific as-
sumptions. They study the system through that in-
formation. We propose to base our modeling on the
pattern-oriented framework (POM) [1, 2]. Model cou-
pling is enabled, but models are meaningful because
of the data they use and produce. On the whole, our
proposition is based on the multiagent paradigm, using
model-agents among other agents. Our model-agents
handle models and interact via the environment sup-
porting the patterns that structure the data of the ex-
perts. This solution formalizes the coupling based on
influences between agents through the environment and
is therefore a structural framework. But it also ad-
dresses the automation issue by structuring the mod-
eling process around agents with identified roles and
behaviors to control, perceive and act on the environ-
ment. In the following sections, we will first describe
the modeling experience of exploited ecosystems, the
POM and the issues we address. Then we will describe
our modeling methodology exhibiting the entities and
concepts of our system. Afterwards, we will exhibit our
agent-based solution and, at last, we will use a theoret-
ical simulation scenario to illustrate our methodology
and simulation tool.

2 Context
2.1 Modeling exploited marine ecosystems

Marine biological populations and their exploitation by
different fishing vessels form a heterogeneous, open
and dynamic system. Composed by many dynamical
and interacting entities, such a system has a hardly pre-
dictable overall behavior. Multi-specific in nature, fish
populations are renewable shared resources in a chang-
ing environment influenced by climate change and eco-
nomic markets. Fisheries, composed of different types
of fleets, are weakly structured with no centralized gov-
ernance. Interactions between all those components in-
clude predation and migration processes, spatial com-
petitions, exploitation strategies and social phenomena.

Building and manipulating models of such a system

is challenging. Modeling and simulation are needed
when it comes to understanding the processes struc-
turing those systems and eventually evaluating scenar-
ios of the system’s possible futures. Ecological phe-
nomena are classically stated using differential equa-
tion systems. This approach enables the production
of compact models explicitly expressing the system’s
behavior [3]. Another modeling option consists in di-
rectly considering the individual components of the sys-
tem using an individual-based approach (IBM) [4]. The
global behavior of the system is not explicitly stated
anymore but emerges from the individuals’ interactions
[5]. Many IBM solutions exist addressing ecological
[6, 7, 8, 9] or economic issues [10, 11]. But while it is
difficult to express individual variability in the equation
based approach, the IBM approach can request much
processing power and produce models with inaccurate
results [5, 12]. Depending on the question(s) the mod-
elers want to address, heterogeneous modeling mate-
rial might be needed in order to build the global model
of the studied system. Moreover, exploited ecosystems
are structured by phenomena which modeling might be
performed by different experts coming from different
fields. Those experts therefore need to build together a
complex model composed a various sub-models, each
of which addresses a specific phenomenon. We stress
out that the global model has to be experienced by sim-
ulation but also during the modeling process itself. Ex-
perts have to be able to incrementally assemble those
sub-models in order to partially experience and eventu-
ally validate them or even merely get a feeling of the
functioning of their system. At last, producing simu-
lation results requires to execute a structured, lasting
and tough course of actions: testing the model under
different conditions and scenarios, analyzing variables,
carrying out sensibility analysis among others and orga-
nizing all the produced data and investigations. There-
fore, we believe that the system should be partly auto-
mated in order to execute part of the work and help the
experts in their modeling and simulating experiences.
We try to address this issue by building a framework in
which automation can be envisioned and we try to in-
vestigate the methods and tools that could be used for
multi-modeling such complex models.

2.2 Pattern oriented modeling (POM)

A pattern is the observation of an emergent non ran-
dom structure. It is, for GRIMM, the indicator of funda-
mental structural processes and components of a stud-
ied system. It contains and exhibits information on the
system’s internal organization and on the mechanisms
that structure it [1]. Patterns are pieces of information
that denote a specific behavior of the system. The pat-
tern oriented modeling (POM) [1, 2] was proposed to
make the modeling process more rigorous and compre-
hensive. Modeling must be driven by one or several
issues on a clearly identified object of study. Ques-
tions and assumptions on this object are identified by
remarkable features or patterns. The POM states that
the structural model of the system should be built on
those observed patterns. The model is therefore directly
linked to the existing organization and structure of the
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Fig. 1 Example of a pattern - The preys’ population size
is plotted versus the predators’ population size.

real system [13]. Figure 1 shows a typical pattern of a
prey-predator system. Patterns are often key variables
of the system plotted together. In the case of the prey-
predator system, we don’t plot the number of preys in
time or the number of predators in time, but we want
to exhibit the interaction between the two populations
by plotting the preys’ number and predators’ number
together. More generally, patterns can also be spatial
structures identified in spatialized data like maps, for
instance, population migrations and distributions. We
often manipulate such patterns.

