
TEXT ENCODING AND RECALL SPEEDUP FOR
CORRELATION MATRIX MEMORIES
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Abstract

In this article we describe a part of our search engine based on Correlation matrix Memories.
We focus on a part (we refer it as a letter-word matcher) of our search engine that takes a single
word from an input query and looks for its word representative (word label). Words are searched
within a static lexicon that is trained from a collection of documents. Although our letter-word
matcher provides exact matching, approximate matching and stemming, we pay here attention
on the exact matching only. Our search engine is based on the Correlation Matrix Memories
(CMMs). CMMs are type of binary neural networks. They are capable of both exact and
approximate matching. An advantage of CMMs is its very fast learning process. We proposed
two encoding methods of input patterns designed to reduce memory consumption of CMMs.
Both methods give some level of error rate in comparison with a standard approach. The first
method allows to reduce memory more than 7 times. There is a tradeoff between memory
requirement and error rate value. We also tested an n-gram approach for memory consumption
and the error rate. We suggest three methods of speeding up a software simulation of the CMM
recalling process. Combining all three we achieved a significant speedup of a standard method.

Keywords: Correlation matrix memory, Binary neural networks, Text searching, N-gram
approach, Speedup of recall.
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1 Introduction
This article deals with an application of binary corre-
lation matrix memory (CMM) for exact text matching
task over a static lexicon of words. It is a part of our
search engine that seeks word representatives based on
input query. CMMs are type of binary neural networks
that are capable of perfect matching or matching admit-
ting errors. Advantages of CMMs are also fast learning
process and easy implementation.

Here, we focus on two problems. First, we evaluate
two encoding methods to reduce memory consumption.
Both methods introduce some level of error rate. Sec-
ondly, we suggest three methods of speeding up a soft-
ware simulation of the recall process of CMMs.

We briefly describe binary correlation matrix memories
in section 2. Then, we present evaluation of two encod-
ings methods in sections 3 and 4. Section 5 describes
acceleration methods of the recall process of CMM.

2 Text Matching by CMMs
Our search engine produces a list of relevant documents
based on an input query. Its structure is shown in Fig. 1.

Fig. 1 The structure of our search engine.

The input query consists of a sequence of words that
a user considers to be important for searching desired
documents. The engine contains two main parts: a
letter-word matcher and a word-document matcher.

The first part provides a search on the letters of an in-
put query words for word representatives within a static
lexicon. It allows to perform an exact match as well
as an approximate match. An input for this part is let-
ters of a single input word. The query parser separates
single words from the input query. The second part pro-
vides a search for relevant documents based on the list
of recalled words from the first part. In this article, we
pay attention on the letter-word matcher part. We also
focus on the exact match only.

2.1 Correlation Matrix Memory

Correlation Matrix Memories (CMMs) are type of as-
sociative memories (for a more detailed description
see [1] or [2]). They can be thought of as a kind of
neural networks. Fig. 2 shows an example of CMM
and learning and recalling process.

Fig. 2 Learning and recalling processes of CMM.

We use binary CMMs, so all weights (matrix cells), as
well as input and output patterns, are binary. Therefore,
they are very fast in training and recalling. Their sim-
ple architecture allows to implement them in hardware
easily. An example of a hardware accelerator for this
kind of neural networks is described in [3]. Analogous
to other types of neural nets, they also have the ability
to deal with noisy input patterns. They produce rea-
sonable output on input patterns which were not in the
training set, but are similar enough to others within the
set.

The learning process is very fast in comparison to other
neural nets since a CMM learns each association in one
step (one pass through the matrix). During this step, the
matrix cells Mi,j which correspond to set bits in both
input and output vector are set to one Ii = 1 ∧Oj = 1.
The results are or-ed to the matrix in each learning step.
Thus an association pattern can partially overlap other
one(s). Such overlapping can cause CMM to recall as-
sociations that have not been trained. Due to or-ing, the
matrix will always find the stored association, but it can
also recall other ones that were not in the training set,
resulting in false positive errors. The false positive rate
depends mainly on the mutual orthogonality of input
patterns in the training set [1].

