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Abstract

When parameters of model are being adjusted, model is learning to mimic the behaviour of a
real world system. Optimization methods are responsible for parameters adjustment. The prob-
lem is that each real world system is different and its model should be of different complexity.
It is almost impossible to decide which optimization method will perform the best (optimally
adjust parameters of the model). In this paper we compare the performance of several methods
for nonlinear parameters optimization. The gradient based methods such as Quasi-Newton or
Conjugate Gradient are compared to several nature inspired methods. We designed an evolu-
tionary algorithm selecting the best optimization methods for models of various complexity.
Our experiments proved that the evolution of optimization methods for particular problems is
very promising approach.
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1 Introduction

The question ”Which optimization method is the best
for our problem?” has not a simple answer. There is no
method superior to others for all possible optimization
problems. However there are popular methods perform-
ing well on whole range of problems.

Among these popular methods, we can include so
called gradient methods - the Quasi Newton method,
the Conjugate Gradient method and the Levenberg-
Marquardt method. They use an analytical gradient (or
its estimation) of the problem error surface. The gradi-
ent brings them faster convergence, but in cases when
the error surface is jaggy, they are likely to get stuck in
a local optima.

Other popular optimization methods are genetic algo-
rithms. They search the error surface by jumping on it
with several individuals. Such search is usually slower,
but more prone to get stuck in a local minima. The Dif-
ferential Evolution (DE) perform genetic search with an
improved crossover scheme.

The search performed by swarm methods can be imag-
ined as a swarm of birds flying over the error surface,
looking for food in deep valleys. You can also imag-
ine that for certain types of terrain, they might miss the
deepest valley. Typical examples of swarm methods are
Particle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO) that mimics the behavior of real
ants and their communication using pheromone.

Optimization methods with different behavior are often
combined in one algorithm such as Hybrid of the Ge-
netic Algorithm and the Particle Swarm Optimization
(HGAPSO).

We use optimization methods to adjust parameters of
inductive models. An inductive model can be created
from a data set using some algorithm - in our case the
Group of Adaptive Models Evolution (GAME) algo-
rithm [1]. An example of inductive model created by
GAME algorithm is depicted on the Figure 1. Similarly
to Multi-Layered Perceptron (MLP) neural networks,
GAME units (neurons) are connected in a feedforward
network (model). The structure of the model is evolved
by special niching genetic algorithm, layer by layer. Pa-
rameters of the model (coefficients of units’ transfer
functions) are optimized independently. The problem
is to decide which optimization method should be used.

Each data set have different complexity. The surface of
a model’s RMS error depends on the data set, transfer
functions of optimized unit and also on preceding units
in the network. Therefore we might expect, there is no
universal optimization method performing optimally on
all data sets.

In the next section you can find the short description of
optimization methods used. Then we compare their per-
formance and discuss the question how the best method
for certain data set can be found. We also experiment
with evolution of optimization methods (see Section 4).
Finally we summarize results over several data sets and
recommend the best optimization strategy.
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Fig. 1 The structure of the GAME model is evolved
layer by layer using special genetic algorithm. During
the training of a unit, selected optimization method ad-
justs coefficients (a1, ..., an) in the transfer function of
the unit.

Tab. 1 Optimization methods summary

Abbrv. Search Optimization method
QN Gradient Quasi-Newton method
CG Gradient Conjugate Gradient method
PalDE Genetic Differtial Evolution ver. 1
DE Genetic Differtial Evolution ver. 2
SADE Genetic SADE genetic method
PSO Swarm Particle Swarm Optimization
CACO Swarm Cont. Ant Colony Opt.
ACO* Swarm Ext. Ant Colony Opt.
DACO Swarm Direct ACO
AACA Swarm Adaptive Ant Colony Opt.
API Swarm ACO with API heur.
HGAPSO Hybrid Hybrid of GA and PSO
SOS Other Stoch. Orthogonal Search
OS Other Orthogonal Search

2 Optimization methods

In this paper, we use optimization methods, that are im-
plemented in the GAME engine [1] (see Table 1).

2.1 Gradient based methods

The most popular optimization method of nonlinear
programming is the Quasi-Newton method (QN) [2]. It
computes search directions using gradients of an energy
surface. To reduce their computational complexity, sec-
ond derivatives (Hessian matrix) are not computed di-
rectly, but estimated iteratively using so called updates
[3].

