
MODEL-BASED DESIGN OF EMBEDDED
SYSTEMS USING MATHWORKS TOOLS – A CASE

STUDY
Laura Fábián1, Gergely Somlay1,2, János Márkus1,2

1 Budapest University of Technology and Economics,
Faculty of Electrical Engineering and Informatics,

1117 Budapest, Magyar tudósok körútja 2.
2 Gamax Ltd.

1114, Budapest, Bartók B. u. 15/d

gergelys@gmail.com (Gergely Somlay)

Abstract

A model-based development environment for simulation and automatic code generation had
been developed using the MathWorks' products Simulink and Real-Time Workshop Embedded
Coder. The main goal of the work was to create an environment for seamless integration of
simulation and real-time operation. The simulation target is the MITMOT, a modular platform
consisting of a 32-bit ARM-based microcontroller and some custom I/O peripherial developed
at the Dept. of Measurement and Information Systems of the Budapest University of
Technology and Economics.
The eCOS embedded real-time operating system has a MITMOT ARM target specific
version. In this project, our aim was to present an easily usable graphical modeling
environment which can be used to model the MITMOT target, and the C code automatically
generated from the model would run under eCOS.
The development consisted two main parts: the first was to create models of the different I/O
units in the Simulink environment using S-functions, while the second was to write the TLC
(target language compiler) files which are responsible for the C-code generation. With our
tool the time to develop embedded software for the MITMOT target has been reasonably
reduced, and since the environment is fully graphical, the C programming skill requirements
for software development to this target became unnecessary.

Keywords: Model-Based Design, Simulink - Real-Time Workshop, code generation,
modeling embedded system, eCOS.

Presenting Author’s biography
Laura Fábián was born in Budapest, Hungary, in 1983. She received the M.S.
degree in technical informatics from the Budapest University of Technology and
Economics (BUTE), Budapest, Hungary, in 2007. Currently, she is a Software
Developer at Ericsson Hungary Ltd. Her research interests are in the areas of
embedded systems and sensor networks.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
As systems become more and more complex and
development time is getting shorter due to the pressure
of time-to-market, engineers have to search for
efficient development techniques, in which errors and
design flaws are catched early, reusability of modules
is easy and the time of moving from prototypes to
final hardware is short.

Model-Based Design (MBD) is a technique, which
lets engineers use state-of-the-art software
development methods for rapid prototyping [1,2]. The
basic principle of MBD is that instead of using paper-
based requirements, followed by physical prototypes
and final target development, the focus is on the
model of the system to be developed. This model can
be used throughout the development, from
specification to final implementation. The system-
level model serves as an executable specification,
which is continuously refined through the
development phase. The final code is created by
automatic code generation. The main advantage of
MBD is that continuous test and verification of the
requirements is possible by simulation throughout the
complete design process.

The Mathworks, Inc. provides the Simulink product as
a graphical simulation tool for MBD. Simulink is an
excellent interactive graphical environment for a high
level description of embedded algorithms and
additionally, with add-on products, the Simulink
environment is also capable of automatic code
generation. To accelerate embedded system
development, there are blocksets available for specific
targets, such as Infineon C166, TI C6000 [1].

In this paper the design procedure of a Simulink
blockset library for a new embedded real-time target is
presented. The developed Simulink blockset library
can be used for target-specific simulation and code
generation purposes. A similar solution, based on a
Texas Instruments Digital Signal Processor has been
proposed in [3].

1.1 The Simulink Environment

The Simulink software [4] is a graphical simulation
tool integrated into MATLAB [5], which is a
numerical environment for algorithm development,
data visualization, data analysis and numerical
analysis. The Simulink environment is well known for
system engineers designing e.g., communication
systems, signal processing and control algorithms.

The Real-Time Workshop (RTW) [6] is an extension
tool for Simulink. Using Real-Time Workshop, it is
possible to generate ANSI/ISO C code from a
Simulink model. In Simulink, the set of blocks used
for simulation can be extended with user-specified
ones, based on Simulink S-functions.

