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Abstract

The technique used in the most sleep laboratories for the diagnosis of the sleep disorders is the
polysomnography. This technique is of great discomfort for the patient (hospitalisation, sleep-
ing in a non familiar environment, connected to many sensors and cables). The fundamental
signals for assessing the quality of sleep can be recorded. Evaluating these signals in 30 sec-
onds interval is time consuming even for experience physician. Because that these signals are
recorded in real time and in digital form, and because that the diagnosis is made directly from
these records, they can thus be used for automatic processing. One of the most important prob-
lems in ECG analysis is the extraction of appropriate features, and this can be tackled in various
ways. The aim of this work is to automatically classify sleep stage using only the electrocar-
diogram (ECG) records and using the conventional R&K classification criteria. The feature
extraction stage of the work described in this paper was performed using methods of Detrended
Fluctuation analysis and Heart Rate Variability analysis. All these methods are based on analy-
sis of a Tachogram (record of RR intervals). Feature-spaces formed using these two methods
were used as input to a Artificial Neural Network (ANN). Our approach has been tested on a real
ECG records from different patients demonstrating the feasibility of the proposed method. The
capability to differentiate sleep stages in predefined categories (wake, light sleep, deep sleep,
REM) was successful in 65%. The Classification performed on data set containing only deep
sleep and REM categories had 83.4% reliability.

Keywords: Electrocardiogram, Sleep scoring, Heart rate variability, feature extraction,
Classification, Neural networks.
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1 Introduction

Wake/sleep complaints are second only to complaints
of pain as a cause to seek medical attention [1]. Un-
diagnosed and untreated wake/sleep complaints exact
an enormous toll at the personal level in terms of mis-
ery and at the societal level in socioeconomic conse-
quences. More than 25% of all European citizens suffer
from sleep disorders, like sleep apnea and insomnia.

For the diagnosis of the most frequent sleep disorders
the polysomnography in a sleep lab is of great discom-
fort for the patient (hospitalization, sleeping in a non
familiar environment, connected to many sensors and
cables, etc.). The fundamental signals for assessing the
quality of sleep can be recorded in a non invasive and
comfortable way at ambulatory care or at home, and
analyzed and scored by a sophisticated software under
the supervision of a sleep specialist. The final analysis
could help in the choice of the proper treatment and in
the identification of a few specific cases that really need
a further investigation through a complete polysomnog-
raphy.

What is urgently needed is to reduce overwhelming
number of sleep disorders candidates by means of
very simple-to-use, comfortable and cheap methodol-
ogy. Apart from quite a big number of existing com-
mercial ambulatory systems and racket development of
telemedicine which is foreseen as a key element leading
for reduction of cost [2] in medical sector, the current
situation is still alarming in many countries. Further-
more, with unavoidable scenario of huge increase of
elderly population in near future [3], there is a big de-
mand for new approaches based on well-measured vital
signals

Many research has been undertaken in automatic sleep
scoring in order to reduce analysis time and increase
the reliability in the diagnosis results. Most of these
research are based on electroencephalogram (EEG)
analysis using neural networks, genetic algorithm or
stochastic modeling approaches [4, 5, 6, 7, 8, 9, 10].
However, in the case of the EEG, the effects of scalp,
fluid and bone on the tiny electrical currents generated
in the cortex may be modeled only poorly and the large
size of scalp electrodes and the effects of muscle and in-
strument noise all contribute to the complexity of EEG
analysis. The aim of this work is to automatically clas-
sify sleep stage using only the electrocardiogram (ECG)
records and using the R&K classification criteria. One
of the most important problems in ECG analysis is the
extraction of appropriate features, and this can be tack-
led in various ways. The feature extraction stage of the
work described in this paper was performed using meth-
ods of Detrended Fluctuation analysis and Heart Rate
Variability analysis [11, 12, 13, 14]. All these methods
are based on analysis of a Tachogram (record of RR in-
tervals). Feature-spaces formed using these two meth-
ods were used as input to a Artificial Neural Network
(ANN) [15].

This paper is structured as follows. Section 2 presents a
brief introduction to the conventional R&K sleep scor-

ing. Section 3 describe our approaches for automatic
sleep stage classification from ECG. The performance
of the proposed approaches is demonstrated in section
4.

2 Sleep and different sleep stages
Sleep is a state of natural rest and is necessary for phys-
ical and psychical recovery. Sleep is often regarded as
test situation for autonomic nervous system. Length of
sleep necessary for recovery can differ greatly depend-
ing on age, etc. According to several studies the cogni-
tive and physical performances are reduced with fewer
than eight hours of sleep [16]. Early sleep researchers
noted that the electroencephalogram (EEG) waveforms
changed as a subject passed from wakefulness to sleep.
Not long after this, sleep researchers Rechtschaffen and
Kales (R&K) [17] developed the specific rules that are
used today in the scoring of sleep. Sleep stage scor-
ing depends on the recognition of specific characteristic
EEG waveforms recorded on a device known as a poly-
graph. In general, two types of sleep stages are con-
sidered: REM (Rapid Eye Movement) and Non-REM
which include four different sleep stages as show in
Fig. 1.

