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Abstract

The problem of modeling the complex behavior of freeway �ow leads to a nonlinear macro-
scopic model. Since this high dimensional non-linear characteristic the control and estimation
problems could not be performed easily. From this purpose the paper introduces a new, general
modeling formalism for freeway traf�c �ow. It is well-known form the theory of Linear Param-
eter Varying (LPV) systems that such models represent a numerically tractable class of complex
nonlinear systems. The main idea is to derive some arbitrary time dependent parameters by cap-
turing the nonlinearities in the system. Transformation of the full nonlinear model to af�ne and
quasi Linear Parameter Varying (LPV) system is presented. The paper investigates the problem
of selecting the adequate scheduling variables, endogenous parameters and some linear approx-
imations giving a novel way to describe freeway traf�c systems. An important aspect of the
model selection is the feasibility of the resulted system throughout the controller and observer
design. The paper describes the problem of quadratic stabilizability and detectability for LPV
�ow models. The Linear Matrix Inequality (LMI) conditions are developed to verify these im-
portant properties. Finally, a numeric example suggests the application of the LPV structure for
a general freeway section with on- and off-ramps. The comparison of the simulation response
of the non-linear and the derived nominal LPV model has also been investigated.

Keywords: quasi-LPV, freeway modeling

Presenting Author's Biography
Tamas Luspay. He is �nishing his undergraduate studies at the Faculty of
Transport Engineering, on the Department of Control and Transport Au-
tomation. His research interest is modeling, estimation and control of free-
way and urban road traf�c systems.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM



1 Introduction
One of the most progressing research area in traf�c
modeling is the theory of freeway traf�c �ow. There
is a high demand on creating the most accurate set of
models describing the real traf�c.

A possible macroscopic technique is based on the anal-
ogy between the traf�c �ow and the streaming �uids
or gases. However, the generalized density, speed and
traf�c volume are commonly used variables, the anal-
ogy is not valid for certain speci�c case. The basic
correlation between the traf�c variables is described by
the well-known fundamental diagram. After Lighthill
and Whitham [1, 2] formulated, the theory of kinematic
waves were also adapted for freeways. Taking traf�c
waves into account, the freeway �ow model can be ex-
tended to a second order macroscopic model. Due to
the wave's dynamic, the traf�c �ow becomes highly
nonlinear and complex. The complexity is increased
by the segmentation of a freeway therefore a large scale
system needs to be considered.

Modern control theory offers the opportunity to han-
dle highway traf�c models (and also other road traf�c
systems [3]) as dynamic systems. Introducing the time
dependent freeway model, a more and more complex
and liable description is given. Modern, respectively
postmodern techniques therefore introduce the states of
a freeway dynamical system. The dynamic state equa-
tion formulates how the system evolves in time. The
state equations describe the variation of the actual states
based on the given inputs to the system. Two impor-
tant questions are arising with respect to the applica-
tion in freeway traf�c. First, the observation of the
not measured variables and second, the control of the
main �ow with variable speed limits and ramp meter-
ing. The traf�c modeling literature is large enough and
contains several solution for traf�c analysis and synthe-
sis [1, 2, 4, 5, 6, 7].

The control objective on freeways could be stated as
keeping the main �ow volume near to the maximal ca-
pacity of the given stretch. Based on the fundamental
diagram, this is equivalent to keep the density of the
stretch around the its critical value. Since the prob-
lem is formulated with nonlinear equations, there is
a need for the application of nonlinear control tech-
niques. Denote, linear controller can also be used to
assure the control performance. Unlike the nonlinear
freeway control theory, linear control system design is
elaborated [4]. While the nonlinear formalism is used
to describe global behavior, linear systems are applied
only to re�ect local characteristics around a given op-
eration point. Linearizing or simplifying the complete
nonlinear plant always leads to loose certain and some-
times important information. Hence, there is a trade-off
between the accurate model description and the sim-
plicity of the controller. Since, the �nal goal is always
to achieve an optimal performance level with the appro-
priate control algorithm, the realization of the closed-
loop system needs to be taken into consideration.

As previously it was mentioned, the �rst part of the

freeway model analysis and synthesis is the observation
of the real �ow. The problem is stated in a linear or in a
nonlinear way. The state estimation of non-linear sys-
tems is an existing problem. The estimation technique
of the Extended Kalman Filter (EKF) is widely applied
[8, 6, 5] in the industry. The EKF is based on the lin-
earization of the nonlinear system around the given op-
eration point depending on the state trajectory. The con-
vergence of the estimation has been investigated and it
has been showed that EKF gives a suboptimal solution
of the �ltering problem. Even if the convergence of the
EKF is not guaranteed, it is often used as a �nonlinear�
observer. State estimation on freeways could multiple
the available set of traf�c information, by estimating the
non-measured variables.