3 Material and method

3.1 Modeling environment: patterns and artefacts

Based on the POM methodology, modeling becomes
data oriented and the mechanisms or phenomena chose
to structure the model are selected for their capacity to
explain the pattern (s). We therefore built a modeling
framework organized around the patterns explicitly de-
scribed and considered as key components of our sys-
tem. As seen in the example above, a pattern is often a
composition of some other data. Patterns are not always
directly produced by models but some post-processing
might be needed before the pattern could be plotted.
In the prey-predator case, the models for each popu-
lation produce the total number of individuals and the
pattern is built out of those two pieces of information.
We therefore need other components in our system that
we call artefacts (see section 4.1) and which are pieces
of information structuring our modeling environment.

To summerize, modeling consists in (1) detecting typi-
cal patterns characterizing the system, describing them
in terms of artefacts’ compositions and (2) building the
sub-models that might best reproduce the phenomena
explaining the emergence of the patterns. We structure
the model with the same features that structure for an
observer the studied system. Modeling and analyzing
are based on those patterns. In a multi-modeling ap-
proach, experts assemble their models describing their
inputs and outputs. Those inputs and outputs are in-
fluenced by artefacts building the patterns or produce
them, enabling the experts to create the global model
around the shared data.

3.2 Agent-based modeling

The agent paradigm enables different interacting en-
tities to inhabit the same system without having any
conditions on their internal mechanisms. Therefore,
the multiagent approach is relevant to address multi-
modeling. It enables the experts to choose different
types of models and different approaches to best fit
the requirements of their assumptions and available
data, in other words the models which will best repro-
duce identified patterns. Second, multi-modeling en-
ables experts to build separate simple models that can
be incrementally tested and validated. The behavior
of the global system is acquired through the observa-
tion of interacting entities, here the models. Hence,
the simulation of complex systems is seen as a soci-
ety of models in interaction [14]. The model is seen
as a group of changeable components with no struc-
tural impact on other components (even though simu-
lation outputs might be different). Coupling is made
through the environment where the patterns are sup-
ported and not through events diffusion and synchro-
nized state changes like in DEVS [15], used in the Vir-
tual Laboratory Environment (VLE) [16]. The behavior
of each agent influences or is influenced by the environ-
ment. Interactions are therefore indirect, through envi-
ronment mediated influences and agents have their own
execution time step and are not reactivated by external
events for example. Furthermore, agents can locally ob-
serve, control or analyze the models. They can locally
self-manage modeling processes: data scaling, observ-
ables creation, environment construction and modifica-
tion through the creation of data in the environment.

4 model-agent-based solution
4.1 Concept of artefact

Patterns are composed by artefacts that we consider, in
our system, as pieces of information produced by nat-
ural (human) or artificial agents. We therefore explic-
itly consider that any information in our modeling en-
vironment has been produced by a specific process (it
is the case of data produced by observation for exam-
ple). An artefact is the state in space and time of a spe-
cific variable and has one to n dimensions. In fact, arte-
facts are often multi-dimensional supporting spatialized
variables. In ecology, artefacts are frequently maps.
For example, we often focus on the temporal evolu-
tion of a fish population’s spatial structure. This pattern
would be composed in our approach by all the states
of the artefact identifying the spatial structure of the
population. The artefact would have two dimensions
in this case (depth is not considered). Another pattern
is the price of fish plotted versus the amount of fish
catches. The artefacts involved in the creation of this
pattern are the price’s evolution in time and the amount
of fish catches in time. Artefacts also support the in-
teractions between (artificial and/or natural) agents. An
agent has no impact on the system until it influences
an artefact and therefore a pattern. In consequence, the
artefacts (and the patterns) are the environments of the
agents, which perceive, influence and are influenced by
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them. At last, artefacts and patterns support the anal-
ysis. Modelers watch the system through the patterns
and might also observe the artefacts. Modelers center
their observation on the very same structures that they
believed were remarkable in the real system and whose
behaviors they want to reproduce. Modelers start by
building the environment of the agents, the structure
of their model, and end up analyzing this environment
only.