Fig. 1 Manual R&K Sleep Scoring System.

The classification is performed for each 30 seconds
epoch. The reason is historic: At a paper speed of 10
mm/s, 1 page equates to 30 seconds and is defined as
1 epoch. Computerized polysomnography usually dis-
plays one video screen as one 30-second epoch.

In this work we investigate an automatic sleep scoring
which is based only on the ECG records to replicate the
conventional R&K sleep scoring.

3 Methods
Our aim is to develop an automatic sleep stage classifi-
cation based on ECG signal analysis. To simplify this
task, some sleep stages were merged in one category
(see section 3.4). The classifier should be able to clas-
sify each 30 seconds of record in one of the four sleep
categories. To accomplish this task, three steps must
be performed: choose proper methods for feature ex-
traction from ECG, then prepare feature sets and com-
pare performance of features on large dataset and fi-
nally choose proper classifiers and compare their per-
formance

3.1 Automatic sleep stage classification

Sleep stage influences autonomic nervous system. This
influence can be investigated using features based on
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the analysis of ECG signal. These features use usu-
ally a Tachogram. Several approaches have been
tested and proposed for this analysis: Detrended
Fluctuation Analysis (DFA), Heart Rate Variability
(HRV) [13], Progressive Detrended Fluctuation analy-
sis (PDFA) [18].

Tachogram can be obtained from ECC signal, but as
well it can be obtained from pulse record. Using pulse
may be deceptive when some heart beats do not have
much cardiac output.

Classifying each interval at the basis of these features
is a pattern recognition problem. To perform classifica-
tion of ECG record intervals, the feed-forward artificial
neural networks (FFN) and Elman artificial neural net-
works (ELN) approach was adopted.

3.2 Electrocardiogram (ECG)

An electrocardiogram (ECG) is a recording of the elec-
tric potential, generated by the electric activity of the
heart, on the surface of body, Fig. 2.

Fig. 2 Electrocardiogram

Electrocardiogram is a basic tool for Cardiac electro-
physiology, for studying the cardiac mechanisms and
for studying the performance of the electrical activities
of specific regions of the heart.

ECG signal is governed by autonomous nervous sys-
tem, this common source is the cause of correlations
with breathing [19] and can be source of the correlation
with the different sleep stages [14, 20].

3.3 ECG based methods

There are a number of methods for the processing of
ECG signal, but they have to be analyzed in order to
decide whether they are useful for automatic estimation
of sleep stage using ECG signal.

There are few difficulties in processing of the ECG sig-
nal which are imposed by its biological origin: Heart
rate has many individual components and is driven by
competitive forces (sympathetic and parasympathetic)
and more over there are more of regulation mecha-
nisms. This causes the creation of complex fluctua-
tions. These fluctuations are not simply the result of re-
sponses on external factors, but they are persistent dur-
ing physical load, rest and sleep. This non-stationarity
is common for stochastic processes and therefore im-
poses that similar methods of processing may be used
such as Heart Rate Variability (HRV), Detrended Fluc-
tuation Analysis (DFA), Progressive Detrended Fluctu-
ation Analysis (PDFA), Heart Rate Morphology, Multi-
scale Entropy Analysis and Information-Based Similar-
ity.

3.3.1 Heart rate variability

Heart rate variability is a term used for the interpre-
tation of oscillation in the interval between consecu-
tive heart beats and oscillations in consecutive instan-
taneous heart rates. Heart rate variability covers large
number of methods but not all of them are suitable for
analyzing short intervals of records in which we try to
detect sleep stages. As a referential specification and in-
terpretation guide, see [12]. All the measurements have
to be performed using a Tachogram.

HRV can be divided in two major groups of statistics:
Time domain methods and Frequency domain methods.

Time domain methods

These methods employ Statistical or Geometrical meth-
ods for gathering features from RR record. Generally
Geometrical methods require large number of samples
(more than 20 minute interval) and therefore are unus-
able for sleep stage detection. Similar problem appears
for some of statistical features, see the commentary of
each of them below. These were selected as usable for
sleep stage detection.

Selected variables

• RMSSD: square root of mean squared differences
of successive NN intervals. This short term mea-
surement estimates high frequency variations in
heart rate.

