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Abstract  

When dealing with nonlinear systems, linear fault detection and isolation techniques are 
sometimes inadequate. To describe nonlinearity of the system often we try to find the optimal 
fitting function. Many known methods have been developed where multivariate statistical 
methods are becoming popular in FDI practice as they offer good results according to data 
processing complexity. One of such is Principle Component Analysis, which is easy to 
implement, however not always accurate enough as it offers only linear transformation of 
process data. Therefore in this paper a derivation and implementation of nonlinear PCA for 
fault detection and isolation is demonstrated on a most popular case study, namely the three-
tank laboratory plant using on-line data acquisition and the Matlab/Simulink environment. 
Derived NLPCA models are based on auto-associative neural network (AANN) with different 
combinations of encoding and decoding layers, and trained by back-propagation algorithm. 
Fault detection and isolation scheme is realized in Matlab/ Simulink and was designed to 
recognize predefined faults that can be introduced into the system. Results at the end show 
that drift or small shift faults, such as 4% of measured variables, can be identified by the FDI 
scheme in the system.  
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1 Introduction 
Faults in industrial processes are unavoidable. 
However with appropriate action consequences can be 
minimized so every plant operator’s dream is to be 
able to predict and localize faults and malfunctions in 
the process as quick as possible to ensure minimum 
plant down-time. Complex modern plants are big 
scaled, running with a lot of process variables which 
are supervised usually only by one or two operators, 
sometimes the amount of process data can be so large 
and rich that supervisors are blinded with information 
and a fault goes-by undetected.  

To avoid such potentially dangerous situations many 
support systems for detection, isolation and diagnosis 
(FDI) of system faults has been developed, which can 
be data-driven, analytical, and/or knowledge-based. 
Overview of most important ones can be found in [1] 
and [2].  

If big plants are under consideration then knowledge 
about the process is usually incomplete and classical 
analytical FDI methods are inappropriate. Many of 
them have been developed for special cases, however 
only few of them are really applicable and can’t be 
simply put into practice. [3], [4], [5]  

In this paper an implementation of fault detection and 
isolation scheme by using nonlinear PCA method 
based on auto-associative neural networks (AANN) is 
demonstrated onto a real laboratory plant where no a-
priori knowledge is needed. A lot of improvements 
from the original method described by Kramer [9] 
have been developed, together with alternatives and 
modifications of AANNs that were applied in practice. 
Researchers have developed different ANNs 
structures, ANN-Fuzzy methods, used Genetic 
algorithms, etc., to improve operation of their research 
methods.  

Despite different AANN methods, it takes some 
practical knowledge and experience to put NLPCA 
into practice on a real plant. In our case a classic PCA 
was already realized for fault detection and isolation 
on a laboratory plant, where we tried to overcome 
false alarm issue with nonlinear fitting function, 
achieved by AANN. 

2 Statistical techniques  
When using analytical FDI, a derivation of an 
adequate model of complex systems is very difficult 
and takes a lot of effort, therefore large systems are 
usually simplified so that the FDI techniques can be 
used. In such case it is more convenient to decide for 
data-driven methods, which usually don’t require 
modeling steps. Also most of these processes have 
powerful supervisory systems (SCADA) installed, 
with the role of visualizing the operation of the 
process and informing the operator about the process 
behaviour. These systems present a key tool for 

development of data-driven FDI algorithms (history of 
the process).  

Upon large process history datasets a statistical model 
of the process can be obtained by using well 
established multivariate statistical methods such as 
principal component analysis [6]. Because it does not 
require much of a processing power and is simple to 
implement, it has been widely used for image 
compression, fault detection, dimensionality reduction 
of data (gene expression, meteorology, medicine), etc. 
It can handle high dimensional and correlated process 
variables, provides a natural solution to the errors-in-
variables problem and includes disturbance 
decoupling. However, main drawback lies in linearity 
of this technique.  

As mentioned before, to improve its fitting to the 
nonlinear processes many derivatives of PCA has 
been developed so far. These can be found under the 
names as kernel PCA (Jade, 2003, Choi et al., 2005), 
dynamic PCA (Braatz, 2000), adaptive or non-linear 
PCA; uses artificial neural networks, genetic 
algorithms, Fuzzy and neuro-fuzzy algorithms, 
statistical methods (Yu, 1996, Wang, 2001, Chen, 
2002), wavelet PCA (Martin, 1999), recursive PCA 
(Li, 2000), etc. 

