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Abstract  

It is a well-known fact that railway activities inevitably generate vibrations in the track 

structure and the sub-ground, which may have negative effects on the surrounding 

environment and constructions. 

Because of the very serious effects that unwanted vibrations can have on dynamic system, it is 

essential that vibration analysis be carried out as an inherent part of their design; when 

necessary modifications can easily be made to eliminate vibration or at least to reduce it as 

much as possible. It is usually much easier to analyze and modify a structure with undesirable 

vibration characteristics after it has been built. 

However, it is sometimes necessary to be able to reduce the vibration of existing structures 

brought about by inadequate initial design, by changing the function of the structure or by 

changing the environmental conditions, and therefore techniques for the analysis of structural 

vibration should be applicable to existing structures as well as to those in the design stage. 

In general present-day structures often contain high energy sources which create intense 

vibration excitation problems. The level of vibration in a structure can be attenuated by 

reducing either the excitation, or the response of the structure to that excitation or both. It is 

sometimes possible, in the design stage, to reduce the exciting force or motion by changing 

the equipment responsible, by relocating it within the structure or by isolating it from the 

structure so that the generated vibration is not transmitted to the support. 

In this paper we analyze the effect of the vertical damper on the global system vehicle-wheel-

track when, load and empty conditions appear in vehicle. A final comparison is carried-out 

among damping and undamping vehicle systems.  
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1 General 

In order to optimize the positive aspects of railway 

transport, it is necessary to conjugate an adequate 

management of the system with an in depth analysis of 

the environmental compatibilities with the ecosystem 

of the closed areas; this also with reference to the 
aspects of the induced dynamic pressures from the 

passage of the convoys and the propagation of the 

acoustic waves in the interested area. 

To this aim, in railway transport it is possible to 

identify three different categories of vibration-acoustic 

phenomena, according to the principal centre of 

generation/propagation of the pressure wave: aerial 

(air-borne), structural (structure-borne) or in the 

ground (ground-borne). 

 

source 
receiver 

ground-borne 

 

Fig. 1 Ground-borne vibration problem 

Although ground–borne vibration from train traffic is 

very unlikely to cause damage to the buildings and 

structures, the economical and environmental aspects 

of the issue deserves careful consideration. Besides 

high maintenance cost due to excessive vibration in 

the railway structure, ground-borne vibration may 

cause annoyance to the people living near the railway 

or interfere with the operation of sensitive equipment. 

Therefore preparing an environmental impact 
assessment prior to building new railway lines through 

densely populated areas or upgrading the existing ones 

to be used by heavier or faster trains is becoming more 

common nowadays. 

Particular attention is set on freight trains transit. 

Heavy freight trains cause ground vibrations with 

predominant frequency components in the range of 4-

30 Hz. At these frequencies, if the amplitude is great 

enough, the vibration is felt. This is a cause of 

disturbance to some line side residents, who may also 

express concern about possible damage to their 
property [1]. 

2 Dynamic Principles 

2.1 Theoretical backgound 

When considering dynamic aspects of track one 

should realise that dynamics is in fact the interaction 

between load and structure. Loads vary in time and the 

way this happens determines the character of the load. 
Generally speaking, distinctions can be made between 

periodic loads, impact loads and general dynamic 

loads [2]. 

The simplest dynamic model is the so-called discrete 

one-mass spring with mass m, spring constant k, and 

damping c. The single degree of freedom system is 

governed by the differential equation 

 mutt + cut + ku = F(t) (1) 

A particular class of dynamic loading in the single 

degree of freedom system can be considered the 

impulsive loads [2]. Such a load consists of a single 

principal impulse, generally of relatively short 

duration. Impulsive or shock loads frequently are of 

great importance in the design of still class of 
structural systems. The procedure for approximating 

the response of a structure to a short duration impulse 

may be used as the basis for developing a formula for 

evaluating response to a general dynamic loading. 