• SDNN: standard deviation of RR interval reflects
all the cyclic components responsible for variabil-
ity in the period of recording. Because total vari-
ance of HRV increases with the length of the an-
alyzed recording SDNN is dependent on the an-
alyzed cycle length. Using this feature, this will
make that classifier to work properly only on in-
tervals of the same length as that used for training.

• RRmean: mean of RR interval length

• NN50: number of intervals longer than 50 ms,
this feature can be substituted by RMSSD (there
is power law relation between them), whose us-
age is encouraged because of its statistical proper-
ties. The interchangeability should be verified and
therefore it was included among used features.

Unsuitable variables

• SDANN - requires long intervals

• pNN50 - can be substituted by RMSSD.

Frequency domain methods

Variety of spectral methods are applied to Tachogram.
Power spectral analysis (PSD) gives us an estimate of
power distribution as a function of frequency. All of the
calculated values can be used for sleep stage classifica-
tion (see Tab. 1 for detailed description). The descrip-
tion nomenclature given in Table 1 are defined as fol-
lows. Var: Variance of NN over the temporal segment,
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PL: Power in low frequency spectrum, PH: Power in
high frequency spectrum, PVL: Power in very low fre-
quency spectrum, LFN: LF power in normalized units
given by

LF

Total power − V LF
× 100,

HFN: HF power in normalized units given by

HF

Total power − V LF
× 100,

R: Ration given by
LF

HF
.

m, s and n.u. are the abbreviations of meters, seconds
and normalized units respectively.

Tab. 1 Table of frequency variables for short time analy-
sis. V: Variable, U: Units, D: Description, F: Frequency
range [12].

V U D F

5 min. total power ms2 Var ≤ 0.4 Hz
VLF ms2 PVL ≤ 0.04 Hz
LF ms2 PL 0.04-0.15 Hz
LF norm n.u. LFN

HF ms2 PH 0.15-0.4 Hz
HF norm n.u. HFN
LF/HF - Ratio

The technical specification of power spectral compo-
nents is summarized in Tab. 2.

Tab. 2 Approximate correspondence of time domain
and frequency domain variables. TD: Time domain
variable, AFDC: Approximate frequency domain cor-
relate.

TD AFDC

SDNN Total power
RMSSD HF
NN50 HF

3.3.2 Detrended Fluctuation Analysis

DFA is method for quantifying the correlation property
in non-stationary time series based on the computation
of time dependent fluctuation function F (N). The abil-
ity to detect long-range correlations in non-stationary
time series is the biggest advantage over conventional
methods for RR analysis. It also permits to avoid spuri-
ous detection of non-stationarity and noise artifacts.

The correlation property of F (N) function is usually
expressed by scaling exponents α (see below the de-
tails) defined for different ranges of analyzed heart-
beats [21].

Conventional DFA-1 computation

To compute fluctuation function F (n) from time-series
x(i) [i = 1, ..., N ], the time series is first integrated:

y (k) =
k∑

i=1

[x (i) − M ]

where M is the average value of the series x(i), and k
ranges between 1 and N .

Next, the integrated series y(k) is divided into boxes of
equal length n and the local trend yn(k) fitting the data
in each box is calculated. The integrated time series is
detrended by subtracting polynomial local trend yn(k),
see Fig. 3, then the root-mean square fluctuation of the
detrended series is computed and finally the fluctuation
function :

F (n) =

√√√√ 1
N

N∑
k=1

[y (k) − yn (k)]2

F (n) is computed for all time-scales n. Typically, F (n)
increases with n, the “box-size”. If logF (n) increases
linearly with log(n), then the slope of the line relating
F (n) and n in a log-log scale gives the scaling exponent
α, see example in Fig. 4

y
(k
)
[-
]

y
(k
)
[-
]

0 20 40 60 80 100 120 140

k [heart-beats]k [heart-beats]

idata
trends

DFA-2 detrending

Fig. 3 Local detrending in the DFA algorithm.

According to random walk theory for uncorrelated data
is the scaling exponent α = 0.5. If α = 1.0, the
correlation of the time-series is the same as 1/f noise.
If α = 1.5, x(i) behaves like Brown noise. If the
scaling exponent is in the interval α = (0.5, 1〉, then
there is persistent long-range power-law correlation,
such that large RR interval is likely to be followed by
large interval. In contrast scaling exponent in interval
α = (0, 0.5) indicates power-law correlation when the
large values of time series are followed by small ones,
see example in Fig. 4

DFA of higher orders

DFA of higher orders can be used to eliminate the noise
and to refine the results obtained from DFA-1. The DFA
of higher orders has ability to eliminate effects of trends
of lower orders [22]. This means that the fluctuation
function of DFA-l will not be influenced by polynomial
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Fig. 4 DFA scaling exponents fitted in RR interval se-
ries. Fitted lines for scaling exponents α1 = 1; α2 =
1.476.

trend of lower order than l. DFA enables us to quan-
tify correlations in noisy signals embedded in polyno-
mial trends, moreover if scaling and crossover features
of F (n) are used we can also determine the order of
trends and also to detect sinusoid trend.