More precisely, an artefact handles data using a discrete
n-dimensional matrix in a given space. Its specific se-
mantic and shape are known by the agents. The shape
is the definition of its span, defined in a given space.
The artefact is defined on several or every axes of the
space. Its span starts and ends somewhere on each axes.
Therefore, applying a function to the artefact is formal-
ized according to its spatial and temporal span and to
its semantic. Modifying an artefact means applying
geometrical or analytical transformations (projections,
mean values, etc.) on its shape and scaling (logarithmic
scale for instance) its semantic. At last, when an agent
produces an artefact, it modifies its time stamp. Based
on Lamport [17], this time stamp forbids any model us-
ing or writing an artefact to violate the causality princi-
ple. Hence, an artefact has the following description:
< S, f(S), A, tlast >. S is the artefact’s semantic,
f(S) a function that for an element s of S associates
f(s) – it is the logarithm function for example and it
enables to consider changing the scale of some data
without loosing its semantic. tlast is the time stamp
of the artefact. And, finally, A is a set of spatiotem-
poral axes on which the artefact is defined. A is never
empty and contains at least the time axis’ span. A span
is described by: < S, vinit, vfinal, δv, unit >. S is the
semantic of the considered axis – t for instance would
be the time. vinit is the initial position of the artefact
on the axis. Hence, for the time, it would be the time of
the artefact’s first execution step. In the same manner,
vfinal is the artefact’s final position on the axis and δv
the smallest discretization step. It is, for the temporal
span, the smallest update time step of the artefact. At
last, unit is the data’s unit.

The formal description of a pattern is multi-scaled, just
as a pattern itself. For instance, the pattern of the prey-
predator populations and the pattern of the demographic
structure of a population seem completely different and
are expressed within different scales and dimensions.
Therefore, we define a pattern as composed of (1) an
artefact, (2) a set of artefacts or (3) the evolution in
time of an artefact or a set of artefacts. For example,
considering a population distribution in space, the cor-
responding pattern is composed of the states of the arte-
fact that supports the distribution of the population at
each step of time.

4.2 Agents’ roles in modeling

The environment is, for an agent, all the artefacts with
which it interacts. Therefore, an agent has input-output
features that stand for the influences of the outside on
the inner-system and those of the inner-system on the
outside. Those features are considered in our system

Fig. 2 Agents, features and artefacts: an agent interacts
with the artefacts via features.

as active entities embodying (in the agent) the artefacts
with which they are interacting. In other words, a fea-
ture modifies an artefact or is modified by it. But, more
generally, as shown in figure 2, an agent manipulates
a model and is composed by features. The model in-
teracts with the features, several of which interact with
artefacts. Hence, the agent controls the interaction with
the environment, while its internal model can be exe-
cuted without knowing anything about the environment.
The agent’s behavior or its capacity to process the mod-
ifications of its internal variables or of the environment
(artefacts), depends on the modeling approach chose
for its internal model. But in any case, the agent’s goal
is to produce artefacts. The features are variables, pa-
rameters and constants and the agent can : (1) maintain
local control on variables of its model or (2) use specific
heuristics, to be stated, to initialize its model’s parame-
ters.

Three roles of agents in modeling were identified: (1)
a model-agent handles an expert model and produces
artefacts; (2) an observer-agent watches artefacts or
patterns and produces observable entities (images, 3D
objects, etc.); and finally, (3) a controler-agent watches
artefacts, compares them to specific values – described
by experts, by preprocessed scenarios, by real data
observations or by other artefacts– and triggers spe-
cific behaviors if the artefacts reach unwanted values
(recording, sending messages to modelers, executing
heuristics).

Model-agents can manipulate four types of models (see
figure 3): (1) models based on differential equation
systems, that we name intensional models, because
only the properties of the system are specified, not the
components; (2) individual-based models, that we call
emergent models, because the behavior of the system is
not given but is the result of its elements’ behaviors and
interactions; (3) participatory models, played by human
experts; (4) models built out of data series (temporal
series that can be spatialized), that we will designate
as extensional models, because each and every state of
the system is described, not its behaviors. Therefore,
intensional model-agents are structured by features, pa-
rameters or variables of an equation system. With those
equations, intensional model-agents process their state
at each step of time and modify the values of the out-
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Fig. 3 Pattern-oriented multi-model-agents simulation:
on the right, the different types of models a model-agent
can handle.

put features. Emergent model-agents are composed of
multiagent systems using input features and modifying
output features. At each step of time, emergent model-
agents make their multiagent systems evolve of one or
more cycle of an internal frequency that depends on
the phenomenon they try to reproduce [18]. Participa-
tory model-agents enable a human actor to participate to
simulations. Participatory model-agents are composed
by features that enable humans to interact with the sys-
tem through artefacts’ influences or observations (with
proper visualization tools). At each time step, humans
analyze their features and modify them. At last, exten-
sional model-agents are not influenced by outer system.
At each step of time, they follow their evolution scenar-
ios prepared for their features.