Consider the arbitrary general loading F(t), 

specifically the intensity of loading F() acting a time 

t = . This load acting during the short interval of time 

d produces a short duration impulse F(d on the 
structure. It should be noted carefully that although the 

procedure is only approximate for impulse of finite 

duration, it becomes exact as the duration of loading 

approaches zero. Thus for the differential time interval 

d  the response produced by the loading F( is 

exactly t  . 

 du(t)= )(
)(





tsen

m

dp
 (2) 

In (2), the term du(t) represents the differential 

response to the differential impulse over the entire 

response history for t  . The entire loading history 
may be considered to consist of a succession of such 

short impulses. For this linearly elastic system, then, 

the total response can be obtained by 

 u(t) =  
t

dtsenF
m 0

)()(
1




 (3) 

The (3), defined as Duhamel integral, represents the 

solution of equation (1) that can be found in the time 

domain using the convolution integral involving the 

unit impulse response. Then (3) has the form 

 u(t) =  
t

dthF
0

)()(   (4) 

where  
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1
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is called convolution integral. The function, on the left 

hand side of (5) is generally referred to as unit-

impulse response in undamped system. In the damped 

systems, the Duhamel integral is similar to the 

undamped analysis except that the free vibration 

response initiated by the differential load impulse F( 

d is subjected to exponential decay, namely 

 du(t) = 







 )(

)(
)( 




 tsen

m

p
e t  (6) 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM



In fact it is more convenient to perform an analysis in 

the frequency domain, because this approach involves 

expressing the applied loading in terms of harmonic 

components, evaluating the response of the structure 

to each component, and then superposing of the 

harmonic response to obtain the structural response. A 

better way to resolve (1) is, even in simple case, to use 

the Fourier transform to determine the so-called 

frequency response function or transfer function H of 

the system. This function type describes the 

relationship between response and excitation in the 
frequency domain. When the force as function of time 

is known, a Fourier transform can be made and the 

response then simply follows from a multiplication of 

the transformed force by the transfer function. To find 

the frequence domain response, for non periodic and 

arbitrary function F(t), we utilize the classical Fourier 

transform FT in the form  

  (  




 tietF )(  (7) 

under condition that 

 




dttF )(  (8) 

The formula (7) represents the harmonic components 

distribution of F(t) or, as currently the F(t) spectre. 
Putting the canonical form of the (1) 

 utt + 2out + o
2u = F(t) (9) 

applying the FT we find the algebraic formulation 

 ( o  o
2U  ) (10) 

with the positions 

 u(t)  U 

 ut iU (11) 

 utt   U 

Introducing the H( function in the formula (10) we 
have 

 U() = H() F() (12) 

H( is currently called the transfer function and in 
the unit impulse load we have 

 H() = U() /F() = 
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in which 
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are the undamped natural frequency and the damping 

ratio, respectively. When modal analysis is carried 

out, the formulation problem assumes the general 

form 

 u(t) = q(t) (14) 

where, according with [3] q(t) represents the solution 

of uncoupled differential system 

 qtt(t) + qtt   
qt  T Ft (15) 

in which , ,  are, respectively, the dissipation, 
spectral and modal matrix. Applying the FT in (15) 

hold 

 Q  




q(t)eit dt  H () T 
F() (16) 

The matrix H is a dynamics property transformation 

matrix, over the forcing response, and can be put as 

 H() = [  2   i  -1 (17) 

the j-th component coincides with the transfer function 

of the j-th single oscillator. Finally, after solving (16) 

the FT for modal response appears as 

 U(    TF   F (18) 

Studying a complex oscillating system with damping, 

in the final paragraph we report the closed form 

solution for single system excitation. In particular we 

consider: 

A-applied jump (time and intensity finite)  

For our argumentation, for example this represents a 

typical defect in rail join. In this case we have two-

distinct response namely, the first described by means 

 u(t)= 2tooot  0 < t  t* (19) 

in wich 

   Fo / k  

 t  expoot)sen(ot (20) 