There is a permanent need to control the motorway traf-
�c in order to avoid traf�c jams respectively increase
the safety level of a given section. Two main possibil-
ities are applied to directly in�uence freeways traf�c.
First, the ramp metering, i.e the freeway on-ramp �ow
is controlled by signaling. On the other hand, the dis-
play of different speed limits throughout Variable Mas-
sage Sings (VMS). Traf�c control synthesis is based on
the results of control engineering [4, 9, 10, 11].

In recent years, a promising approach for nonlinear
control theory is certainly the Linear Parameter Vary-
ing (LPV) formalism in state space [12, 13, 14, 15, 16].
The LPV class is a speci�c formulation of the non-
linear systems using measured, computed or estimated
parameters. Parameter dependency is given under the
time (parameter) dependent variation of the coef�cient
matrices. The linear represents the casual structure of
the dynamic problem in state space where the dynamic
and the output equations are the linear combination of
the states and the inputs. The LPV description pre-
serves the linear time invariant (LTI) structure, the only
difference stays at the computation of the coef�cients.
The parameter vector is a continuously time dependent
known function. It has been showed that non-linear sys-
tems could be cast into an LPV form by several ways.
Therefore, the LPV model is not unique. In the particu-
lar case when the parameter vector coincides (partially
or entirely) with the state vector the system is called
quasi Linear Parameter Varying (qLPV) system.

The goal of the paper is the development of a con-
trol oriented LPV model of freeway �ow. This model
should contain the complex behavior of traf�c �ow
and should be able to reproduce traf�c phenomenons.
Moreover the LPV structure will make it possible to ap-
ply the LPV design methodology which is an effective
way to control and observe non-linear systems.

The paper is divided into 5 sections. After the introduc-
tory section, in the problem statement part, the paper
describes brie�y the freeway traf�c model and formu-
lates the problem. The forthcoming part presents the
proposed solution for parameter dependent modeling of
the freeway �ow. Analytic questions are answered in
the next section. Finally simulation results illustrate the
accuracy of the qLPV model.
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2 Problem setup
Recent traf�c researches are mainly based on the sec-
ond order macroscopic traf�c �ow model [11, 6, 9].
This model uses aggregated traf�c variables, such as
traf�c density, space mean speed and traf�c �ow to
describe freeway �ow. Fig. 1. illustrates a freeway
stretch.

1st segment i-th segment N-th segment

s1 r1 si ri sN rN

∆1 ∆i ∆N

ρ1 v1 ρi vi ρΝ vN

q1 qi qN

Fig. 1 Freeway division and traf�c variables

Due to the complex behavior, the model is discretized
in space; the stretch is subdivided into N segments with
length ∆i, i = 1 . . . N and each segment is given by its
traf�c variables denoted by the subscript as follows:

• ρi(k) denotes the density of the i-th segment at
time step k

• vi(k) denotes the space-mean speed of the i-th seg-
ment at time step k

• qi(k) denotes the traf�c �ow leaving the i-th seg-
ment at time step k

• si(k) denotes the off ramp �ow of the i-th segment
at time step k

• ri(k) denotes the on ramp �ow of the i-th segment
at time step k

After introducing these variables, the nonlinear differ-
ence equations of the second-order macroscopic traf�c
�ow model for a segment i are written by:

ρi(k + 1) = ρi(k) +
T

∆in
[qi−1(k)− qi(k)]

+
T

∆in
[ri(k)− si(k)] (1)

si(k) = βi(k) · qi−1(k) (2)

vi(k + 1) = vi(k) +
T

τ
[V (ρi(k))− vi(k)]

+
T

∆i
vi(k) [vi−1(k)− vi(k)]

− ν

τ

T

∆i

ρi+1(k)− ρi(k)
ρi(k) + κ

− δT

τ∆i

ri(k)vi(k)
ρi(k) + κ

(3)

V (ρ) = vfexp

[
−1

a

(
ρ

ρcr

)a]
(4)

qi(k) = ρi(k) · vi(k) · n (5)

where T denotes the sample time, n is the number of
lanes and a, vf , ρcr, κ, τ , δ, ν are additional con-
stant parameters. The macroscopic model was shown
to work accurately with segment lengths in the order of
500 meters (or less) [7]. Longer sections could be built
up by the interconnection of several segments through
the boundary relations (i.e. ρi+1, vi−1). The second
order macroscopic model is used as a basis of differ-
ent problems regarding the freeway control and surveil-
lance.