The Conjugate gradient method (CG) [4], a non-linear
iterative method, is based on the idea that the conver-
gence can be improved by considering also all previous
search directions, not only the actual one. Restarting
(previous search direction are forgotten) often improves
properties of CG method [5].
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Fig. 2 There are two optimization modes available in the GAME engine. First mode (Figure a) is less effective and
it is used for units which do not supply analytic gradient of their error. In this mode, gradient methods (QN, CG)
have to compute an estimate of the gradient. In the second (Figure b) mode the analytic gradient supplied by the
unit reduces the number of optimization steps required.

2.2 Genetic search

Genetic Algorithms(GA) [6] are inspired by Darwin’s
theory of evolution. Population of individuals are
evolved according simple rules of evolution. Each in-
dividual has afitnessthat is computed from its genetic
information. Individuals are crossed and mutated by ge-
netic operators and the most fit individuals are selected
to survive. After several generations the mean fitness of
individuals is maximized.

Niching methods [7] extend genetic algorithms to do-
mains that require location of multiple solutions. They
promote the formation and maintenance of stable sub-
populations in genetic algorithms (GAs). The GAME
engine uses theDeterministic Crowding(DC) [8] nich-
ing method to evolve structure of models. There exist
several other niching strategies such as fitness sharing,
islands, restrictive competition, semantic niching, etc.

The Differential Evolution (DE) [9] is a genetic al-
gorithm with special crossover scheme. It adds the
weighted difference between two individuals to a third
individual. For each individual in the population, an
offspring is created using the weighted difference of
parent solutions. The offspring replaces the parent in
case it is fitter. Otherwise, the parent survives and is
copied to the next generation. The pseudocode, how
offsprings are created, can be found e.g. in [10].

The Simplified Atavistic Differential Evolution
(SADE) algorithm [11] is a genetic algorithm improved
by one crossover operator taken from differential evo-
lution. It also prevents premature convergence by using
so called radiation fields. These fields have increased
probability of mutation and they are placed to local
minima of the energy function. When individuals
reach a radiation field, they are very likely to be
strongly mutated. At the same time, the diameter of the
radiation field is decreased. The global minimum of the
energy is found when the diameter of some radiation
field descend to zero.

2.3 Swarm methods

The Particle Swarm Optimization method (PSO) use a
swarm of particles to locate the optimum. According
to [19] particles ”communicate” information they find

about each other by updating their velocities in terms
of local and global bests; when a new best is found,
the particles will change their positions accordingly so
that the new information is ”broadcast” to the swarm.
The particles are always drawn back both to their own
personal best positions and also to the best position of
the entire swarm. They also have stochastic exploration
capability via the use of the random constants.

The Ant colony optimization (ACO) algorithm is pri-
mary used for discrete problems (e.g. Traveling Sales-
man Problem, packet routing). However many modifi-
cations of the original algorithm for continuous prob-
lems have been introduced recently [12]. These algo-
rithms mimic the behavior of real ants and their com-
munication using pheromone. We have so far imple-
mented the following ACO based algorithms:

The Continuous Ant colony optimization (CACO) was
proposed in [13] and it works as follows. There is an ant
nest in a center of a search space. Ants exits the nest in
a direction given by quantity of pheromone. When an
ant reaches the position of the best ant in the direction,
it moves randomly (the step is limited by decreasing
diameter of search. If the ant find better solution, it
increases the quantity of pheromone in the direction of
search [14].

The Ant Colony Optimization for Continuous Spaces
(ACO*) [15] was designed for the training of feed for-
ward neural networks. Each ant represents a point in
the search space. The position of new ants is computed
from the distribution of existing ants in the state space.

Direct Ant Colony Optimization (DACO) [16] uses two
types of pheromone - one for mean values and one for
standard deviation. These values are used by ants to
create new solutions and are updated in the ACO way.

The Adaptive Ant Colony Algorithm (AACA) [17] en-
codes solutions into binary strings. Ants travel from
least significant bit to the most significant bit and back.
After finishing the trip, the binary string is converted
to the solution candidate. The probability of change
decreases with significance of bit position by boosting
pheromone deposits.

The API algorithm [18] is named after Pachycondyla
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apicalis and it simulates the foraging behaviour of these
ants. Ants move from nest to its neighborhood and ran-
domly explore the terrain close to their hunting sites. If
an improvement occurs, next search leads to the same
hunting site. If the hunt is unsuccessful for more than p
times for one hunting site, the hunting site is forgotten
and ant randomly generates a new one.

