
ALGORITHM FOR DEVS
STRUCTURE CHANGES

Lassaad BAATI, Claudia FRYDMAN, Norbert GIAMBIASI

Domaine Universitaire de Saint-Jérôme
Avenue Escadrille Normandie-Niemen

13397 Marseille Cedex 20, France
lassaad.baati@lsis.org (Lassaad Baati)

Abstract

Several dynamic complex systems are too complex to be represented through only one
modelling formalism (Petri nets, bond Graph, etc.) like military systems. Vangheluwe
analyses some wide utilized formalisms and presents DEVS (a mathematically sound
framework) as a common denominator for multi-formalism hybrid systems modelling. The
main objection against the use of DEVS (and derived formalisms) in agent based simulation
was their static nature. We proposed a dynamical hierarchical structure modelling approach. It
preserves the DEVS formal model in order to take advantage of its experience and its
demonstrated capabilities (closure under coupling, hierarchy, modularity, etc.), and propose a
dichotomy between the structure and the behavioural model. This paper proposes a collapsed
view of our approach focused on the structure changes boundaries described through
algorithms.

Keywords: Discrete event modelling, DEVS, Variable/Dynamic structure, hierarchical
structure.

Presenting Author’s biography

LASSAAD BAATI is a PhD student in computer sciences at the Paul
Cézanne University of Marseille. He obtained his MS in computer
sciences, Modelling and Simulation in the same university. He worked
for four years as a software engineer

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
Modelling and simulation becomes broadly utilised to
resolve dynamical and complex systems representation
in order to analyse and diagnose their behaviour.
Obviously, dynamical and complex systems have a
wide range of specific features, and experts usually use
adapted formalism to model an appropriate system.
Thus, each of modelling formalism was used for a
specific domain [1].
Several dynamic complex systems are too complex to
be represented through only one modelling formalism
(Petri nets, bond Graph, etc.) like military systems [2].
Efforts were made to propose multimodel utilization
[3], which supports several formalisms utilization to
model only one complex system. On the other hand,
based on its hierarchical structure and closure under
coupling features, Vangheluwe analyses some widely
utilized formalisms and presents DEVS (a
mathematically sound framework) as a common
denominator for multi-formalism hybrid systems
modelling [1].
The main objection against the use of DEVS (and
derived formalisms) in agent based simulation was their
static nature [4]. Dynamic structure becomes a
challenging problem [5]; indeed dynamic system
behaviour evolution goes beyond a limited behaviour
changes to deeply changes related to its own structure.
These structure changes become crucial in several
dynamic and complex systems to be adapted in
different situations and be optimal in simulation
performance [5]. Several researches were done, to
resolve dynamic structure modelling and simulation
issues and inquiries. We noted that proposed solutions
in the literature can be divided in two groups; the first
one tries to resolve the structure variability by
extending the DEVS formalism, in the way that they
add parameters or functions to the predefined formal
DEVS model. The second one preserves the DEVS
formalism, and includes the structure behaviour or
parameters into the behavioural DEVS model. We
proposed in [6] a dynamic hierarchical structure
modelling approach in the middle of these two groups.
This approach preserves the DEVS formal model in
order to take advantage of its experience and its
demonstrated capabilities (closure under coupling,
hierarchy, modularity, etc.), and proposes a dichotomy
between the structure model and the behavioural model
[7], which enhances modularity and reusability. This
paper proposes a collapsed view of our approach
focused on the structure changes boundaries described
through algorithms.
This paper presents a DEVS review in section 2.
Section 3 describes some related works. Section 4
exposes the dynamic hierarchical structure modelling
approach based on DEVS. Section 5 explains
boundaries of this approach and depicts some
algorithms of changing structure functions. Finally, we
conclude in section 6 and expose our future work.

2 DEVS review
DEVS [8] is a modular formalism for deterministic
and causal systems’ modelling. A DEVS atomic
model has a continuous time base, inputs, states,
outputs and functions (output, transition, lifetime of
states). Larger models are built from atomic models
connected together in a hierarchical fashion.
Interactions are mediated through input and output
ports. That allows for modularity. We propose below
a related approach that supports variable structure
model, and preserves the DEVS formalism.