In our approach, we encode letters and words orthog-
onally, i.e. each letter sets single bit position in the in-
put vector and each word is represented by one bit in
the output vector. Thus, we do not have to deal with
the false positives. This simplification makes recalling
faster, because no validation is required on the output.
On the other hand, more memory is required for a given
number of associations.

In the recalling process, the input vector is applied to
the input of the CMM. Matrix rows corresponding to
set bits in the input vector are summed. The result is
an integer vector, which is then thresholded to get the
binary output vector. Commonly, we use the Willshaw
method [4] that sets the threshold Θ equal to the num-
ber of set bits in the input vector Θ = |I|. Using this
value results in an exact match. Decreasing it results in
a partial match based on the Hamming distance.

2.2 Letters and Words Encoding

A common method of letters and words encoding is
shown on Fig. 3. As already mentioned, letter and word
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Fig. 3 Letters and words encoding, basic method.

patterns are encoded orthogonally. Each letter sets one
bit in the input vector [5]. We count with 30 letters: ‘A’
to ‘Z’, underscore, apostrophe, and two special sym-
bols. Each letter of the input word string represents one
chunk with exactly one bit set. The chunks for all po-
sitions are concatenated to form the input pattern. One
word position corresponds to one horizontal section of
the matrix (see right side of Fig 3). On the output, each
word from the lexicon is associated with one bit posi-
tion of the output vector.

The matrix must be dimensioned so that the number of
horizontal section are greater or equal to the length of
the longest word in the lexicon [6]. In the collection of
the Shakespeare works, we found the longest word to
be 27 characters long yielding 810 rows. However, this
approach leads to a prefix type of error on output words
of different lengths. For example in Fig. 3, the word
‘he’ is correctly recalled whereas the word ‘help’ is not
a correct answer.

2.3 Parallel Matrices

The prefix type of error could be overcome by com-
paring the word length after the recall [6]. However,
we have used one matrix per word length resulting in
27 matrices for the Shakespeare collection. Overall,
this saved 73 % of memory in comparison with a single
matrix (594 KB vs. 2.17 MB). In our solution we used
the input word length to select the correlation matrix to
use. We could also save time by exploiting parallel pro-
cessing of several query words with different lengths.

2.4 Testing Parameters

We used the following machine in our tests: Intel Pen-
tium 4 1.6 GHz, 1 GB DDR SDRAM 333 MHz. We

built a lexicon from a collection of the Shakespeare
works [7]. It contains 24 k unique words. The longest
word has 27 characters. The test set contains 47 k words
where half of the words were randomly corrupted.

3 Shared Sections
The idea of a shared sections method is based on
reusing one horizontal section with more letter posi-
tions. We use one matrix with hs sections, where hs
is less than the maximum length of a word in the col-
lection. Letters of an input word are spread in “modulo
way” among the shared sections. An example of gen-
erating a binary vector from the word ‘enter’ for three
sections is shown on Fig. 4. Letter ‘e’ is overlapped

Fig. 4 Shared section method, hs = 3.

in the first section for the first and the fourth positions.
Letters ‘n’ and ‘r’ is placed in the second section. And,
letter ‘t’ goes to the third section. Generally, a letter i is
written to a section j when:

j =
{

imodhs for imodhs > 0
hs for imodhs = 0 .

(1)

Obviously, we introduce a new type of error due to shar-
ing sections by more positions. In the example in Fig. 4
there are two falsely recognized words: ‘entertain’ and
‘inter’. However, the tradeoff between the error rate and
memory consumption becomes scalable via hs value.

3.1 Error Rate Definition

The error rate value reflects the amount of faults (in our
case false positives) generated by a given method over
a given collection. It is expressed as a percentage value
from the maximum possible faults.