2.1 Principal Components Analysis 

Principal component analysis (PCA) is very popular 
statistical method for extracting information from 
measured data, which finds the directions of 
significant variability in the data by forming linear 
combinations of variables. The use of PCA also 
allows the number of variables in a multivariate data 
set to be reduced, whilst retaining as much as possible 
of the variation present in the data set. 

The data matrix must be auto-scaled by the means and 
standard deviations of physical variables. The 
variables are scaled by subtracting the means from the 
measured values and dividing the results by the 
standard deviations. Then from this data set, a 
corresponding squared covariance (correlation matrix) 
can be calculated. Then the eigenvectors of the 
covariance matrix of the basis data must be 
determined and reduction in the dimensionality of the 
data is possible, where only those directions in the 
vector space that are most significant for showing 
variations in the training data are retained. Next the 
eigenvalues and eigenvectors are computed using 
singular value decomposition (SVD) and PCA 
determines an optimal linear transformation of the 
data matrix X in terms of capturing the variation in the 
data:  

         TT XP X TP= =  (1) 

with [ ]
1 2

...
m

T t t t=  where the vectors ti are 
called scores or principal components and the matrix 

[ ]
1 2

...
m

P p p p= , where the orthogonal vectors 
pi, called loading or principal vectors, are the 
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eigenvectors associated to the eigenvalues λi of the 
covariance matrix (or correlation matrix) Σ of X:  

 T TPP P P I= =  (2) 

where ( )
1
, ...,

m
diag λ λΛ =  is a diagonal matrix with 

diagonal elements in decreasing magnitude order. 

As mentioned, the reduction in dimensionality of the 
data can be realized in a way that the relative 
magnitudes of the singular (eigen) values are 
compared, and then only a few largest singular values 
and the corresponding eigenvectors are retained. This 
reduction is important when using statistic measures 
for fault detection since the smaller singular values 
effectively act as noise sources and thus impair its 
reliability. From these selected few largest singular 
values a reduced matrix of the principal components 
can be formed, which describes the behaviour of the 
system in direction of principal components.  

There are several criteria by which the number of 
principal components can be determined. One way is 
to determine the percentage of variance of each 
principal component, respectively and then determine 
how many PCs will be retained. This can be achieved 
by using a cumulative sum, which gives the 
percentage of the described variance using 
eigenvalues of each principal component. It can also 
be graphically presented in the SCREE graph. Once 
the number of principal components (l) is determined 
(normally it is l<m), the initial matrix X can be 
described with l greatest eigenvalues (eigenvectors) of 
the covariance matrix Σ.  

As shown here, the PCA in FDI is used for extracting 
redundancy relationships between the variables. In 
most practical cases (noisy measurements), the small 
eigenvalues indicate the existence of linear or quasi-
linear relations among the process variables. However 
the distinction between significant or not significant 
eigenvalues may not be obvious (disturbances, 
nonlinearities and noise). Very important with PCA 
models is choosing the number of principal 
components. [7],[8] 

2.2 Autoassociative neural networks and PCA 

If the system is of very nonlinear nature classical PCA 
is usually not enough. In 1991 a nonlinear technique 
for multivariate data analysis was presented by M. A. 
Kramer, now known as nonlinear PCA - NLPCA. [9] 
He used a feed-forward neural network to perform 
identity mapping, where network inputs are 
reproduced at the output layer. We can say that 
Kramer’s NLPCA is a generalization of classic PCA. 
The fundamental difference between NLPCA and 
PCA is that NLPCA allows nonlinear mappings from 
whereas PCA only allows linear mappings. To 
perform NLPCA, the NN in Figure 1 contains 3 
hidden layers of variables between the input and 
output layers of variables.  

 
Fig. 1 The structure of Autoassociative ANN 

Next to the input layer there is the encoding layer, 
followed by the bottleneck layer, which is then 
followed by the decoding layer.  

A nonlinear function maps from the higher dimension 
input space to the lower dimension bottleneck space, 
followed by an inverse transform mapping from the 
bottleneck space back to the original space represented 
by the outputs, which are to be close to the inputs as 
possible by minimizing the cost function. 