The order of DFA is specified by order of local trend
polynomial function used for fitting the integrated data
series in detrending step.

3.4 HRV and DFA sleep stage classification

The classification will be performed using the features
prepared by DFA and HRV. The classification must be
based on non-invasive measurements and for each 30
seconds of record has to be classified in one of the fol-
lowing groups:

• Deep sleep: group includes sleep stage 3 and sleep
stage 4 where stage 3 is considered as transitional
to stage 4.

• Light sleep: group includes sleep stage 1 and sleep
stage 2. Both sleep stages lack presence of B
waves. Patient is easy to wake up.

• REM sleep: includes only REM sleep stage.

• Wake state: in this period none of sleep stage can
be classified.

This work does not assume any manual modification
of signal. Usually ECG record contains some artifacts
which cannot be avoided, e.g. movements. If these can-
not be handled by artifact filtering and QRS complex
detection algorithm, the interval is invalidated. Accord-
ing to references, the movements occur often in sleep
stage change, this may be possibly used in future as a
feature for classification [14, 17].

3.4.1 Classification schema

Following the capabilities requirements of the classi-
fier, the classification in our framework can be divided
into several steps: signal preprocessing, selection of di-
agnostic intervals and data feature extraction and sleep

stage classification in one of four specified groups:
Deep sleep, Light sleep, REM sleep and Wake state.
Fig. 5 gives the classifier’s schema based on the classi-
fier’s specification.

Fig. 5 Sleep stage classifier schema.

Signal pre-processing

Because of the requirement to classify each 30 seconds,
it is very important to select proper diagnosis inter-
val length. Many methods used for feature extraction
(e.g. Heart Rate Variability (HRV), Detrended Fluctu-
ation Analysis (DFA)) require relatively long record in
order to give reliable values [12, 14]. There are sev-
eral possible solutions: use only features which are dis-
posable at short intervals or try some averaging from
longer intervals. We have selected only features accu-
rate enough on short intervals. The basic solution uses
only 30 seconds interval length to compute features, im-
proper methods of feature extraction were omitted.

The other problem is to do an accurate QRS complex
detection. Using short intervals, this problem gain im-
portance: Missing QRS complexes degrade quality of
extracted features and can cause failure of certain fea-
tures extraction algorithms (these algorithms demand
minimal number of samples) [23]. Therefore a sim-
ple condition for invalidation of intervals was imple-
mented: Algorithm expects QRS complex detection to
be quite successful: from first 15 minutes counts av-
erage number of heartbeats for 30 second interval and
all intervals, which don’t overcome limit of 66% of this
value are invalidated.

Feature extraction

The first step for successful classification is to perform a
good feature extraction. This step is essential for further
classification. A good feature extraction can greatly in-
creases reliability of the final classification. The goal
of this step is to create large set of features which can
be used for classification in step 2. This set is distrib-
uted in smaller sets that can be used for training, cross-
validation and test as described in ANN section. The
training will be performed several times using differ-
ent features combinations. The performance of several
features combinations is then compared.
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Classification

In our approach, we use only the ECG records for
sleep stage classification. The classification will be per-
formed by Artificial neural networks (ANN), see next
section. There are numerous HRV based approaches
for sleep stage and sleep apnea classification [13, 18].

3.4.2 Feature extraction

To follow the classifier requirements as specified in the
beginning of section 3, it is necessary to choose vari-
ables which can be used for very short record intervals.
Ideal value would be 30 seconds or even shorter, but
this requires reliable QRS complex detection, because
each missed QRS complex (even corrected) can greatly
degrade the statistics. After pre-processing of ECG sig-
nal (see section 3.4.1) the features, as specified bellow,
are extracted and saved in database.

Spectral components

Every sleep stage has its own characteristic spectrum
components. The problem is how to define this speci-
ficity. We inspired us by a table of characteristic spec-
tra given in the paper [13]. To compute frequency val-
ues we used parametrical method “pburg” of order 9,
the propriety of selection of this order can be verified
by “arfit toolbox” [24, 25]. This selection is a com-
promise, because the proper order may vary. This is
caused by short interval length and by the natural di-
versity in heart rates and cannot be avoided. At ba-
sis of spectrum presented for each sleep stage we se-
lected the following features (see section 3.3.1): Low
Frequency/Hight Frequency (LF/HF) - ratio of this fea-
tures, Total power (TP) - total power for analyzed inter-
val, Low Frequency (LF), High Frequency (HF), Very
Low Frequency (VLF), normalized LF and normalized
HF.