The most challenging problem in freeway control engi-
neering is the state (density, speed and volume) obser-
vation. Special inductive loop-detectors are installed at
distinct locations (usually 4-5 kilometers far from each
other) in a freeway's pavement, not in the entire stretch
of freeway. These detectors collect traf�c data from a
single point i.e. no information is available between
their installation points. Using the dynamical equations
of freeway �ow and the theory of state estimation one
could design a freeway estimator which �lters out the
measurement and process noises and gives a subopti-
mal estimation of the traf�c variables between detector
stations. This technique multiplies the available set of
data, and this additional information could be used for
better freeway control and incident detection.

3 Derivation of the qLPV model

Complex systems require complex mathematical tech-
niques to be described. Complex usually covers the
nonlinear effect and the large number of state variables.

A certain class of nonlinear systems might be rewritten
into linear but parameter dependent plants [12]. The
LPV methodology keeps the linearity with respect to
the state variables but it could contains nonlinear pa-
rameter in the coef�cient matrices. By de�nition, pa-
rameters are needed to be available for the description.
One of the biggest advantage of the technique is to han-
dle nonlinearities. More, the LPV concept extends the
linear estimation and control aspects towards the refor-
mulated nonlinear world.

An n-th order LPV model is de�ned as:

[
ẋ(t)
y(t)

]
=

[
A(p(t)) B(p(t))
C(p(t)) D(p(t))

] [
x(t)
u(t)

]
(6)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rnu is
the input vector, y(t) ∈ Rny is the output vector and
p(t) ∈ P is the parameter vector over a given compact
set P . Two alternate class of the parameters exists. Ex-
ogenous and endogenous variables can be used. Quasi
linear parameter-varying (qLPV) systems are de�ned
whenever any of the scheduling parameters becomes a
state of the system as well.

The af�ne dependency with d(p(t)) = N in the system
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can be given by:
A(p(t)) = A0 + p1(t)A1 + p2(t)A2 + ...

+ pN (t)AN (7)
B(p(t)) = B0 + p1(t)B1 + p2(t)B2 + ...

+ pN (t)BN (8)
C(p(t)) = C0 + p1(t)C1 + p2(t)C2 + ...

+ pN (t)CN (9)
D(p(t)) = D0 + p1(t)D1 + p2(t)D2 + ...

+ pN (t)DN . (10)

As it was described in the previous section, the control
objectives are usually de�ned on traf�c density. Nev-
ertheless, highly non-linear speed equations are used
to give a more accurate description of the conservation
equation. The main idea is to treat these speed variables
as scheduling parameters. Since, the speed equation
(Eq. 3) is a nonlinear term and might be parametrized
by vi to gain an LPV system. One could design feed-
back controllers stabilizing the system (i.e. using ramp-
metering) and estimating state variables (i.e. freeway
estimator) whenever the parameter vector is in the pre-
de�ned magnitude bounded set. Denote, parameter rate
variation can be taken into consideration as well. In or-
der to derive an LPV model from the non-linear equa-
tions (1)-(5) one reformulates by applying a linear ap-
proximation of (4).
The fundamental relation can be rewritten by:

V (ρ) = vf

[
1− ρ

ρop

]
(11)

where ρop is the traf�c density value corresponding to
the scope of freeway control. The Fig. 2. shows the
linear aprroximation of the fundamental equation. First
order curve is �tted on a set of measurement. Data had
been collected on a 4.5 km long highway section(M3)
in Hungary. The linear approximation is valid only up
to a given density (50 veh/km). Piecewise linear or
higher order �tting generates more accurate models.
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Fig. 2 The theoretical and the �tted fundamental rela-
tionship

The �rst order approximation can be thought as an off-
line model calibration on the actual highway segments.

On the other hand, the replacement of ρi(k) + κ with
ρcr + κ in Eq. 5 might be considered as a modi�ca-
tion of the speed evolution. However, this assumption
is clearly valid in accident-free case, in a non-accident
free case, the speed term is just slightly depend on those
(wave propagation) terms where the nominator contains
ρi(k) + κ, see 5.
Applying the above simpli�cations, one might reformu-
late the Eq. (3) by:

vi(k + 1) = vi(k) +
T

τ

[
vf

[
1− ρi(k)

ρop

]
− vi(k)

]

+
T

∆i
vi(k) [vi−1(k)− vi(k)]

− ν

τ

T

∆i

ρi+1 − ρi(k)
ρcr + κ

− δT

τ∆i

ri(k)vi(k)
ρcr + κ

(12)

There is no need for the density approximation. Since,
one could rewrite it by substituting equation (2) into (1),
than equation (5) into (1) and than factor out the speed
variables:

ρi(k + 1) = ρi(k) + vi−1(k)
T

∆i
ρi−1(k)

− vi(k)
T

∆i
(1 + βi)ρi(k)

+
T

∆in
ri(k) (13)

Equations (13) and (12) are the af�ne quasi LPV model
equations of the freeway traf�c �ow.
For sake of simplicity and to illustrate the LPV struc-
ture consider a 1.5 km long freeway stretch, with two
lanes divided into three segments, each ∆ = 500 me-
ters long is given. The middle segment has an on/off
ramp. Detectors are installed at the beginning and at
the end of each of the stretches.
The dynamic equations of this stretch could be now
written as an af�ne parameter dependent system under
the form of an LPV model:

x(k + 1) = A(p(k))x(k) + B(p(k))u(k)
+ W (p(k))w(k) (14)

A(p(k)) = A0 + p1A1 + p2A2 + p3A3 (15)
B(p(k)) = B0 + p1B1 + p2B2 + p3B3 (16)

Where:

x = [ ρ1 v1 ρ2 v2 ρ3 v3 ]T

u = [ r2 ]

w = [ ρ0 v0 ]T

p = [ v1 v2 v3 ]

The boundary relations imply the knownledge of v0, ρ0

and ρ4 by measurement. The variables of the entering
�ow are supposed to be measured. Though, the den-
sity of the next segment is not known, therefore one
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assumes that ρ4 = ρ3. The system matrices in (15) and
(16) are as given:

A0 =




1 0 0 0 0 0
a1 − a2 a3 −a1 0 0 0

0 0 1 0 0 0
0 0 a1 − a2 a3 −a1 0
0 0 0 0 1 0
0 0 0 0 −a2 a3




where:

a1 =
νT

τ∆
1

ρcr + κ

a2 =
T

τρjam

a3 = 1− T

τ

A1 =




− T
∆ 0 0 0 0 0
0 − T

∆ 0 0 0 0
T
∆ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




A2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 − T

∆ (1 + β) 0 0 0
0 T

∆ 0 − T
∆ 0 0

0 0 T
∆ 0 0 0

0 0 0 0 0 0




A3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 − T

∆ 0
0 0 0 T

∆ 0 − T
∆




B0 =




0
0
T

∆n
0
0
0




, B1 =




0
0
0
0
0
0




,

B2 =




0
0
0

δT
τ∆

1
ρcr+κ

0
0




,

W =




v0
T
∆ 0

0 v1
T
∆

0 0
0 0
0 0
0 0




4 Stabilizability and detectability
This section shows the advantages of the LPV formal-
ism with respect to traf�c �ow modeling and control.
Before designing a state feedback for control purposes
one has to satisfy the stabilizability criteria. Moreover,
the dual pre-condition of the state estimator is the de-
tectability that needs to be ful�lled. The stabilizability
and detectability check in linear case can be solved by
computing and validating Kalman's rank conditions. If
the system is non-linear, the equivalent controllability
and observability distributions are often hard to com-
pute especially for higher dimensions. One of the main
advantage of LPV systems is the simplicity of the above
analytic propeties. The notion of quadratic stabilizabil-
ity and quadratic detectability is known [12, 13]. Just a
brief traf�c oriented overview is given in the sequel for
highway �ow modeling purpose.
Quadratic stabilizability means, there exists a feedback
controller such that

xk+1 = (A(p(k)) + B(p(k))K)xk (17)

closed loop is stable for all p ∈ P admissible parameter
trajectories. The de�nition involves a single quadratic
Lyapunov function, under the form of:

Vk = xT
k Pxk (18)

The dissipative condition implies:

Vk+1 − Vk = xT
k+1Pxk+1 − xT

k Pxk < 0

((A + BK)xk)T P (A + BK)xk − xT
k Pxk < 0

P − (KT BT + AT )P (A + BK) Â 0 (19)

where the last equation is a matrix inequality, Â 0 de-
notes that the matrix is positive de�nite.
Using the Schur-complement:

M11 = P

M12 = (A + BK)T

M22 = P−1

it can be written:
[

P (A + BK)T

A + BK P−1

]
Â 0 (20)

Pre- and post-multiplying (20) with
[

In 0
0 G

]
Â 0 (21)

the following equation is given [17]:

[
P AT GT + KT GT BT

GA + BGK GP−1GT

]
Â 0 (22)
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Let us de�ne GK = Y . A lower approximation of M22

is written by:

(G− P )P−1(GT − P ) Â 0

GP−1GT Â G + GT − P (23)

Using the lower bound, �nally the following form is
computed:

[
P AT GT + Y T BT

GA + BY G + GT − P

]
Â 0 (24)

which is a Linear Matrix Inequality (LMI). The latter
LMI should have a P = PT Â 0 and G solution for all
p(t) ∈ P . Since, one could determine the lower and up-
per bound on the parameter values, the last LMI results
in a �nite number of feasibility test on the corner points
of the bounded convex parameter set (see Fig. (4)). It is
suf�cient to check the feasibility on the extremal point
of the vertex due to the af�ne LPV model.

p1

p2

p3

p(t)

p1
max

p1
min

Fig. 3 Bounded parameter set

Whenever the LMI is feasible, a state feedback control
might be given by:

K = G−1Y

In order to determine the lower and upper bound on
the scheduling parameters, real data had been collected
from Hungarian freeways. The maximum and mini-
mum value of the space mean speed was found:

pmax = 120
km

h

pmin = 0.1 ∗ pmax = 12
km

h

The unknown model parameters were also determined
from real traf�c data using the parameter identi�cation
procedure [7]. With these values one veri�ed the feasi-
bility of the LMIs, so that the LPV model is quadrati-
cally stabilizable with ramp metering.
Quadratic detectability is the dual framework of the
quadratic stability. The duality permits to drive the
problem back to the previous LMIs.
The condition is given:

xk+1 = (A(p(k)) + LC(p(k))xk (25)

the closed loop with a L observer gain is chosen to be
stable. LMIs for the observer design can be written:

[
P (A + LC)T

A + LC P−1

]
Â 0 (26)

[
P AT GT

F + CT Y T
F

GF A + YF C GF + GT
F − P

]
Â 0 (27)

Using an af�ne LPV model for highway traf�c model-
ing, LMIs were derived to show the detectability and
stabilizability criteria. More, the section clearly de-
scribes the set of LMI to solve for a controller and an
observer synthesis assuming that the problem might be
feasible with a single and not parameter varying Lya-
punov function. Studies in traf�c �ow modeling were
found feasible with a simple Lyapunov description.

5 Numerical example
This section gives an example to compare the fully non-
linear and the qLPV traf�c models.
Using the same constant parameter values determined
by identi�cation for all segments, the comparison of the
non-linear model and the derived qLPV model are car-
ried out. To perform simulation, the above introduced
stretch was built in MATLAB/Simulink. The stretch
consists three 500 meters long segments, each with two
lanes. There is an on-ramp the middle segment. First
the two model were compared under slowly varying
traf�c �ow, the typical characteristics of the morning
and evening rush hours are represented through chang-
ing �ow and speed. Simulation response of the models
for the case of normal �ow and interrupted (accident)
�ow are shown on Fig. 4.
In the second case an accident was simulated in the
third segment, by suddenly decreasing the out�ow. The
responses are given on Fig. 5.
As it could be seen on Fig. 4-5, the nominal qLPV
model can accurately simulate the dynamics of freeway
�ow. Clearly the response of the qLPV model is more
like linear under fast variation, due to the linear approx-
imation of the fundamental diagram. Also a small dif-
ference between the models appears when the density
rises over the critical values, denoted by ρop. On the
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Fig. 4 Simulation results for normal �ow
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Fig. 5 Simulation results in case of accident

other hand these effects could be take into considera-
tion through robust qLPV framework, which will be in
focus of our further research.
Finally Fig. 6 shows the simulation results of on-ramp
�ow, comparing the uncontrolled and the controlled
case.
During the simulation the same slowly varying �ow as
discussed above and the constant feedback gain K was
used, the gain determined through the stabilizability
analysis in (24). It could be clearly seen that ramp me-
tering tries to minimize the on-ramp �ow during main
�ow's peak hours. On the other hand the controller al-
lows more vehicle to merge whenever the main �ow is
weak and the density is under the critical value. Note
that also in this simple example a marginal capacity
growth has been established with the usage of ramp me-
tering.

6 Conclusion and further research
The paper presents a generic model formalism, the Lin-
ear Parameter Varying (LPV), in order to handle non-
linearities in a complex highway �ow model.
The paper clearly implies the advantages of the model-
ing technique. Quadratic stabilizability and detectabil-
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Fig. 6 Simulation results of the on ramp �ow

ity questions are answered using Linear Matrix Inequal-
ities (LMI). Single Lyapunov function is assumed to
make the closed loop system feasible.
In the near future, the advantage of formulating a pa-
rameter dependent Lyapunov function, or parameter de-
pendent gain (K(p(t)) or L(p(t))) will be given. On the
other hand, further works will be carrying on the con-
trol of highway �ow with the help of LPV systems.
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