2.1 Formal Specification of an Atomic DEVS
Model

〉〈= ltSYXAtomicDEVS ext ,,,,,, int λδδ
- The time base is continuous and not explicitly
mentioned: T= IR.
- X is the set of (external) inputs of the model. They
interrupt its autonomous behaviour by the activation
of the external transition function δext.
- Y is the set of outputs.
- S represents the set of sequential states.
- δint is internal transition function, allowing the
system to go from one state to another autonomously.
- λ is the output function.
- lt(s) is the lifetime function.
The system’s reaction to an external event depends on
its current state, the input value and the elapsed time.
Fig. 1 explains internal and external transition
processes.

Fig. 1 Dynamics of a DEVS model

Fig. 1 represents detailed performed tasks during
atomic model simulation, they are exposed as follow:
The model is initially in State S
If no external event occurs, it will stay in S for time
period given by lt(S) which is the lifetime function,
defining the lifetime of the states
After lt(S) time, ie elapsed time=lt(S), system outputs
λ(S) and goes to the next state defined by the internal
transition function δint.
If an external event X occurs, the new state is
determined by input X, the current state S, and
elapsed time e. (δext(s,e,x)).

X

s’ = δext(s,e,x)

Y

S’= δint S
lt(s)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

2.2 Formal Specification of A Coupled DEVS
Model

The coupled DEVS formalism describes a discrete
events system in terms of a network of coupled
components.

{ }
〉

∈〈=

ICEOCEIC

DdMDYXSCoupledDEV dselfself

,,

,/,,,

Self stands for the model itself.
- Xself is the set of possible inputs of the coupled
model.
- Yself is the set of possible outputs of the coupled
model.
- D is a set of names associated to the model’s
components, self is not in D.
- { }DdMd ∈/ is the set of the coupled model’s
components, with d being in D. These components are
either atomic or coupled DEVS model.

EIC, EOC and IC define the coupling structure in the
coupled system.
- EIC is the set of external input coupling, which
connects the inputs of a coupled model to components
inputs.
- EOC is the set of external output coupling, which
connects the outputs of a coupled model to components
outputs.
- IC defines the internal coupling, transforming a
component’s output into another component’s input
within the coupled model.

3 Related work
Basic DEVS formalism provides a static structure. To
resolve dynamic structure modelling issues, many
approaches were proposed. This section provides an
overview of related work based or close to DEVS
formalism.

Kyou H. Lee & al proposed Variable Structure System
Specification (VSSS) formalism. It is composed of a
VSSS coordinator, named compositeVSSS, and a
mapped-model, named AtomicVSSS. The
compositeVSSS employs inputs, outputs, submodels
and state variables, state variable transition function,
and a mapping function. The atomicVSSS model
employs inputs, outputs, states, and output and
transition functions. The mapping function supervises
the compositeVSSS structure by activating dynamically
submodels [9]. VSSS is closed on DEVS.

For ecological system, A. Uhrmacher & al proposed the
dynamic DEVS formalism [10]. This formalism adds
two functions to the classical DEVS formalism in order
to allow structure changes. The first one is the “model
transition function” which is included in the dynamic
atomic model. The second one is the “network
transition function”, which is included in a dynamic
network/coupled model. Their duty is changing
autonomously their structure without any controllers.

Recently, she proposed p-DEVS [4], which is the
recent DEVS extension to resolve the structure
variability issues. It allows input and output ports
alteration dynamically during simulation.
T. Pawletta has proposed in [11] a DEVS based
approach for modelling and simulation of hybrid
variable model. He creates a coupled variable
structure model Ndyn, according to coupled model in
the classic DEVS. Ndyn is a coupled model with a
specific composite state variable HN. This variable
includes state variables that would be able to change
the model structure.
In the domain of adaptive computer architecture, F.
Barros introduces a variable structure modelling
formalism V-DEVS [12]. Then, the “Dynamic
Structure DEVS” formalism named DSDEVS [13].
This formalism is an extension of DEVS; it provides
an executive model within a dynamic structure
coupled model. The executive is a modified DEVS
model, it includes a structure transition γ and a set of
structures Σ*. Thus he builds parallel Dynamic
Structure DEVS formalism named DSDE [14] [15],
which adds inputs XN and outputs YN into the network
model, and performs parallel simulation.
Xiaolin Hu introduced in [16] a variable structure
modelling approach based on the DEVS formalism.
He specified that a model can change the structure of
another one through internal or external transition
functions [17]. Otherwise, the structure behaviour is
included in the behavioural model. Thus, the DEVS
based model as a whole, can change autonomously its
structure through transitions.
We note that these proposed approaches alter the
DEVS formalism by adding functions or specific
variables to manage structure variability. Xiolin Hu
preserved the DEVS formalism but, includes structure
variability into the behavioural models, thus
decreasing reusability.
In [6] we presented the “Dynamic Hierarchical
Structure DEVS modelling approach” based on the
DEVS formalism and allowing dynamic structure
modelling through DEVS components (structure
models) as controllers. We precise that we preserved
the DEVS formalism and its properties, like
hierarchy, modularity, and closure under coupling.
Then we proposed in [7] an algorithm implementing
this approach based on the abstract simulator
introduced by Zeigler [8].