Time domain measurements

Generally Time domain measurements are hard to inter-
pret, especially for short term recordings. Only meth-
ods for short time intervals were chosen [12].

Selected features

The selected features are: RMSSD for all lengths of in-
tervals, SDNN for all lengths of intervals, RRmean -
mean of RR interval length over analyzed interval and
NN50 - this feature is deprecated and probably it can be
easily substituted by RMSSD.

A Genetic algorithm [26] was implemented in our work
to select the best feature combination (see section 4).

Detrended fluctuation analysis

Generally DFA needs a longer analyzed intervals due
to the logarithmic dependence of scaling exponent α.
Normally the scaling exponent is computed for several
boxel size ranges n, but the size of the analyzed inter-
val of 30 seconds does not permits fitting of the second
independent scaling exponent, therefore 2 overlapping
exponents were chosen. The basic boxel size was set to
6 to remove degradation of scaling coefficient caused
by detrending at small number of samples. This effect

is stronger for higher order of DFA. The default DFA
order for analysis was set to 2 and for comparison we
added a scaling coefficients of DFA-3, in order to inves-
tigate the impact of steeper slop of α1coefficient.

• DFA − 2αfast is computed from the basic boxel
size n = 6 to boxel size n = 16, DFA order is 2,
the used computation step is 1.2

• DFA−2αtotal scaling coefficient computed from
basic boxel size n = 6 to boxel size of the total
number of samples in the analyzed interval, DFA
order is 2, the used computation step is 1.2

• DFA− 3αfast is computed from basic boxel size
n = 6 to boxel size n = 16, DFA order is 3, the
used computation step is 1.2

• DFA−3αtotal scaling coefficient computed from
basic boxel size n = 6 to boxel size of the to-
tal number of samples in the analyzed interval, the
used for computation step is 1.2.

Data

The raw data records used in our work are real
data issued from the polysomnograph of Medatec
company [27] which is used in some hospitals in
France, particularly in the Hospital Raymond Poincar-
Garches [28]. In this preliminary study, four ECG
records corresponding to four patients [27, 28] were
used. These all night recordings sampled at 200 Hz
were scored according to the R&K rules. The authors
actually extend the results to include more records cor-
responding to different patients.

4 Results
The purpose of this section is to assess whether the cho-
sen ANN inference approaches together with our fea-
ture extraction approach for getting reliable classifica-
tions is useful in the context of sleep staging.

ANN training

As mentioned above, this classification task is rather a
pattern recognition problem and this influences possible
training mechanisms. In this study, feed-forward neural
networks (FFN) and Elman neural networks (ELN)
were used as a classifiers. The speed of convergence at
larger networks should be also considered as a criterion
for algorithm selection, slow training algorithm would
prevent comparison of a different training data sets. To
satisfy these criteria, the following Matlab ANN tool-
box algorithms [29] were used to construct our ANN:
“trainrp”, “trainscg”, “trainoss” and “traingdx”.

Choosing ANN structure

To ensure good recognition it is preferred to construct
the first layer of ANN such that the dimensions of this
layer and the input vector are the same. Similarly the
dimensions of the output layer is the same as that of the
output states vector (4 states, see output definition in
section 3.4). The output function is proposed to be log
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of the sigmoid function (log-sig) to ensure that the out-
put is in range of (0,1). The output state vector is com-
posed of the four states: wake,light sleep,deep sleep and
REM.

In our work, a simple method to create ANN with dif-
ferent topology of inner layers has been developed. The
method generates ANN by adding hidden layer with
different number of neurons to the current ANN scheme
used for training. These networks were trained several
times and the medium performance function on train-
ing data, medium performance on test data and the best
reached performance on test data were captured and
plotted in graphs.

ANN types comparison

Two types of ANN were proposed: feed-forward (FFN)
and Elman neural ANN. ELN is based on FFN, but due
to recurrent connection between hidden layer and input
layer it can learn temporal patterns. This capability may
prove as useful.

4.1 Sleep stages classification

In order to choose the best ANN topology for our study,
a simple test was performed. During this test ANNs
with different topology of the inner layers are created.
The results of this test has been used to select the best
performing networks. These networks are Elman net-
work with one hidden layer and FFN with one hid-
den layer. To get the best performance, during training
process, a cross-validation data set was specified. This
data set is not used for training but, the performance
of trained function is measured on it and if the perfor-
mance on cross-validation data get worse for defined
number of consecutive training iterations the training is
stopped. This procedure is called early stopping. The
limit was set to 20 iterations in which the performance
degrades.