Let m be the number of words in the lexicon L, |reswi
|

the number of recalled words for an input word wi.
Then, the error rate er is given by:

er = 100 ·
∑

wi∈L |reswi
|

m(m − 1)
. (2)

Because a word is not its own false positive, the divider
is m − 1 in Eq. (2).
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3.2 Number of Bits Checking

For the shared section method, the number of bits set in
the input vector can be less than the number of letters
in the input word |I| ≤ |w| (for the case of overlap-
ping same letters). Therefore, besides the length check
handled by parallel matrices, we also check the results
by comparing the number of bits along with the length
check. It gives us further error rate reduction.

In the example from Fig. 4, the misrecognized word
‘entertain’ can be corrected by the length check (by the
parallel matrices method), because they differ in length.
But the word ‘inter’ cannot be corrected in this way as
it has the same length. However, ‘enter’ and ‘inter’ dif-
fers in the number of bits set in the input vector. Thus,
it can be fixed with the bit checking.

The improvement in error rate when using bits checking
is shown in Tab. 1. The table also compares impact on
memory and error rate for different numbers of hs.

Tab. 1 Shared section method results.

hs 1 2 3 5 10
ma 82.5 165 247 402 583
mr 7.2 3.6 2.4 1.48 1.02
fal 3.94 0.21 0.11 0.018 3.6e-4
falb 0.32 0.03 0.01 2.7e-4 0
erl 0.018 9.3e-4 5.1e-4 8.1e-5 1.6e-6
erlb 0.0014 1.3e-4 4.3e-5 1.2e-6 0

ma is the absolute memory consumption (in KB) for
parallel matrices with hs sections. mr is a decreasing
factor of memory consumption in comparison to com-
mon method without shared sections (594 KB). fal is
the average number of faults per word in the collection
with the length check. falb is same for length and bits
check. erlb and erlb are the corresponding error rates.

Results shows memory reducing factor up to 7.2. In that
case the matrices needs about 82 KB for the lexicon.
But the average number of faults per word is relatively
high 0.3. We think the reasonable tradeoff is hs = 3
with 2.4 reduction factor and low average number per
word 0.01. The bits checking method reduces the error
rate approximately by factor 10.

4 N-Gram Encoding
In this section, we evaluate an n-gram encoding
method. We tested n-grams of order o ∈ 〈2, 5〉 for
memory consumption and the error rate. The n-gram
method with CMMs has been already used in [6] to
carry out the approximate match. We used different en-
coding scheme, we replaced letter symbols with n-gram
symbols. Due to a big number of possible n-grams (see
Tab. 2), we always use the shared section method with
hs = 1 to keep memory consumption as low as pos-
sible. Errors caused by the shared section method (dis-
carding position information) is reduced by the fact that
n-grams already contains local letter position informa-
tion. We also used both length bits checking methods.

N-grams are generated for each word position starting
from 1 up to the position whose the end of the n-gram
reaches the end of the word. Therefore, neighboring n-
grams share letters. For example, the word ‘sign’ gen-
erates the following n-grams:
• three bigrams ‘si’, ‘ig’ and ‘gn’,
• two trigrams ‘sig’ and ‘ign’,
• one 4-gram ‘sign’ and
• one 5-gram ‘sign?’.

The number of n-grams for word w and order o is given
by |w| − o + 1. When the order of an n-gram is bigger
than the word length a reserved symbol ‘?’ completes
the n-gram.

Tab. 2 shows the number of all possible n-grams for a
given order and a alphabet size |Σ| = 30. These num-
bers are enormous, especially for order bigger than 2.
Therefore, we use so called active n-grams only, which
is a subset of all n-grams. Active n-grams are those
ones, which appeared at least once in a collection. The
numbers of active n-grams from the Shakespeare col-
lection are shown in the Tab. 2.

Tab. 2 Numbers of all n-grams and active n-grams.

order bigrams trigrams 4-grams 5-grams
all 900 27000 810000 24300 k
active 506 4587 17415 30384

4.1 Boundary Letter

The boundary letter method extends the input word with
a special symbol ‘$’ (reserved in our alphabet) at the be-
ginning of the word and at the end. The “boundary let-
ter” puts the information about which n-gram is a start-
ing one and which is a last one. As shown in our tests,
it significantly contributes to reducing the error rate.