4 Dynamic hierarchical structure DEVS
modelling approach
In [6] we proposed the dynamic hierarchical structure
modelling approach. It provides a model separation
between dynamic behaviour and dynamic structure.
And it preserves the DEVS formalism properties.
Thus it can be adopted by a wide range of a DEVS
tools easily. Below, we present this approach, its
formal representation, and its corresponding algorithm
based on the abstract simulator [8].

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

4.1 Dynamic Approach

This approach is based on the DEVS formalism to
manage structure. It allows structure variability without
altering the DEVS formalism properties. We propose a
structure model which is an atomic DEVS model to
manage the structure variability of another coupled
DEVS model. Every change in the state of the structure
model can imply a structure change of the managed
coupled DEVS model. Being out of the managed
coupled model, the structure model has larger
capabilities of structure changes. [7]

4.2 Formal Representation

As described in [6] and [7], this approach preserves the
DEVS formal representation for simulation proposed by
Zeigler in [8]. We include structure variability
information into the set of state variables of the
structure model. We describe below the related formal
representation [6].
The structure formal model:

〉〈= ZZextZZZ ltSYXZ ,,,,,, int λδδ
and 〉〈= iiiiiiii FICEOCEICMDYXMc ,,,,,,, is the
managed behavioural coupled model, which evolves
through several structures permitted by Z.
XZ is the set of input values of the structure model.
YZ is the set of output values.

{ }()iZ stS ,θ= is the set of states.

ZZext SXQ →×:δ is the external transition function.

ZZ SS →:intδ is the internal transition function.

ZZZ YS →:λ is the output function.
{ }∞∪→ +

0: RSlt ZZ is the model state lifetime function.
(){ }pZ VxvIPortspvpX ∈∈= ,,

Vxp is a set of values of inputs in the port p.
XZ is the set of couples, input ports and values. These
inputs are restricted to events that allow structure
changes of Mc (Structure model).

(){ }pZ VyvOPortspvpY ∈∈= ,,
Vyp is a set of values of outputs in the port p.
YZ is the set of couples, output ports and values that
returns the evolution steps of the structure changes.

{ }()iZ stS ,θ= is the set of state variables.
θ is the set of variable states that belong to the structure
model.
sti is the set of parameters that describe the structure of
the structure model coupled model Mc. i refers to the
structure related to the structure model state SZ. Each
structure is considered as a new model.
Xi is the set of inputs of the structure i.
Yi is the set of output values of the structure i.
Di is the set of names of submodels of the structure i.

() idii DdINMINstEIC ∈×∈ /.. is the set of external
input coupling. Each one connects input port (sti.IN) of
the managed coupled model Mc in its sti structure to
component input ports (Md.IN). With d the name of a
component in the Mc model in the sti structure.

(({) ()) }diii IPortsbIPortsaDdbdastEIC ∈∈∈= ,,/,,,

() idii DdOUTMOUTstEOC ∈×∈ /.. is the set of
external output coupling. Each one connects output
port (OUTsti .) of the managed coupled model Mc in
its sti structure to component output ports (OUTM d .).
With d the name of a component in the Mc model in
the sti structure.

(({) ()) }diiii OPortsbOPortsaDdbdastEOC ∈∈∈= ,,/,,,

() ''.. ddwithINdOUTdICi ≠×∈ is the set of internal
coupling. These are the connections between
submodels ports within the managed behavioural
coupled model Mc.