At last, we need one last set of components in order to
give agents the capacities to modify their environment.
We therefore specify operations as pre-defined func-
tions that can be applied on artefacts in order to change
their shapes. Because agents can perceive the semantic
and shape of artefacts, they can manipulate operations
in order to modify those artefacts. Depending on the
artefact it has to read or produce, an agent can manipu-
late one or several operations to transform the artefact.
For example, if an agent needs a specific artefact, it first
looks in the environment for an artefact with the proper
semantic and the closest shape. If no such artefact is
found, the agent tells the modelers about its incapac-
ity to function. Otherwise, it uses operations executing
the proper transformations to get the artefact with the
required shape. Modelers are explicitly told about this
process and the operations are made visible in the envi-
ronment. Therefore, agents can locally build the global
model and tell modelers about it or about their incapac-
ity to function if needed. Of course, using operations
on data means modifying this data. But because model-
ers create the operations and because the automatic use
of operations is explicit in the model (or can be decided
by the modelers), modelers can control their proper use.

4.3 Interaction and synchronisation

A feature can be either influenced by an artefact, or
can influence one. This influence is not linked to the
agent’s activity. We will in consequence, regarding an

agent, speak of input features and output features. It is
therefore necessary to order the activation of the differ-
ent entities as follows: (1) activation of input features
(updating the internal representations of the agents) ;
(2) agents’ activation, its internal model is executed ;
(3) activation of the output features (updating the arte-
facts). Hence, in the global organization of our multi-
model system, agents, and specifically model-agents,
are synchronized with the environment. The features’
activities are not linked with those of the agents. An
agent may therefore change and evolve without its fea-
tures having any activities. There would in that case
be no modifications of its input features. Agents are
highly detached from the rest of the system and the sys-
tem does not lie on any specific agent. Hence, it is easy
to add or remove dynamically new or existing agents.

Finally, operations are a type of features. They are sim-
ply features that modify the data they manipulate. Such
features exhibit the shape requested by the agent while
reading or producing an artefact with a different shape.
The reading and writing processes are just not simple
reading and writing but execute the functions specified
by the operations.

5 Application to exploited ecosystems
Description of the studied system

In this example, we want to understand the processes
involved in the dynamics of a theoretical fish popula-
tion. This population is located in its habitat in the Bay
of Biscay and exploited by a fishery. We observe the
shift of the fish demographic distribution to the North
of the Bay and we want to understand which phenom-
ena are the causes of this migration. Hence, the pattern
we focus on and we want to reproduce is this shift of
the population distribution from the South of the Bay to
the North. Furthermore, we notice that the population’s
total biomass does not grow during the process and that
it is more or less stable in time. At last, it is likely
that the fish population is affected by global warming,
which increases the temperature of the Bay from South
to North progressively. This system is of course the-
oretical and illustrates our modeling methodology and
simulation tool. But, we believe the system is instruc-
tive enough to exhibit what our approach and simulator
can do now and what should be done to improve it.

First simulation scenario: reproducing the pattern

We first select the processes that will best explain the
pattern we have identified. We add to the global model
the fish population model and the global warming phe-
nomenon in order to broadly explain the pattern. To
model the impact of the global warming on the fish pop-
ulation, we describe the habitat of the fish as a func-
tion of the latitude, the depth and the temperature in the
Bay in a specific model-agent that produces the habi-
tat in terms of an affinity map. Therefore, we consider
the habitat as an artefact shared by both the fish pop-
ulation and habitat models. We do not want to add
the model-agent manipulating the model of the fish-
ing activity yet, but we want the model-agent of the
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Fig. 4 First simulation scenario – an intensional model-
agent describes the fish population and all artefacts are
formally described (see section 4.1).