For example, the word ‘sign’ becomes ‘$sign$’. It cor-
responds to following n-grams:
• ‘$s’, ‘si’, ‘ig’, ‘gn’, ‘n$’ for bigrams, or
• ‘$si’, ‘sig’, ‘ign’, ‘gn$’ for trigrams, or
• ‘$sig’, ‘sign’, ‘ign$’ for 4-grams, or
• ‘$sign$’ for 5-grams.

The number of n-grams for a given order generated
from a word w of order o is |w|−o+3. Tab. 3 compares
the results of the error rate and memory consumption
for n-gram methods for different orders. It also shows
the error-rate improvements when using boundary letter
enhancement.

Tab. 3 N-gram method results.

o bigrams trigrams 4-grams 5-grams
ma 1.36 12.3 46.8 81.4
falb 8.9e-4 0 0 0
falbb 8.9e-5 0 0 0
erlb 4e-6 0 0 0
erlbb 4e-7 0 0 0
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ma is the absolute memory requirement (in MB) for
active n-grams and hs = 1. falb is the average number
of faults per a word in a collection with length and bits
check. falbb is falb with boundary letter enhancement.
erlb and erlbb are the corresponding error rates.

Results shows that the proposed n-grams method gives
mostly zero error rate even for hs = 1. Negligible
number of errors appeared for bigrams only. However,
the major problem is the memory consumption. For bi-
grams it is about twice as big as for the common method
with parallel matrices.

4.2 Reduction of Active N-Grams

In order to reduce more memory consumption, we also
tried further reduce the number of active n-grams. We
created a table that contains the list of n-grams sorted
according to their occurrence in the collection. We
tested how many n-grams from the begin of the table
we can use to keep the error rate at reasonable level.
We also tested what happen if we moved a window of
active n-grams into the middle of the table. The error
rates for 200 most frequent bigrams are shown in Tab. 4.

Tab. 4 Reduction of active n-grams.

window shift 0 % 1 % 5 %
fa 0.028 0.033 0.18
er 4e-4 5e-4 2.8e-3

The results show that the most important n-grams are
the most frequent ones. Unfortunately, we get about the
same memory requirement as for the common method,
but with some level of error rate.

5 Speedup of Recall

In this section we propose three methods to speedup
the recalling process. They are suitable for software
implementation of the correlation matrix memories. We
tested and compared them with commonly used method
described in subsection 2.2.

5.1 Columns Pruning

Our first proposed method, named columns pruning, is
based on omitting matrix columns that can not longer
affect the result list from the further processing.

Let us give an example. For the exact match, we use the
Willshaw threshold (a hard threshold set to the number
of bits set in the input vector). A winning column must
then match all bits set in the input vector. Therefore,
when we find a first mismatch we can omit a column
where a mismatch occurred from the further process-
ing. An example of the method when recalling the word
‘helm’ is shown in Fig. 5. We found a 84.7 % reduction
(6.5 times) in processed matrix cells on the Shakespeare
collection in comparison with the common method.

Fig. 5 Columns pruning method.

5.2 Index Matrix Representation

The second method is called index matrix. It reduces
the number of processed matrix cells during recalling.
We create a duplication of CMM (on a trained ma-
trix), but in a different matrix representation. The in-
dex matrix stores only the active cells (matrix cells with
value 1). Rows are composed from a list of active cell
indexes. This method aims to omit processing of inac-
tive matrix cells in the first processed row.

The indexes are offsets from the previous active cell in
the row. We can do it in this way, because we always
process the whole row. It makes the index values lower
and saves the amount of memory required for the in-
dex matrix. We encode indexes in a similar way as
for UTF-8 Unicode character encoding. Index can be
represented as one, two or three bytes depending on its
value. The highest bits in the first byte determine the
number of bytes needed to represent the value. Most of
the values fit into 1 byte range (about 90 %), so this is
worth to encode it in this way.