(({) ()) }',,'/,',, ddi IPortsbOPortsaddbdadIC ∈∈≠=

∑= ci fF is a set of coupling functions of the structure
i. cf is a coupling function related to c (coupling
relation), with c in {EIC U EOC U IC}. Each coupling
relation has its own coupling function.

ZZext SXQ →×:δ is the external transition
function. It is triggered by an external event and it
allows structure changes of the managed coupled
model by providing new structure model state.
Where () (){ }slteandSsesQ ZZ ≤≤∈= 0/, with e is
the elapsed time in the state s: Q is the set of totally
state.

nmetSsssXes Znmnmmext ≠∈= ,/),,(δ
()mmm sts ,θ=⇒

()() ()nnmmmext stXest ,,,, θθδ =
Sm is the current state. It includes the set of state
variables directly related to atomic structure model, and
those related to structure behaviour coupled model
(stm).

nm θθ , are sets of state variables in structure model

other than nm stst ,
e is the elapsed time in sm state.

{ }{ }mmmmmdmmmm FICEOCEICDdMDYXst ,,,,/,,, ∈=
Xm is an input value introduced with an external event.

ZZ SS →:intδ is the internal transition function. It is
executed after spending lt(s) in the same state without
receiving any external event. In some cases, spending a
time in the same state can trigger a structure change of
the system.

Znmnm Sssss ∈= ,/)(intδ
() ()() ()nnmZmm stsltst ,,,int θθδ =

Sm is the current state. It includes the set of state
variables (θm) related to the atomic structure model,
and those related to structure behavioural coupled
model (stm).

{ }{ }mmmmmdmmmm FICEOCEICDdMDYXst ,,,,/,,, ∈=

nm θθ , are sets of state variables in the atomic structure
model other than stm, stn
 ltZ is the lifetime function of the model states.

ZZZ YS →:λ is the output function.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

mm Ys =)(λ
nY allows coupling relation with other models.

{ }∞∪→ +
0: RSlt ZZ is the lifetime function of the

model states.
Fm is a set of coupling functions. There is a specific
coupling function related to each coupling relation.

4.3 Dynamic Hierarchical Structure Approach
algorithm

Zeigler introduced in [8] the abstract simulator to define
the simulation semantics of DEVS models. The benefit
of this concept is the dichotomy between the models
and the simulator. In the abstract simulator, each
component (processor) corresponds to a model
component. The related algorithms were described in
[8]. The abstract simulator includes a root coordinator
which corresponds to the top level and manages the
clock of the whole simulation, a coordinator which
coordinates the interaction between models in the same
level, child and parent, finally a simulator which
performs a simulation of an atomic DEVS model.
Based on the abstract simulator concept, we propose in
[7] a mapping of a dynamic hierarchical structure
model. We only add a “structure coordinator” to the
classic DEVS abstract simulator. All remaining
components are the same. This new component extends
the coordinator activities to manage structure changes
in the child coordinator. The simulator corresponding to
the structure atomic model provides an output message
“Ymessage(y,t)” that includes the structure changes
to perform, to the “structure coordinator”. The
“structure coordinator” applies these changes on the
subordinate coordinator. The changes can be
adding/deleting models, adding/deleting coupling
relations, adding/deleting input or output ports. We note
that an atomic model that manages structure is allowed
for each variable structure coupled model. Thus, the
complexity decreases in the low level models and the
reusability increases.

4.3.1 Structure Model Algorithm

Fig. 2 presents the algorithm of the structure
coordinator when it receives a Ymessage(y,t).
The structure coordinator algorithm adds a variable
named “actions_list”, which includes the set of
future updates that must be applied on the managed
coupled model to reach the aimed structure.
When the structure coordinator receives Ymessage, it
verifies at the first time if the message source is the
child simulator or the child coordinator. If the source is
the child coordinator, then, the EIC and IC are checked
in order to determine respectively if the Ymessage will
be forwarded to parent coordinator, or if the Ymessage
will be forwarded to the child coordinator after being
transformed into Xmessage by the coupling function F
(x=F(y)). Otherwise, if the message source is the
simulator, hence, the Ymessage is consulted to get the
actions set that will be performed. Eventually, the EIC
set is checked to determine if the Ymessage will be

forwarded to the parent coordinator. The “structure
coordinator” scrolls through the set of actions in order
to perform each of them through “execute_action”
function. Indeed, this function calls all structure
changes actions related functions. We note that some
structure changes imply an embedded initialization.