4.1.1 Features property comparison

In the subsection 3.4.2, suitable features were selected
for a robust data representation at the basis of theoret-
ical analysis (see section 3.3). This does not neces-
sary means that they are proper to perform ANN learn-
ing. Some combinations of these features perform bet-
ter than others. Some combinations are nearly equiva-
lents, because they express the same variation property.

Tab. 3 and 4 show some combinations that we used
to initialize the GA, where the features combination
vector is defined, from left-to-right successively, as a
binary vector which specifies presence or absence of
the following features at the input of ANN (see sec-
tion 3.4.2): RMSSD, NN50,HF,HFn, 2αfast, 2αtotal,
3αfast, 3αtotal, TP, SDNN, VLF, LF, LFn, RRmean,
LF/HF.

The performance for the estimated feature combina-
tions was estimated on 3 different data sets. Each data
set contains training data, cross-validation data and test
data.

DATA SET-1 is randomly selected data set, which con-
taining only deep sleep and REM episodes. This data

Tab. 3 Basic feature combinations.

ID Features Combination vector

1 ch(1, :) = [1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1]

2 ch(2, :) = [1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1]

3 ch(3, :) = [1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1]

4 ch(4, :) = [1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1]

5 ch(5, :) = [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0]

6 ch(6, :) = [0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1]

7 ch(7, :) = [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

8 ch(8, :) = [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]

9 ch(9, :) = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]

10 ch(10, :) = [1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0]

11 ch(11, :) = [0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1]

12 ch(12, :) = [1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1]

13 ch(13, :) = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

14 ch(14, :) = [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0]

15 ch(15, :) = [0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1]

16 ch(16, :) = [0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1]

Tab. 4 Description of the feature combinations in Tab. 3.

ID Description

1 Best by statistical properties (Default)

2 Default + TP

3 Default, DFA order changed to 3

4 Default, TP, DFA order changed to 3

5 Time domain

6 Frequency domain (only normalized)

7 DFA-2

8 DFA-3

9 DFA-2, DFA-3

10 Time domain, DFA-2

11 Frequency domain, DFA-2

12 Time domain, Frequency domain (only normalized)

13 Complete features vector

14 Time domain

15 Frequency domain

16 Complete Frequency domain

set correspond to the simplest task because they may be
clearly classified and therefore it is suitable to evaluate
the fitness of features for sleep stage estimation. The
results for the created Elman ANNs are given as an ex-
ample in Tab. 5.

Data SET-2 is randomly selected data set, which con-
tains only REM and wake stage episodes. This set
presents more complicated task than DATA SET-1.

Data SET-3 is randomly selected data set, which con-
tains all the sleep categories (see section 3.4). This
presents the most complicated classification task and
goal of our measurements.

All the following tables contain values mean of
the ANN performance function (Mean Square Error
(“MSE”)) on training data, mean of ANN performance
on test data (“test MSE”) and best performance value
on test data (min test MSE).
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Tab. 5 Performance on DATA SET-1 for Elman network.

Elman MSE test MSE min test MSE

1 0.1227 0.1235 0.0855

2 0.1185 0.1178 0.0790

3 0.1224 0.1244 0.0930

4 0.1173 0.1203 0.0903

5 0.1246 0.1247 0.1032

6 0.0942 0.1003 0.0810

7 0.1157 0.1186 01125

8 0.1099 0.1190 0.1160

9 0.1065 0.1185 0.1099

10 0.1241 0.1241 0.0817

11 0.0898 0.0938 0.0708

12 0.1162 0.1186 0.0901

13 0.1105 0.1143 0.0966

14 0.1238 0.1246 0.1096

15 0.0907 0.0986 0.0737

16 0.0904 0.0928 0.0712

Choosing features for ANN training

It is presumed that features obtained by different meth-
ods express autonomic regulation in different ways and
their proper combination can improve the performance
of selected ANN. Our capability to evaluate the prop-
erty of features and to create the best training set is
limited, therefore simple Genetic Algorithm (GA) [26]
was implemented to reduce this inability and to help us
for selecting the best features combinations necessary
for training. This algorithm tries to evaluate the suit-
ability of different combinations of features. This ge-
netic algorithm utilizes only the simple methods: pre-
initialization, breeding and mutation. For this purposes
chromosomes was defined as a binary vector which
specifies presence or absence of feature at the input of
ANN. The chromosome was defined according to the
variation property of features: features considered as
equivalent or at least of common origin were put as
neighbors. If a gen is set to zero the feature is really
absent and thus the dimension of ANN input is also re-
duced.

Even now it can be claimed that some features are re-
dundant (DFA-2 vs. DFA-3). To select the best com-
bination of features it is better to chose features from
different groups: Time domain, Frequency domain and
DFA. As a guide, Tab. 2 may be used. At the basis
of theoretical analysis (see 3.3) the feature sets were
created, these were also used for GA pre-initialization
(see above). These sets are described in detail in the
table 3. The following features (see 3.4.2) give the best
statistical properties and therefore they were used to
form pre-initialization of GA: RMSSD, HFn, 2αfast,
2αtotal, SDNN, LFn, RRmean and LF/HF.