fish population to be able to integrate catches, there-
fore we add an artefact supporting the catches, even
though no model-agent will produce it for now. This
system is described in figure 4. We therefore have
three model-agents in the global model: (1) the exten-
sional model-agent producing the habitat distribution,
(2) the intensional model-agent for the fish population
and (3) an observer-agent creating the pattern we fo-
cus on and we want to observe. There are also three
artefacts: (1) for the affinity distribution (α), (2) the
fish biomass distribution (B) and (3) the fish catches
(C – which is initialized to zero – no fishing). Each
artefact’s semantic and shape is detailled. For instance,
if we consider the artefact of the fish distribution, its
description is < B, x,< X, xmin, xmax, 100, 10 ∗ km >,<

Y, ymin, ymax, 100, 10 ∗ km >,< T, tmin, tmax, 12,month >

, t >. The artefact’s semantic isB standing for biomass.
This biomass is described directly (x). Then, three axes
are listed as the biomass is expressed on the X , Y and
T axes. It is spatially (X and Y ) and temporally (T )
distributed. If we consider the span of B on one axis,
X for instance, we can see that this span starts at xmin,
ends at xmax, has a discretization step of 100, and that
its unit is 10 ∗ km. Finally, the last item t is the time
stamp.

We have stated a system of differential equations mod-
eling fish populations in trophic interactions. We do not
detail it here, but we use part of it to model the fish pop-
ulation of our example. We only use one equation (for
one population):

f(x, y, t+ 1) = f(x, y, t) + δt
∂f

∂t
(x, y, t) (1)

−C(x, y)× f(x, y, t)

∂f

∂t
(x, y, t) = (η∇f(x, y, t)−∇a(x, y, t)).∇f(x, y, t)(2)

+(η∆f(x, y, t)−∆a(x, y, t)).f(x, y, t)

We have removed the parts that model the trophic in-
teractions and only kept those regarding the diffusion
(density-dependence) and advection (tropism towards
affinity) processes. Furthermore, the parameter repre-
senting the natural growth of the fish population is also
set to zero and not exhibited here. Therefore, we do not
control artificially the growth of the population. The
fish population is modeled using the equation 5. At
t+1, the number of fish in (x, y) is processed using the
number of fish in (x, y) at t, ∂f

∂t (x, y, t) and the quantity

Fig. 5 The fish preferential habitat (in terms of affinity
distribution) influenced by global warming at time steps
100, 1000, 2000 and 3000 – output of an extensional
model-agent.

Fig. 6 First simulation scenario: the distribution of the
fish population at time steps 100, 1000, 2000 and 3000
– output of an intensional model-agent.

of fish captured at t. The equation 3 exhibits the parts
describing the diffusion-advection processes.

Figure 5 shows the output of the extensional model-
agent producing the habitat of the fish population (an
observer-agent was used to produce those figures, but
it does not appear in the diagram) and figure 6 shows
the output produced by the model-agent of the fish pop-
ulation model.

Second simulation scenario: adding an agent with-
out impact on the system

Having produced the pattern, we now add the model of
the fishing activity to the global model. It is made easy
with our approach, as we just have to add the corre-
sponding model-agent. The fishing vessels are modeled
with an emergent model. Fishermen are distributed in
two regions of the Bay (North and South) and are struc-
tured by two processes: (1) a perception of the two re-
gions enabling the fishermen to choose the region with
the larger stock ; (2) a fishing activity – the fishermen,
located in a region (North or South), choose the best ar-
eas to fish and produce catches. But, in order to have
a more interesting system, we chose to have the fish-
ing activity model expressed in another time scale than
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Fig. 7 Second simulation scenario: the emergent model-
agent of the fishing activity is added to the global
model.

Fig. 8 Second simulation scenario: the distribution of
the exploited fish population at time steps 100, 1000,
2000 and 3000 – output of an intensional model-agent.

the one of the fish population model. While the arte-
fact of the fish distribution is produced monthly and the
model-agent of the fish population is influenced by an
artefact of catches expressed monthly, we modeled the
fishing activity with a period of time of a year. There-
fore, the model-agent of the fishing activity has to trans-
form its input and output artefacts in order to function
properly. Hopefully, we had added the two following
operations in the system: (1) the first one reads (in-
puts) every month (simulation time) a two-dimensional
artefact and sets its value to a two-dimensional matrix
which is the mean value of the twelve last inputs; (2)
the second one, being written by the model-agent every
year, writes every month the twelfth of its value to the
artefact. To summarize, the model-agent of the fishing
activity, when added to the global model, detects that
the artefacts it needs to read and produce do not have
the proper shapes. Therefore, it uses the proper opera-
tions, just like normal features, to change the artefacts’
shapes. Figure 7 shows the resulting model and figure 8
shows the resulting output of the fish population model-
agent. Unsurprisingly and therefore not shown here, the
fishermen move progressively to the North of the Bay
when the stock gets bigger there as the fish population
migrates to the North.