An extension of the RTW is the Real-Time Workshop
Embedded Coder (RTW-EC) [7], which is specially
designed for the needs of embedded system design. It
is capable of highly optimized and efficient C-code
generation, according to the limited resources of an
embedded system.

1.2 The MITMOT Target

The MITMOT system, shown in Fig. 1, is a “mote”,
i.e., a small embedded system developed at the
Budapest University of Technology and Economics,
by the Department of Measurement and Information
Systems, mainly for educational purposes [8]. It is a
modular architecture consisting of a controller card
and several cards for measurement, display and
communication. The controller card is available with
two different processors depending on the
application’s requirement: one consists of an 8-bit
Atmel AVR microcontroller, while the other is based
on an ARM7TDMI 32bit Phillips LPC2000 series
microcontroller.

An earlier attempt for creating a Simulink target
library targeting the 8-bit AVR processor card for code
generating purposes had been introduced at the
department in 2005 [13]. The current work builds on
that previous one, but the whole system had been
reimplemented and targeted for the 32-bit ARM
processor, the hardware simulation has been
implemented as well and the generated code is
interfacing with the eCOS real-time operating system
running on the processor.

Fig. 1 The modular MITMOT system [8].

For the MITMOT ARM7 processor and display
module, an API (Application Programming Interface)
is defined in C, which makes the code generation
process much easier. In the development this API was
used, thus the functions of the display card could be
accessed via simple C function calls (e.g., the actual
temperature can be read by a simple command).

2 Development of the tool
The main motivation of the development of the tool
was (i) to be able to simulate the hardware behavior of
the system in the Simulink environment and (ii) to be
able to generate C-code from the Simulink

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

environment without using any additional tool. For
these purposes we used MATLAB-Simulink and the
Real-Time Workshop Embedded Coder. The
environment currently supports single tasking, single-
rate systems.

To define user specific blocks, two types of code is
needed: the first one specifies the behavior of the
block during Simulink simulation, the second one (the
block target file) specifies the behavior of the block
after automatic code generation. This latter one is
written in the Target Language Compiler (TLC)
language. These two codes are not tightly linked to
each other, so they can be developed separately, thus
the differences between the simulation environment
and the real world can be taken into consideration:
e.g., a thermometer in the real target provides real
measurements, while in a simulation environment it
should provide predefined data-set at its output.

To create a new target for the Simulink environment,
several files have to be developed:

• Graphical model (block) of each I/O unit;

• Compiled files of the Simulink blocks for
simulation;

• Source code of the blocks (S-functions);

• TLC files to control the code generation of
each block;

• TLC files for controlling code generation and
for interfacing with the actual hardware and
the real-time operating system.

In the following two subsections the S-functions and
TLC-files are described briefly.

2.1 Device drivers under Simulink: S-functions

Simulink gives the possibility of the implementation
of a device driver for simulation purposes with S-
functions (System functions) [9-11]. The S-function,
which can be written in C, C++, Ada, MATLAB or
Fortran programming languages, is the base of every
Simulink block and its specification is available for
the user to create customized ones.

For creating the MITMOT-specific Simulink blocks
the S-functions were written in C. The C code is
compiled by MATLAB using the mex command to
MEX format, which is actually a DLL-file under
Microsoft Windows platform.

The S-function’s C code specifies the actual behavior
of the block during simulation, and it is called by the
Simulink solver engine in every simulated time-step.
The structure of such function is predefined, and the
required and optional function calls (entry points for
the generated DLL) can be developed by using
template S-function files.

The blocks’ graphical appearance is fully
customizable using the masking function. A parameter

dialog box can also be assigned for each block which
enables user interaction. As an example, Fig. 2 shows
a push button model in the Simulink environment, its
parameter window (consisting of two parameters: (i)
which physical push button is used and (ii) what is its
actual state) and the simulated output, which is logical
one in this case. Fig. 3 shows part of the S-function
written for the simulated push-button.