 2t  expoot)cos(ot 

where o is called damped frequency, F0 intensity of 
the jump in the (0-t*) interval time. Successively we 

have the latter response when t  t* 

 u(t)=t t  (ooo)[tt]} (21) 

B-Periodic forcing 

This aspect can be regarded as surface irregularity on 

top of the rail. By [3], for any periodic forcing we can 

decompose in the harmonic components 

 F(t) = ao+ - ancos(nt+- bnsen(nt (22) 

where ao, an, bn are the Fourier coefficients. Now, we 

consider a typical forcing over the time interval (0-tf ) 

 F(t) = Fo     0 < t <t f/2 (23) 

 F(t) = -Fo    tf/2 < t < tf 

Then, the periodic forcing assumes the form where ao, 

an are equal to zero and bn unlike to zero for n uneven. 
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The system response assumes the form  

2 2 2

2 2

0 2 1
2

0

2

4
( )

(1 ) (2 )

2 1
2

1

1
( ) 2 cos( )

n

n

n o n

o n

n

f o f

n

u t
n

sen n t n t




   

 
  




  



 
 

  
  

 
 
 

  

 (25) 

Generally speaking, we apply early considerations to 
vehicle-track interaction and develop successively the 

particular response. In this case the interaction 

excitations are induced by irregularities in the wheel 

rail interface. In the most simplified form the equation 

of free motion appear as (plane x-y) 

 mutt + cut + ku = cyt + ky (26) 

In order to determine the transformation function with 

y(t) as input and u(t) as output function, we use the 

Fourier transformation with the initial form 

 Hyu = 
2



mcik

cik




  (27) 

and final form 

 Hyu = 
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Again, another interesting fact regards the transfer 

function among wheel force w in the rail 

 w(t) = k + ct  (29) 

where   u – y, and in this case the transfer function 
hold  

 H   k +ci (30) 

Following the transfer function between, input 

displacement y and output force w in the form 

 Hy  = 
2

2 )(





mcik

cikm




 (31) 
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Fig. 2 Wheel-rail interaction (from [4]) 

Now, it’s possible to consider the transfer function 

among wheel and rail, simulated by Hertzian spring 

and such that the relationship holds 

 h = kh [yw – yr – yg] (32) 

as represented in Fig. 2. 

Finally the global transfer function has the form 

 Hy() = - Mw[Hw() – Hr() – 1/kh] (33) 

The (33) is the basis to show global interaction among 

subsystems as in Fig. 3 

 

Fig. 3 Global transfer function (from [4]) 

2.2 Vehicle model 

The main parts of the train, from a vibration 

generation point of view, are schematically shown in 

Fig. 4. 

car body

primary

suspension

secondary

suspension
wheel

bogie frame   

Fig. 4 Main parts of a train bogie 

The car body is connected to the bogie by the 

secondary suspension; the weight of the car body is 

then transferred to the wheels via a bogie frame that is 

connected to the wheels by the primary suspension 

system. According to [4] the vehicle is modelled as a 

multibody system where the elements are considered 

rigid bodies joined by elastic and visco-elastic 
restraint. The equation of motion for the system can be 

written as 

 Mutt + Cut + ku = Fe(t) + h  (34) 

Where M, C, and K correspond to the mass, viscous 

damping and stiffness matrices of the car body, Fe and 

h are, respectively, the external forces and the contact 
force vectors. Particularly in this paper, a schematic 

representation, of the proposed model, follows in next 

Fig. 5 
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Fig. 5 Total freight models 

The main core of the proposed modelling processes is 

the prediction of the dynamical forces at wheel and the 

consequential track response. Particularly, we model a 

Shmms freight car supposed to be travelling in 

rectilinear plane with high velocity. Initially two 

excitation conditions are considered namely, firstly a 

jump of 5 mm among two track sections; latter 

wiggles track with variable wave-length with 
amplitude equal to 1 mm. After this, consider us a 

complex condition for variable rail vertical 

displacement and we extend the analysis on the 

damping variable effects derived by wheel-rail 

exchange load. Another, vibrations effect is caused by 

the large forces between wheels and rails. These 

forces fluctuate in response to wheel and rail 

roughness over a wide range of frequencies. In fact, 

according to [1], irregularities in wheel and rail 

generate sharp peak response in the track-wagon 

global system.  