Fig. 2 Structure coordinator Algorithm (Ymessage)

4.3.2 “execute_action” Algorithm

Structure changes are included in the
“actions_list” variable. Then the structure
coordinator calls the execute action function to apply
related changes. A part of the algorithm
corresponding to this function is represented in Fig. 3.
This function analyses the action sent by the structure
coordinator. A part of these performed actions were
described below.
“delete_atomic(c*, c*.DEVS)” is a function
with two parameters; the concerned child coordinator
“c*”, and the model to delete “c*.DEVS”. We note
that deleting models implies deleting all related
coupling relations.
“add_atomic(c*, c*.DEVS, EIC_list,
EOC_list, IC_list)” adds to a the child
coordinator “c*” a DEVS model “c*.DEVS”, with
related External Input Coupling “EIC_list”,
External Output Coupling “EOC_list”, and Internal
coupling “IC_list”.
“delete_EIC ((c*.N, c*.inport),
(c*.d.target, c*.d.inport))” deletes an
external input coupling from the input port
“c*.inport” in the model “c*.N”, to the input
port “c*.target” of the model “c*.d.inport”.

variables
parent //parent coordinator
tl //time of last event
tn //time of next event
//subordinated coupled model
DEVN{X,Y,{Md/d in D},D,EIC,EOC,IC,F}
//list of elements (d,tnd) sorted by
//tnd ordered list
event-list
d* //selected imminent child
//list of actions changing structure
Actions_list

when receive Ymessage (y,t) with output y
if d* is simulator
send Ymessage with value YN=F(Yd*) to parent
c*= yS.related_coordinator

//loop to perform a set of actions
while yS.actions_list not empty set

do
execute_action(yS.action(i),

yS.related_coordinator)
end do

else
//check EOC to get external output event

receivers={r|r in D-d*, r in {DEVN.IC.source})
if d* in {DEVN.EOC.source}

send Ymessage with value YN=F(Yd*) to parent
if d* in {DEVN.IC.source}

send Ymessage with input value x=F(Yd*)to r

………
end DEVS-Structure-Coordinator

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

“add_EOC((c*.d.source, c*.d.outport),
(c*.N, c*.outport))” adds an external output
coupling in the child coordinator. A coupling relation is
from the output port “c*.d.outport” of the source
model “c*.d.source”, to the output port
“c*.outport” of the coupled model “c*.N”.
“add_IC((c*.d.source, c*.d.outport),
(c*.d.target, c*.d.inport))” adds an internal
coupling in the child coordinator. A coupling relation is
from the output port “c*.d.outport” of the source
model “c*.d.source”, to the output port
“c*.d.inport” of the coupled model
“c*.d.target”.
“delete_Inport(c*.d,c*.d.inport)” deletes an input port
“c*.d.inport” in the model “c*.d”.

Fig. 3 Algorithm of “execute_action” function

We note that deleting input/output ports implies
deleting all related coupling relations (EIC, EOC, and
IC). Also, deleting an atomic model implies deleting the
related coupling relations and the corresponding events.
Then, deleting a coupled model implies deleting all
submodels, and their related coupling relations. On the
other hand, adding coupling relations implies adding
depending events. In the same way, adding models
implies adding dependent coupling relations and events.
Each added model must be initialized to respect
coherence of the whole model simulation.
Below we present some of these functions in order to
explain the whole model structure changes impact, and
boundaries of some structure changes.

5 Structure changing Algorithm
Obviously, altering structure becomes primary in
dynamic and complex systems modelling and simulation.
However, structure variability needs more details about
limits and boundaries of this variability. This section
describes summary some changing structure functions
with limits of their applications.

5.1 Adding atomic model function

Fig. 4 describes the algorithm of the adding atomic
model function. We review that all utilized models
during simulation must be predefined in the used
library.

Fig. 4 Adding atomic model function

Models embedded in the initial structure were
initialized with the classic simulation process
introduced by Zeigler [8]. Hence, the first instruction in
this function is to load the atomic model in the
corresponding coupled model. Then related coupling
relations were added to the coupled model, and finally
the added model will be included. All new coupling
relations are added to coupling relation lists (EIC, IC
EOC). Before resume the whole simulation, the added
atomic DEVS model must be initialized to preserve
coherence and integrity of the global model.