Fig. 2 The block and parameter window of the push

button hardware model in the Simulink environment.

Fig. 3 The S-function of the push button.

For the simulation environment the implementation of
5 S-functions were needed, each of them representing
one of the MITMOT’s peripheries: LED, pushbutton,
three-digit seven-segment display, switch and
thermometer. Like in real use, the pushbutton and
switch block’s state (on/off) can be tuned during the
simulation [14].

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

2.2 Code generation procedure: the TLC language

The Target Language Compiler (TLC) [12] is
responsible for the code generation process. For each
Simulink block a TLC file had to be written, which
file is used to customize the generated code for the
specified block. In addition, another TLC file, the
System Target File (STF) had to be specified, which is
responsible for the overall control of the code
generation stage of the build process. It provides
definitions of variables that are fundamental to the
build process, e.g., code format to be generated.

When a Simulink model contains an S-function and a
corresponding TLC block target file also exists for that
S-function, Real-Time Workshop inlines the S-
function. Inlining means that during build-time the
TLC-file is executed instead of setting up function
calls for the S-function C-file. Such an inlining can
produce more efficient code by eliminating the S-
function API layer from the generated code. In our
case, inlining the S-functions were especially useful
because the device driver I/O S-functions read from
the MATLAB workspace during simulation, but in the
generated code they read from an actual hardware
address [6].

For the MITMOT-eCOS proper C code generation,
nine TLC files were developed, from which four
assures the generation of the overall eCOS specific
features (e.g., the eCOS main function syntax, and
includes) and the remaining five TLC files represent
the code for the MITMOT I/O units. Fig. 4 shows a
part of the main TLC code.

Fig. 4 A MITMOT ARM-eCOS TLC code.

The generated code is working with a simple
periodical interrupt scheme, using one of the ARM
processor’s timer unit for the scheduled interrupt. The
generated code’s lifecycle is infinite, after an
initialization phase starts a loop, where each
simulation step is represented by the occurrence of an
interrupt [14].

3 Application Example
The designed and tested application is based on the
functionality provided by the display card, which is a
simple man-machine interface. On the display card
there are four red LED’s, a three-digit seven-segment
display, three pushbuttons, four switches and a
thermometer IC communicating via I2C bus.

For each device a Simulink block was designed with
parameter dialog boxes for easy user interaction – the
user can control the state of the I/O’s. Fig. 5 shows the
developed target block library.

Fig. 5 The device driver block library in the Simulink

environment.

For the demonstration of the code generating
environment a simple application was developed [14],
which realizes a stopwatch-like function. The
application’s functions are:

• The numbers from 0 to 9 are running
cyclically on the display with a given
refreshing frequency.

• The button #2 is a reset button, which sets the
counter’s value to 0.

• Switching on the switch #2 the actual value
can be represented in binary format on the
LEDs.

• Counting can be stopped and restarted with
the switch #1.

Fig. 6 shows the Simulink model of this application
example.

Besides the elements of the mitmotARM library,
several native Simulink blocks have been used in this
model, like the switch logic, the multiplexer and the
constant block.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

Fig. 6 The Simulink model of the application.

The model’s behavior during simulation can be
verified by inserting display blocks. With display and
scopes blocks the actual value of the outputs can be
visualized and checked as shown in Fig. 7.

As in the figure, the simulation behavior fulfills the
expectations.

Fig. 7 The simulation of the model.

From this Simulink model 3 C- and 4 H files were
generated by the Real-Time Workshop Embedded
Coder. These C- and H files had to be compiled for the
MITMOT ARM module to hex file format, which
compilation procedure can be done with the use of the
MITMOT ARM specific Eclipse-eCOS environment,
as shown in Fig. 8.

Fig. 8 The MATLAB generated code for the example
applicaion in the Eclipse environment.

When the code is in hex format, it can be downloaded
to the target processor. The automatically generated
code from the Simulink model worked properly, as
shown in Fig. 9.

Fig. 9 MITMOT with the running application.