As described by Kramer, Hsieh, Hines, etc., a transfer 
function ƒ1 maps from x, the input column vector of 
length l, to the encoding layer, represented by ( )xh , a 
column vector of length m, with elements, 

 ( )( )( ) ( ) ( )

1

x x x

k k
h f W x b= +  (3) 

where, ( )xb , a column vector of length m containing 
the bias parameters, ( )xW  is an m l×  weight matrix, 
and ( 1,..., )k m= . A transfer function ƒ2 maps from 
the encoding layer to the bottleneck layer containing a 
single neuron, which represents the nonlinear 
principal component u,   

 ( )( )( ) ( )

2

xx xu f W h b= +  (4) 

The transfer function ƒ1 is generally nonlinear, while 
ƒ2 is usually the identity function. 

The transfer function ƒ3 maps from u to the final 
hidden layer ( )uh , 

 ( )( )( ) ( ) ( )

3

u u u

k k
h f W u b= +  (5) 

( 1,..., )k m= ; followed by ƒ4 mapping from ( )uh  to 
x’, the output column vector of length l, with 

 ( )( )( )' ( ) ( )

4

uu u

i
i

x f W h b= +  (6) 

The cost function  2'J x x= −  is minimized to 

solve for the weight and offset parameters of the 
ANN, meaning finding the optimal values of ( )xW , 

( )xb , ( )xw , ( )xb , ( )uw , ( )ub , ( )uW and ( )ub . In that way 
the minimum square error between the NN output and 
the original data is thus minimized. The choice of the 
number of hidden layers in an encoding and decoding 
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layer follows a general principle of parsimony. More 
hidden layers increase the nonlinear modeling 
capability of the network, on the other hand that could 
also lead to over-fitted solutions. [10],[11],[12] 

2.3 Fault detection scheme 

When using PCA method, there are many types of 
statistical measures to detect abnormal behaviour of 
the process, such as the Mahalanobis distance or Q 
statistics.  

To isolate faults in the system can become a problem.  
One possibility is to use a method, depicted in Figure 
2, where all possible NLPCA models are determined 
(fault-free and fault models) from the measurement 
data. For that reason it is necessary to run the process 
in all possible regimes and for all measured data sets 
determine NLPCA models. When certain fault is 
introduced to the process, the residual of the fault 
NLPCA model which is the same as the current 
process model, shouldn’t react. Residuals are 
generated upon comparison between process measured 
and AANN output values.  

 
Fig. 2 Isolation of the faults 

3 Application to a real laboratory plant 
In some previous work [13] we implemented 
analytical and classic PCA schemes for on-line fault 
detection to a real laboratory three-tank plant. Since 
the techniques used were linear by nature, we had to 
deal with performance issues such as many false 
alarms, inaccurate isolation, etc. So we wanted to test 
performance of nonlinear PCA method based on auto-
associative neural network when small faults or sensor 
drift is introduced to the system.  

3.1 Hydraulic plant  

The process flowsheet of the three-tank laboratory 
plant is depicted in Figure 3. The upright tanks T1 and 
T2 are mounted above the tank T3, hence, the inlet to 
the tanks also depends on the level (hydrostatic 
pressure) in the tanks T1 and T2, respectively (the 

pumps P1 and P2 are not an ideal generators to the 
system). Also, the outlet pipes are mounted at the 
bottom of the tank T3, hence the amount of water in 
tank T3 affects the outlet and the inlet flow of the tanks 
T1 and T2.  

The performance of the FDI scheme was evaluated by 
several fault cases introduced to the three-tank 
laboratory plant. The following faults were 
introduced: fh1 and fh2 – displacement of the level 
sensors in the tank T1 and T2, respectively, and fP1 and 
fP2 – pipeline of the pumps P1 and P2 were partially 
clogged (closing the inlet valves). Faults tested were 
abruptly brought about and no multiple faults were 
predicted or tested.  

 
Fig. 3 The laboratory plant flowsheet 

3.2 Data acquisition 

By implementing FDI methods to a real process, it 
also must be considered that results highly depend on 
quality of data acquisition and data extraction from the 
noise correlated signals. In order to set up as much as 
modern industrial environment an OPC standard 
together with TCP/IP protocol was used [13]. The 
laboratory model was controlled locally by a PLC and 
touch-screen display, while the process variables 
(inputs and outputs of the model) were processed in 
Matlab/Simulink. (Fig 4) 

 
Fig. 4 Data acquisition 

3.3 FDI scheme  

After setting hardware properly to be able to collect 
data samples from process directly into Matlab/ 
Simulink software, process history (values from the 
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process) needed to be recorded. To implement 
NLPCA for a laboratory three-tank model, various 
structures of feed-forward neural networks were tested 
and trained by using back-propagation algorithm. In 
this case the dimensionality reduction was not the 
main concern as we used only four process variables 
(flows and levels).  