The casual irregularities can be product of alternate 

excitation, in overload terms, defined as impulsive 

loads. Analytically, these actions are represented by 

cos-functions, and the harmonic excitation sources   

are defined. In previous cap.2 theoretical aspects to 

Hertzian contact forces has been carried-out. Now, we 

specify the questions to modelling the sub-system. 

The wheels in turn transfer the load to the rails as 

shown in Fig. 6. 

FVl

FVr

FHl

FHr

FVl

FHl FHr

FVr  

Fig. 6 Contact forces between wheel and rail 

The wheel-track contact model shows two type of non 

linearity, derived by means the following relationships 

 h = kh yh
1.5     (35a) 

 h = 0               (35b) 

Since the (35a) present the 1.5 exponent values and 

(35b) put the unilateral conditions in the rail wheel 
contact, the coupled formulation (35 a&b) characterize 

a non linear formulation. About the damping property, 

we consider following force-velocity law: 

fo
rc

e

v e lo c ity

 

Fig. 7 Damping relation 

3 Multi-body model 

A complete model of a Shimms freight wagon has 

been developed. Three different subassemblies 

compose the model: 

 the car-body sub-system; 

 the front bogie sub-system; 

 the rear bogie sub-system. 

The car-body and the bogie frame are treated as rigid 

bodies and defined giving their mass characteristics, 

which are obtained taking into account the presence of 

auxiliary elements. The front and rear bogies are 

equal. 

The single bogie is basically composed by the bogie 

frame, two wheelsets, suspensions and dampers 

connecting the bogie frame to the wheelsets and to the 

carbody. Masses of the components constituting the 

bogie such as auxiliary elements, suspensions and 

dampers, are reduced to the bogie frame except those 

of the wheelset and those of arms and axleboxes 

connecting bogie and wheelsets. 

Primary and secondary suspensions are represented 

with elastic linear elements while the vertical and 

lateral dampers are treated as viscous non-linear 

elements; in particular the vertical dampers have the 
behaviour of Fig. 8. 
 

 

Fig. 8 Complete model of the Shimms wagon 

In the following tables are reported characteristics of 

the model 
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Tab. 1 Mass data 

Body [Kg] 

Wagon mass (tare) 22000 

Wagon mass (laden) 100000 

Bogie frame  2070 

Wheelset 1500 

Tab. 2 Stiffness data 

 K [N/m] 

primary suspension  6.17·105 

secondary suspension (tot.) 1010 

3.1 Simulation analysis 

Simulations were done under two conditions: 

Preload analysis was done to check for the static 

equilibrium of the vehicle and for checking that the 

vehicle has been modelled correctly. This was also 

done to confirm that since the vehicle is a symmetric 

vehicle, the various loads and deflections observed 

were equal and that the vehicle is balanced correctly. 

Dynamic analysis of the Shimms was done at a speed 

of 160 km/h i.e. 44.4 m/s for 20 seconds of simulation 

time i.e. 889 meters of straight run. 

The model was assembled and run successfully. There 

were no errors in the simulation. We assume that the 

dynamic wheel-rail forces are induced by irregularities 

in the wheel-rail interface. 

The rail irregularities might include dipped joints and 

corrugations as well as general undulation in the track 

top. The wheel irregularities can be wheel flats, 

surface irregularities and wheel eccentricity. The 

variations in the vertical profiles of either surface 

(wheel and rail) introduce a relative displacement 

input to the system. The process is assumed to be 

linear, so that for a given wavelength , a 
displacement input is generated at the passing 

frequency f = c/, where c denotes the train speed [5]. 

Several simulations were performed changing the 

regularity conditions, in particular we analyse the 

followings: 

 Ramp irregularities 

In the simulations, the height of the ramp was 5mm 

and the ramp was outlined through a smoothed curve 

with an extension of 1m (Fig. 9). 