5.2 Deleting atomic model function

Fig. 5 Deleting atomic model function

delete_atomic(Coordinator c,
AomicModel devsAtomic)

{
int i=0;
While (linkage is not empty)

do
if (devsAtomic in {linkage[i].source,

linkage[i].target)
then
linkage[i].delete();

i++;
end do

devsAtomic.delete();
}

Add_atomic(Coordinator c,
AomicModel devsAtomic,
Linkage EIC_list,
Linkage EOC_list,
Linkage IC_list)

{
Load devsAtomic;
int i=0;
While (EIC_list is not empty)
do

add_EIC(c, EIC_list[i]);
i++;

end do
i=0;
While (EOC_list is not empty)
do

add_EOC(c, EOC_list[i]);
i++;

end do
i=0;
While (IC_list is not empty)
do

add_IC(c, IC_list[i]);
i++;

end do
initializeAtomic(devsAtomic);
}

execute_action(action,c*)
Variables d,DEVN,DEVS,c*
//c* is the coordinator that structure
//will change
Switch (action)

Case “delete_atomic_model”
delete_atomic(c*,c*.DEVS)

Case “add_atomic_model”
add_atomic(c*,c*.DEVS,EIC_list,

EOC_list,IC_list)
Case “delete_EIC_model”

delete_EIC((c*.N,c*.inport),
(c*.d.target,c*.d.inport))

Case “add_EOC_model”
add_EOC((c*.d.source,c*.d.outport),

(c*.N,c*.outport))
Case “add_IC_model”

add_IC ((c*.d.source,c*.d.outport),
(c*.d.target,c*.d.inport))

Case “delete_Input_port”
delete_Inport(c*.d,c*.d.inport)

………………….

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

As shown in fig. 5, the function of deleting DEVS atomic
model is related to the corresponding coordinator. It
deletes the atomic model, and scrolls coupling relation
sets in order to delete all deleted model coupling relation
links. We note that “linkage” describes all coupling
relations including EIC, EOC, and IC sets. To perform
this action we have to verify that this atomic model is not
the only embedded influenced/influencer submodel.

5.3 Deleting input port function

Altering ports in DEVS models during simulation is
critical. Only recently input and output ports dynamic
changing has been discussed in the context of system
theoretical approaches toward modelling and simulation
[4].

Fig. 6 Deleting input port function

As shown in Fig. 6, the function scrolls all events and
links related to the port and delete them. We note that
deleting each coupling relation implies deleting of all
related events. To perform this function the model must
respect the condition that the port is not involved in the
last coupling relation, and that deleting this port will not
isolate a component model.

6 Conclusion
This paper presents our dynamic structure hierarchical
modelling approach based on the DEVS formalism. We
review above the formal model of the dynamic
hierarchical structure approach, and we describe the
corresponding architecture. We note that our approach
preserves the DEVS formalism properties and allows us
to profit of all DEVS proved capabilities. It separates the
dynamic structure and dynamic behaviour representation,
which enhances modularity and reusability of the
generated models. We focus here on the approach limits
and boundaries through brief presentation of some
change structure functions.

Presently, we’re working on an extension of an existent
DEVS M&S environment, “LSIS_DME” which was
developed with JAVA language by LSIS laboratory
team. Then we will implement designed models of Low
intensity conflicts presented in [18], in order to
determine the real capabilities and limits of this
approach.

7 References
[1] Vangheluwe, H.L.M., “DEVS as a common

denominator for multi-formalism hybrid systems
modelling”, Computer-Aided Control System
Design, 2000. CACSD 2000. IEEE International
Symposium on. Anchorage, Alaska, USA,
September 25-27, 2000

[2] Wainer, G., Madhoun, R., “Creating Spatially-
Shaped Defense Models Using DEVS and Cell-
DEVS”, The Society for Modeling and
Simulation International, JDMS, Volume 2,
Issue 3, July 2005 Pages 121–143

[3] Yilmaz, L. and T.I. Ören. 2005. “Discrete-Event
Multimodels and their Agent-Supported
Activation and Update.” In Proceedings of the
Agent-Directed Simulation Symposium of the
Spring Simulation Multiconference. SMC’05,
(April 2005), San Diego, CA, 63-72.