First the model was run in fault-free regime at 
different working points so adequate correlation 
between process variables could be established. 
Operation of the laboratory model in fault free case is 
depicted in figure 5.  
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Fig. 5 Normal process operation 

The auto-associative neural network was constructed 
as described in chapter 2 and various structure types 
were tested. To achieve proper fitting of the network 
output to desired plant output, we first tried a neural 
network structure such as 4-6-2-6-4. In this case there 
are 4 input neurons, 6 hidden neurons – represent 
mapping or encoding layer, 2 hidden neurons in a 
“bottleneck layer” – our NLPCAs, 6 hidden neuron in 
a de-mapping or decoding layer, and 4 output neurons. 
Neurons in mapping and de-mapping layer used 
nonlinear output function (logarithmic sigmoid 
transfer function - logsig or hyperbolic tangent 
sigmoid transfer function - tansig), and input, 
bottleneck, and output neurons used linear output 
function. The neural network was trained using 
Levenberg-Marquardt backpropagation with gradient 
descent learning function and for performance 
function a mean-squared-error was used. 

To achieve adequate model of the laboratory plant we 
tested also a structure 4-8-2-8-4, 4-10-2-10-4, 4-15-2-
15-4, and 4-20-2-20-4, where additional hidden 
neurons were included to improve nonlinear fitting to 
the plant output. In case of using “tansig” or “logsig” 
transfer functions, we achieved similar results.  

Training of the network was supervised where 5000 
learning samples were used for a fault-free case and 
four faulty cases described in chapter 3.1. According 
to different AANN structures, an AANN of 4-15-2-

15-4 showed adequate results, and was used later for 
FDI realization in Matlab/ Simulink. In all tested 
structure cases learning took between 50 and 100 
epocs.  
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Fig. 6 Learning of the AANN (4-15-2-15-4) 

To validate the model and model outputs (levels in the 
tanks and frequencies of the pumps) values were 
compared to the real-time process. Process values 
were preprocessed (removed mean value). 
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 Fig. 7 Process and AANN outputs for level in Tank1 
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Fig. 8 Process and AANN outputs for level in Tank2 
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When the AANN model was adequate, the first 
nonlinear principle component could be extracted 
from the bottleneck layer. First PC in fault free-case 
regime is depicted in figure 9. 

 
Fig. 9 Nonlinear Principal Component (green) 

However for detection and isolation of faults AANN 
models of predicted fault regimes were necessary. By 
comparing different model outputs and real time data 
from the plant, residual signals used for FDI could be 
formed. These were generated according to deviation 
between measured and AANN outputs of fault-free 
and faulty cases where for detection a simple 
threshold function was used (Fig 10). 
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 Fig. 10 Forming the residual signals 

By properly setting the isolation parameters shift 
detection on the level sensors was achieved where 
small faults of 4% could be identified. Also a test for 
sensor drift was conducted, where it proved that drifts 
could be detected when they reach a value larger than 
4%.  
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Fig. 11 Fault detection on level sensor in Tank2 

(sensor shift) 
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Fig. 12 Fault detection on level sensor in Tank2 

(sensor shift) 

Faults were introduced into the plant hence the signals 
were preprocessed in the Matlab/ Simulink. Figures 11 
and 12 shows adequate 4% sensor shift and drift 
detection of the measured signal. The noise 2-3% on 
the measured signals from the process was filtered to 
improve detection results.  

4 Conclusion 
By developing PCA and nonlinear PCA models, 
studies have shown that fewer non-linear components 
are needed to describe similar process variance, as 
described by linear principal components.  

In our case the preferred number of hidden neurons 
used for FDI was 15 for mapping and de-mapping 
layer. Although the model isn’t that complex to best 
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reflect advantages of using nonlinear FDI technique 
against a linear one, still better performance than with 
linear PCA FDI scheme was achieved.  

However the implementation to the real process 
required more effort than classic PCA, where AANN 
models had to be trained properly with rich samples to 
achieve good results. Fairly good results were 
achieved where small shift and drift faults with 
magnitude of 4% could be identified. In comparison to 
classic PCA, the sensitivity of the diagnostic system is 
better however it depends on many factors such as 
noise levels on the measured signal, AANN structures, 
sample time of FDI scheme, etc.  
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