We analyze the maximum load and the only tare 

conditions. 

The simulation results are reported in terms of vertical 

forces on the wheelset, and because these loads are 
almost equal on the different wheelsets, only those 

relative to the front wheelset are illustrated (in fact, 

given as fixed the running conditions, the load on the 

wheel is the half of that on the wheelset). 
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Fig. 9 Ramp irregularity 
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Fig. 10 Vertical force of PS (empty/full) 

In Fig. 10 and Fig. 11, are also figured the 

displacements and the forces transmitted by the wagon 

with dumper to the principal suspension (PS). 
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Fig. 11 Vertical force and displacement of PS in full 

condition 
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Fig. 12 Vertical force of front wheelset (with dumper) 
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Fig. 13 Vertical force and displacement of front 

wheelset in full condition (without dumper) 

The effects of the introduction of a damper are 

beneficial and completely obvious: the damper 

maintains the road–track contact and reduces the 

solicitations transmitted to the track (Fig. 12 and Fig. 

13). 

 Sinusoidal irregularities 

The excitation due to the undulation of the railroad has 

been estimated assuming a sinusoidal irregularity with 

amplitude equal to 1 millimetre and length of 5 m 

(Fig. 14). Also in this case it was analyzed the 

maximum weight and size condition and then that one 
of tare (Fig. 15) and the solicitations transmitted with 

and without damper (Fig. 16). 
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Fig. 14 Sinusoidal irregularity 
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Fig. 15 Vertical force of front wheelset (with dumper) 
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Fig. 16 Vertical force of front wheelset in full 

condition without dumper 
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Fig. 17 Vertical force of front wheelset (empty/full) 

condition with dumper 
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Fig. 18 Vertical force and displacement of PS in full 
condition 

 PSD irregularities 

Finally, a complex excitation supplied from a stocastic 

variability of the vertical lowering of the tracks is 

considered (Fig. 19); also in such case a study was 

completed on the effects of the introduction of the 

damper on the load exchanged between wheel and 

track. 

For long wavelength the power spectral density of rail 

irregularities can be calculated by the expression [3]: 

 
   
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2 2 2 2
( ) v c
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
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 (36) 

with: 

c = 0.8246 cycles/m 

R = 0.0206 cycles/m 

and the parameter A is function of the track 

conservation state: 

7

7

4.032 10 rad/m for little irregularities

1.080 10 rad/m for great irregularities
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Fig. 19 PSD Irregularities 

The following figures show the trend of the vertical 

load in time in the case of dampened system (Fig. 20) 

and in the case of damper absence (Fig. 21). 
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Fig. 20 Vertical force of front wheelset (with dumper) 
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Fig. 21 Vertical force and displacement of PS in full 

condition (without dumper) 

20.015.010.05.00.0

0.0

4000.0

2500.0

1000.0

-500.0

-2000.0

-3500.0

Time (sec)

Fo
rc

e(
ne

wt
on

)

20.015.010.05.00.0

0.0

7500.0

4500.0

1500.0

-1500.0

-4500.0

-7500.0

Time (sec)

Fo
rc

e(
ne

wt
on

)

 

Fig. 22 Vertical force on PS (empty/full) 
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Fig. 23 Vertical force and displacement of PS (full 

wagon) 

4 Conclusions 

Considering that the results refer to particular 

conditions of load and track, from the diagrams of the 
simulations carried out, the following considerations 

can be made: 

 viscous damping element involves in 

meaningfully variations of the freight dynamic 

behavior by either rail-wheel contact force and 

comfort travel; 

 the damping values depend strictly from the load 

conditions and the damping optimization should 

be performed by statistic way; 

 the simulation has been performed on the max 

nominal velocity value but real velocity vary 

respect to the maximum, so the presented studies 
should be extended to different run conditions in 

order to evaluate the complete dynamic behavior 

of the vehicle. 
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