Genetic algorithm results

The genetic algorithm got stable after 40 generations:
the population contained the same individuals. This
was specified as stopping condition.

The best feature combination was selected as

ch = [1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]

From the rundown of genetic algorithm the other in-
dividuals whose chromosomes could contain interest-
ing information were then chosen. These individuals
were selected because their quality rating was near to
the performance of the best individual. These chromo-
somes are different from the best individual’s chromo-
some. These individuals are summarized in Tab. 6 and
Tab. 7.

Tab. 6 The best feature combinations selected by GA.

ID Chromosome

17 ch(17, :) = [0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]

18 ch(18, :) = [0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1]

19 ch(19, :) = [1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]

20 ch(20, :) = [1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1]

21 ch(21, :) = [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1]

22 ch(22, :) = [1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1]

Tab. 7 Description of the feature combinations in Tab. 6

ID Description

17 NN50,2αfast,3αfast,SDNN,LF/HF

18 NN50,2αfast,3αtotal,SDNN,LF/HF

19 RMSSD,HFn,2αfast,3αfast,SDNN,LF/HF

20 RMSSD,HFn,2αfast,2αtotal,3αfast,SDNN,LF/HF

21 RMSSD,HFn,3αtotal,SDNN,LFn,LF/HF

22 RMSSD,HF,3αfast,3αtotal,SDNN,LFn,LF/HF

To be able to perform comparison, the performance of
these features was evaluated at the same 3 data sets
(DATA SET-1, DATA SET-2 and DATA SET-3) as pre-
selected feature combinations. As an example, the re-
sults for feature combinations generated by GA, eval-
uated on DATA SET-1 and using Elman network, are
summarized in Tab. 8.

Tab. 8 GA generated features evaluated on DATA SET-1
using Elman network.

Elman MSE test MSE min test MSE

17 0.0718 0.0928 0.0852

18 0.0694 0.0821 0.0708

19 0.0747 0.0751 0.0639

20 0.0625 0.0809 0.0659

21 0.0767 0.0833 0.0716

22 0.0723 0.0782 0.0621

4.1.2 ANN structure comparison

To select proper topology of ANN statistic tests were
run on 3 different ANN topologies (see section 4). The
number of hidden layers and neurons inside for tested
topologies are summarized in Tab. 9 and the other pa-
rameters for input and output layer are as specified in
default FFN topology.
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Tab. 9 ANN patterns. ANN-P: ANN property, H-L:
Hidden layers

ANN-P ANN 1 ANN 2 ANN 3

H-L H1=x H1=x,H2=7 H1=30,H2=x

For all the ANNs, the used features vector identifier
(ID) =1, the Matlab training function is ”trainp”, the
transfer function is ”log-sig”, the early stopping has 20
iterations and the input states are the sleep stage 4 and
REM, performance function is MSE. x is the variable
number of neurons in the given hidden layer. The fixed
numbers (7 and 30) of neurons in certain tested topolo-
gies was estimated at the basis of the first test. The test
was performed as follows:

1. Random selection of training, cross-validation and
test data from the database of features.

2. Creation of ANN by using the selected topology.

3. Re-training ANN for 500 times on the same data
to get some usable statistics.

4. Getting mean of the performance ANN function
on the training data, mean of the performance
ANN function on the test data and the best per-
formance value on the test data.

5. The obtained means were fitted with Gaussian
curves to make the results readable (see Fig. 6 as
example). For fitting, the Curve fitting toolbox
was used. [30]

Fig. 6 ANN topology comparison (MSE vs. hidden
units number).

All the topologies achieved nearly the same best results
on the performances but these results showed that ANN
with one hidden layer performs better in all the man-
ners. Increasing the number of neurons and hidden lay-
ers can augment the performance function, but network
with only one hidden layer generalized better. Thus it
was chosen to make all the comparisons with FFN us-
ing only one hidden layer. In order to determine the best
number of neurones in this hidden layer, the test was
re-run several times for this ANN pattern and it showed
the performance is significantly better for ANNs with
25-35 neurons in the hidden layer.

4.1.3 ANN types comparison

Two types of ANN were selected for comparison: FFN
and ELN. Using the results from previous section we
made comparison of the best FFN (with one hidden
layer) with the ELN defined by several topologies. The
test was performed as in the section 4.1.2. The used
topologies of network are summarized in Tab. 10. For
all the ANNs, the used features vector identifier (ID)
=1, the Matlab train function is ”trainp ”, the transfer
function is ”log-sig”, the early stopping is 20 iterations
and the input state is the sleep stage 4 and REM. Be-
cause it was shown in the previous section that adding
more neurons did not improved results, the training of
FFN was terminated at the limit of 35 neurons in the
hidden layer.