[4] A. M. Uhrmacher, J. Himmelspach, M. Röhl, and
R. Ewald, 2006. “Introducing variable ports and
multi-couplings for Cell biological modeling in
DEVS”, in Proceedings of the 2006 Winter
Simulation Conference, IEEE

[5] F. Barros. 1998. “Multimodels and Dynamic
Structure Models: An Integration of
DSDE/DEVS and OOPM”, In Proceedings of the
1998 Winter Simulation Conference, pp. 413-
419, Winter Simulation Conference, December-
1998

[6] L. Baâti, C. Frydman, N. Giambiasi, “Simulation
Semantics for Dynamic Hierarchical Structure
DEVS Model” DEVS06. In Proceedings of
DEVS’06-SpringSim’06, Huntsville Alabama,
April 2006.

[7] L. Baâti. 2007 “Simulators for DEVS models
with Dynamic Structure”. AIS-CMS International
modeling and simulation multiconference.
Buenos Aires - Argentina. February 8th to 10th
2007. Submitted & accepted.

[8] Zeigler, B. P.; Praehofer, H.; Kim, T. G. 2000.
Theory of modeling and simulation, Second
edition, integrating discrete event and continuous
complex dynamic systems, Academic Press,
2000.

[9] LEE, K., CHOI, K., KIM, J., AND
VANSTEENKISTE, G., 1997, “A methodology
for variable structure system specification:
Formalism, framework, and its application to
ATM-based network systems”, ETRI Journal 18,
4, 245–254.

delete_InPort(AomicModel devsAtomic,
Port inputPort)

{
int i=0;
While (linkage is not empty)

do
if (inputPort in linkage[i])

then
linkage[i].delete();

i++;
end do

i=0;
While (event-list is not empty)

do
if (inputPort in event-list[i])

then
event-list[i].delete();
i++;

end do

delete inputPort;
}

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

[10] Uhrmacher, A.M., 2001, “Dynamic Structures in
Modeling and Simulation - A Reflective
Approach”, ACM Transactions on Modeling and
Simulation, Vol.11. No.2 , (April): 206-232.

[11] T. Pawletta, S. Pawletta. 2004. “A DEVS-based
simulation approach for structure variable hybrid
systems using high accuracy integration methods”.
In Proceedings of the Conference on Conceptual
Modeling and Simulation, Part of the
Mediterranean Modelling Multiconference
CSM2004-I3M, (October 28-31), Genova, Italy,
Vol.1, 368-373.

[12] Barros, F.J.; Mendes, M.T.; Zeigler, B.P. “Variable
DEVS-variable structure modeling formalism: an
adaptive computer architecture application”.
'Distributed Interactive Simulation Environments'.,
In Proceedings of the Fifth Annual Conference on ,
7-9 Dec 1994 Page(s): 185 -191.

[13] Fernando Barros. 1998. “Abstract Simulators for the
DSDE Formalism.” In Proceedings of the 1998
Winter Simulation Conference, pp. 407-412, 1998
Winter Simulation Conference, December-1998.

[14] F.J. Barros. “Modeling Formalism for Dynamic
Structure Systems”. ACM Transactions on

Modeling and Computer Simulation, 7(4):501--
514, 1997.

[15] F. Barros. 1998. “Multimodels and Dynamic
Structure Models: An Integration of
DSDE/DEVS and OOPM”, In Proceedings of the
1998 Winter Simulation Conference, pp. 413-
419, Winter Simulation Conference, December-
1998.

[16] Xiaolin. Hu, 2004, “A Simulation-based Software
Development Methodology for Distributed Real-
time Systems”, Ph. D. Dissertation, Electrical and
Computer Engineering Dept., University of
Arizona, May 2004.

[17] Xiaolin Hu, B. P. Zeigler, and S. Mittal,
“Variable Structure in DEVS Component-Based
Modeling and Simulation”, SIMULATION:
Transactions of The Society for Modeling and
Simulation International, Vol. 81, No. 2, pp. 91-
102, 2005.

[18] L. BAATI, C. FRYDMAN and N.
GIAMBIASI, 2007. “LSIS_DME M&S Environment
Extended by Dynamic Hierarchical Structure DEVS
Modeling Approach”, DEVS’07, in Proceedings of
SpringSim’07, Norfolk VA, USA

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