After the final compilation, the presented application
takes 113 kB in hex format.

4 Conclusion
This paper presented the design of a simulation and
code generation environment for the MITMOT target
using tools from The Mathworks, Inc. In the Simulink
environment a block library was developed for
representing the sensor cards’ basic I/O interfaces. In
this paper the functionality of an application example
using the MITMOT ARM Simulink library blocks has
been demonstrated. With this code generation and
simulation environment it became possible to simulate

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

the behavior of the simple sensors and I/O interfaces
found on the MITMOT modules and from the
Simulink model eCOS-compatible C code can be
automatically generated. Hence, the application
development for the target moved from C code to the
graphical Simulink language, and new applications
can be easily developed without knowing the actual
hardware architecture or the main principles of the
eCOS operating system.

5 Acknowledgement
This work has been supported by Gamax Ltd.
(http://matlab.gamax.hu), a Hungarian company,
official distributor of the products of The Mathworks,
Inc. in south-east Europe.

6 References
[1] The MathWorks, Inc, Matlab and Simulink: the

platform for Model-Based Design, 2007,
www.mathworks.com/mbd.

[2] G. Reed.: "Model-based design aids test and
verification", Test & Measurement World,
12/1/2006, http://www.reed-electronics.com/
tmworld/article/CA6401653.html?industryid=213
85.

[3] Hercog, D.; Curkovic, M.; Edelbaher, G.; Urlep,
E.: "Programming of the DSP2 board with the
Matlab/Simulink", Industrial Technology, 2003
IEEE International Conference on Volume 2,
Issue , 10-12 Dec. 2003 Page(s): 709 - 713 Vol.2.

[4] The MathWorks, Inc.: Simulink® 6 Using
Simulink (sl_using.pdf), version 6.6, March 2007,
www.mathworks.com.

[5] The MathWorks, Inc.: Matlab® 7 Desktop Tool
and Development Environment (matlab_env.pdf),
version 7.4, March 2007, www.mathworks.com.

[6] The MathWorks, Inc.: Real-Time Workshop® 6
User's Guide (rtw_ug.pdf), version 6.6, March
2007, www.mathworks.com.

[7] The MathWorks, Inc.: Real Time Workshop
Embedded Coder 4 User's Guide
(ecodder_ug.pdf), version 4.6, March 2007,
www.mathworks.com.

[8] Cs. Tóth et al: The modular MITMOT system,
technical report, 2006.
http://bri.mit.bme.hu/?l=mitmot&p=what%20is.

[9] The MathWorks, Inc.: Real-Time Workshop®
Embedded Coder 4 Developing Embedded
Targets (ecoder_det.pdf), version 4.6, March
2007, www.mathworks.com.

[10]The MathWorks, Inc.: Simulink® 6 Writing S-
Functions (sfunctions.pdf), version 6.6, March
2007, ww.mathworks.com.

[11]The MathWorks, Inc.: Real-Time Workshop®
Embedded Coder 4 Reference (ecoder_ref.pdf),
version 4.6, March 2007, www.mathworks.com.

[12]The MathWorks, Inc.: Real-Time Workshop® 6
Target Language Compiler (rtw_tlc.pdf),version
6.6, March 2007, www.mathworks.com.

[13]V. Huszar: Rapid Prototyping Using MATLAB-
Simulink and MITMOT, Student’s Scientific
Contest, Budapest University of Technology and
Economics, Dept. of Measurement and
Information Systems, Nov., 2005.

[14]L. Fabian: Automatic code generation to
MITMOT ARM target using the MATLAB
Simulink environment, Master’s Thesis, Budapest
University of Technology and Economics, Dept.
of Measurement and Information Systems, May,
2007.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

	1 Introduction
	1.1 The Simulink Environment
	1.2 The MITMOT Target

	2 Development of the tool
	2.1 Device drivers under Simulink: S-functions
	2.2 Code generation procedure: the TLC language

	3 Application Example
	4 Conclusion
	5 Acknowledgement
	6 References