Tab. 10 Networks for ANN types performance compari-
son. ANN-P: ANN property, H-L: Hidden layers, FFN:
feed-forward network, ELN: Elman network

ANN-P ANN 1 ANN 2 ANN 3

ANN type FFN ELN ELN
H-L H1=x H1=x,H2=7 H1=30,H2=x

On one hand, from the results plotted in Fig. 7 and
Fig. 8 it is obvious that Elman network performs bet-
ter with respect to the capability of generalization and
convergence.

Fig. 7 Performance comparison of Elman and feed-
forward ANNs using train data

On the other hand, the best reached performance using
the test data set is nearly the same. This is the fact in
nearly all the tests.

4.1.4 Topology results summary

At the basis of tests, two artificial neural networks were
constructed for classification of sleep stages. Their
properties are summarized in Tab. 11. For all the ANNs,
the used Matlab train function is ”trainrp”, the transfer
function is ”log-sig”, the early stopping is 20 iterations
and the performance function is MSE.

4.2 Sleep stage classification

The capability to classify was so far tested on four pa-
tients, with total record length of 1980 minutes. The ca-
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Fig. 8 Performance comparison of Elman and feed-
forward ANNs using test data

Tab. 11 Final ANN properties. ANN-P: ANN property,
H-L: Hidden layers, FFN: feed-forward network, ELN:
Elman network

ANN-P ANN 1 ANN 2

ANN type ELN FFN
H-L H1=27 H1=17

pability to differentiate sleep stages in predefined cate-
gories (see section 3.4) is successful in 65%. The Clas-
sification performend at data set containing only deep
sleep and REM categories had 83.4% reliability.

By analyzing the results given in the Tables of per-
formances on DATA SET-1, DATA SET-2, DATA SET-
2 for Elman (see Tab. 5 as an example ) and feed-
forward ANN, and by analyzing the Tables of gener-
ated features using DATA SET-1, DATA SET-2, DATA
SET-2 (see Tab. 8 as an example) with respect to the
quality of training, we found that Elman network per-
forms worse than feed-forward ANN. Although both
networks reached similar mean values of performance
on test data feed-forward ANN was able to reach much
better absolute results on test data.

Surprisingly Elman neural network performed better
when analyzing quality of classification. Both ANNs
were evaluated on all the available data. Elman reached
the reliability of 83.4% with “ID = 19” and feed-
forward ANN reached 82.4% with “ID= 2”. The best
performance had feature combination selected by GA
with “ID = 19” and was followed by the feature combi-
nation with “ID = 2” and “ID = 3”.

Comparing all the tables of the generated features on
the three data DATA SET-1, DATA SET-2, DATA SET-2
and all the tables of performances of Elman and feed-
forward ANNs, we found out that the best mean test
performance the GA generated feature sets, but the fea-
ture combination which was estimated to have the best
statistical properties with “ID = 1” reached the best test
value. This can be explained as that the feature com-
bination with “ID = 1” contains most of the relevant
informations, but it is more complicated to overcome
local minima during the training. On the other side us-

ing the feature combination selected by GA with “ID =
19” the ANN can be easily trained.

5 Conclusion

In this preliminary work, we studied the feasibility of
automatic sleep scoring using only the electrocardio-
gram (ECG) records. This feasibility has been demon-
strated on real ECG records issued from 4 patients. The
capability to differentiate sleep stages in predefined cat-
egories is successful in 65%. The Classification perfor-
mend at data set containing only deep sleep and REM
categories had 83.4% reliability. In order to obtain more
reliable results, the authors extend actually this work to
include more number of patients.

The above results show that the methods used to eval-
uate the property of the features and the ANN topol-
ogy was not sufficiently satisfactory. The performance
rating on test data and the ability to classify properly
has to be clearly linked. Thus, in the future work, the
performance function for the ANN and the evaluation
function for the Genetic algorithm will be revisited.

The main benefit will be sleep quality assessment using
only vital signals as electrocardiogram or pulse transi-
tion time which can be easily measured. Using Holter
analysis, that is a wide spread and cheap methodology
in cardiology area, the sleep quality monitoring could
be applied straightforward by implementing project re-
sults.

Furthermore, others objective well be the reduction of
the costs for the sleep evaluation, better prevention of
chronic illness or disabilities related to sleep disorders,
though the earlier and simpler examination of potential
patients and early diagnosis. A positive effect on the
quality of medical care can be expected, while lowering
the overall economic burden on the health care systems.
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