Fig. 9 Third simulation scenario: the distribution of the
exploited fish population at time steps 100, 1000, 2000
and 3000 – output of an emergent model-agent.

Fig. 10 Fourth simulation scenario: An observer-agent
is added to the global model.

Third simulation scenario: locally desegregating a
model-agent

We now change the model of the model-agent of the fish
population. It enables us to have a better control on the
distribution-advection processes avoiding at the same
time the use a global growth parameter. It especially
enables us to exhibit the local change of a model with
no impact on the structure of the global model. The
individual-based model is described as follows: each
individual perceives its local environment and the indi-
vidual processes modeled are (1) a density-dependence
that kills the individual if the local density is superior
to a specific maximum density; (2) a spatialized repro-
duction – an individual reproduces itself depending on
the affinity to its local environment and on its size; (3)
a classical growth in weight and size, based on Von
Bertallanfy; (4) a mortality based on the age of the in-
dividual (longevity); at last, (5) a motion process that
creates new individuals somewhere in their preferential
habitat. The resulting output of the emergent model-
agent are exhibited in figure 9.
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Fig. 11 Fourth simulation scenario: the total biomass of
the fish population during the simulation – output of an
observer-agent.

Fourth simulation scenario

We now want to observe the evolution of the global
biomass of the fish population. We add a new observer-
agent to the system. Its specified goal is to observe an
artefact with the semantic B and defined on the sole
time axis (T ). The only artefact with the correspond-
ing semantic is defined on the axes X and Y (produced
by the fish population model-agent) (and the T axis of
course). This map of the fish population in space is
two-dimensional (latitude and longitude). Therefore,
the observer-agent uses operations to read the arte-
fact. Simple projections of the initial artefact are done
in order to transform the 2D artefact into 0D value.
The system is described in figure 10) and the output
of the observer-agent plotting the population’s biomass
is shown in figure 11.

The fish population increases in time (figure 11), when
we wanted it to be stable. Obviously, this growth is due
to the increase in size of the habitat, giving the fish more
“room” and decreasing the local density. Our inability
to keep the population biomass stable could be obvi-
ously explained by our modeling of the habitat, which
might be not relevant. The modeling of the fishing ac-
tivity could also be a reason as it was made constant in
time. An increase in time of the fishing activity could
explain the stable biomass of the fish population. Of
course, this example is theoretical and we chose the ini-
tial assumptions in order to build a didactic simulation
scenario, exhibit our methodology and show how some
automation could be envisioned.

6 Conclusion and perspectives
We exhibit through our simulation example of an ex-
ploited fish population our modeling methodology. We
tested several key aspects of our system – locally adding
agents without impact on the global model, changing
the model of model-agents or having agents locally con-
trol or change their environment. Our model-agent-
based solution enables experts to incrementally build
complex models of complex systems. The modeling is
centered on the data and especially on identified pat-
terns that model-agents have to reproduce. The en-
vironment, composed by patterns and artefacts, both

being formally described, enable experts to build their
model around the structures that best describe the stud-
ied system. The formal description of the artefacts also
enables agents to automatically manipulate them and
change their shapes. At last, agents, conceived as black
boxes, which behaviors are structured by the artefacts
they have to produce, enable us to consider the global
model as a system of models.

However, our proposition needs more work in order to
exhibit more relevant automatic behaviors and simulate
even more complex scenarios. Our example validates
several key points, but we are working on having real
collaboration between agents. The work on operations
has to be carried on, and of course, more complex oper-
ations have to be added to the system. In fact, we now
especially focus on: (1) describing the society of mod-
els in terms of rules on the global model; (2) the agents
in the simulation process – agents could execute auto-
matic simulation scenarios (sensibility analysis) for ex-
ample. On the long term, the self-organization concept
introduced by the agent paradigm means that agents
could self-measure part of their models, self-transform
themselves or have better adaptation behaviors (like
self-calibration for instance).

This work was carried out with the financial support
of Chaloupe, a French National Agency for Research
funded project.
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