In our test case, the index matrix is about 3.7 times
smaller then its binary counterpart. While the binary
matrices require about 594 KB, their index equivalents
consume about 162 KB.

The index matrix method gives us further reduction of
number of processed matrix cells. The reduction factor
is 8 (for same test case) in comparison to columns prun-
ing method. Combining both methods we save about
98 % of accessed cells, that is 52.4 times overall factor.
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5.3 Hash Section

Previous two methods reduced the number od accessed
matrix cells significantly. Recalling process quickly
prunes false columns and converges into a proper one.
Columns are keeping in processing as long as they
match input letters. We process input letters sequen-
tially, so those columns that has longest prefixes of an
input recalled word are discarded at latest. The last pro-
posed method was designed to recognize and discard
those columns which have same prefix and differ in lat-
ter character(s).

We use a simple hash function from a string (see the
following algorithm). First, we count an integer value
vsum based on all characters from the input word.
Then, we apply modulo m on the sum vsum to get the
result value in range〈0,m−1〉.

1: vsum ⇐ 0
2: for all i = 1 to |w| do
3: vsum ⇐ vsum << 4 + wi

4: return vsum mod m

wi is the ASCII value of a letter on i-th position in the
word w. Value m is chosen to be a value of power of
2 minus one, and also to be the first bigger value then a
quarter of the number of the original matrix rows Mi.

j = arg min
j≥1

(2j) : m = 2j − 1 ∧ m ≥ Mi

4
(3)

We insert a new section before the first letter section.
This section occupies r rows from the matrix. Each
word has a single bit set in this section. We make the
index matrix only for this section because we always
start recalling with this section.

5.4 Speed Test

Tab. 5 shows experimental results for proposed meth-
ods. We have measure the speed by the average number
of recalled associations per second. We have measured
the exact match on the mentioned Shakespeare collec-
tion (see subsection 2.4).

Tab. 5 Speed comparison of proposed methods.

technique mtd-a mtd-b mtd-c mtd-d
assoc./sec 5202 43219 160528 1439147
speedup 1.0 x 8.3 x 30.9 x 276.7

mtd-a is the common recalling method, mtd-b is the
columns pruning method, mtd-c marks the index matrix
method and mtd-d is the hash section enhancement.

We achieved about 270 times speedup combining all
three proposed methods comparing to the common
method. The test showed approximately same speedup
factor values as it has been predicted by counting the
number of accessed matrix cells (see subsection 5.1) for
the columns pruning and the index matrix methods. We
also measured speed of the binary search method on the
same test. It was about 900 thousand associations per
second. So our proposed methods is about 60 % faster
then the binary search.

6 Conclusion
In this article, we proposed the parallel matrix method
that decreases the memory requirements by 73 % com-
pared to standard implementation. The method resolves
the prefix type of error and allows parallel processing of
query words with different length.

We proposed shared section method that is able to fur-
ther reduce memory requirement up to 7.2 times. How-
ever, this method gives imperfect results with some
level of the error-rate. Our test showed that the rea-
sonable tradeoff between the memory consumption and
the error rate is for three horizontal sections. It reduces
memory by factor 2.4 while still having reasonable av-
erage number of false positive per word 0.01. Proposed
bits checking method reduces error rate by factor 10.

We evaluated the n-gram approach. Combining length
and bits check with boundary letter method resulting
mostly in zero error rate. But clear drawback of this
method is the memory consumption, that is at least
twice as big as for the basic method with parallel matri-
ces. We also proved by a test that the most important n-
grams concerning error rate are the most frequent ones.

We proposed three techniques for acceleration of the re-
call of software simulation of CMM. Combining all tree
methods we achieved 270 factor speedup on the lexi-
con with 24 k words (overall 1.4 million associations
per second). Comparing to a binary search method we
process about 60 % more input queries at the same time.
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