2.4 Hybrid search

The Hybrid of the GA and the PSO (HGAPSO) algo-
rithm was proposed in [19]. PSO works based on social
adaptation of knowledge, and all individuals are con-
sidered to be of the same generation. On the contrary,
GA works based on evolution from generation to gener-
ation, so the changes of individuals in a single genera-
tion are not considered. In nature, individuals will grow
up and become more suitable to the environment before
producing offspring. To incorporate this phenomenon
into GA, PSO is adopted to enhance the top-ranking in-
dividuals on each generation.

2.5 Other methods

The Orthogonal Search (OS) optimizes multivariate
problem by selecting one dimension at a time, mini-
mizing the error at each step. The OS can be used [20]
to train single layered neural networks.

We use minimization of a real-valued function of sev-
eral variables without using gradient, optimizing vari-
ables one by one. The Stochastic Orthogonal Search
(SOS) differs from OS just by random selection of vari-
ables.

3 Which optimization method is the best?

The goal of optimization methods is to find optimal val-
ues of coefficientsa1, a2, ..., an in transfer functions of
GAME units (see Figure 2).

The complexity of this task is dependent on many fac-
tors. First of all, the transfer function of actual unit can
be of different type and complexity. Then, all preceding
units contribute to the complexity of optimization task.
The most significant factor is probably the character of
data set.

For this reason we assume that even within single
model, different optimization methods might be appro-
priate to adjust coefficients of units. We designed ex-
periments to find out, if a combination of different op-
timization methods within single model is better than
using just one optimization method. Later in this paper
(see Section 4), we present technique which selects ap-
propriate method for each unit automatically, by means
of evolutionary algorithm.

To find out the best optimization method for individual
data sets, we performed following experiments.

3.1 Comparison of individual optimization meth-
ods on different data sets

Several different real world data set were involved in
the comparison. The detailed description of these data
sets can be found in [1]. For each data set, we gener-

Fig. 3 The RMS error of models on the Boston data set.
Units of models were optimized by individual methods.

Fig. 4 The classification accuracy of models optimized
by individual methods on two intertwined spirals prob-
lem.

ated inductive models using the GAME algorithm. Co-
efficients of all units in models were optimized by a
single optimization method from the Table 1. In the
configurationAll, we combined optimization methods
using the technique presented in the Section 4. Because
these experiments were computationally expensive (op-
timization methods not utilizing the analytic gradient
need many more iterations to converge), we repeated
the experiment 5 times for each configuration in case
of Building data set and 20 times (20 models) for each
configuration for Boston and Spiral data sets.

The results on Boston data set (Figure 3) show that al-
most all methods demonstrated equal performance. Just
two Ant Colony derivatives AACA and API performed
significantly worse.

On the Two intertwined spirals problem (Figure 4) re-
sults are completely different. Ant colony methods
showed better classification accuracy than other meth-
ods.

The average root mean squared errors of individual
methods on the Building data set for it’s three output
variables are shown in the Figure 5. There is no signif-
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Fig. 5 The performance comparison of optimization methods on the Building data set. The size of bars for indi-
vidual methods is proportional to the average testing RMS error of models generated using these methods on the
Building data set. Models were generated individually for each output variable.

icant difference between results for the noisy variable
(Energy consumption) and the other two. We can di-
vide optimization methods into the good and bad per-
forming classes. Good performers are Conjugate Gra-
dient, Quasi Newton, SADE genetic algorithm, Differ-
ential Evolution, and theall configuration standing for
all methods participation in models evolution. On the
other hand badly performing optimization methods for
the Building data set are Particle Swarm Optimization,
PAL- Differential Evolution and the Ant Colony Opti-
mization. PalDE is the second version of the Differ-
ential Evolution algorithm implemented in the GAME
engine. The result when the first version of DE per-
formed well and the second version badly is pellicu-
lar. It signifies that the implementation and the proper
configuration of a method is of crucial importance. In
accordance with results published in [10], our version
of differential evolution outperformed swarm optimiza-
tion methods on this data set.

4 Evolution of optimization methods

In this section we explain theAll configuration, that
can be found in Figures in previous Section. We as-
sumed that for each data set, some optimization meth-
ods are more efficient than others. If we select appropri-
ate method to optimize coefficients of each unit within
single GAME network, the accuracy will increase. The
problem is to find out which method is appropriate (and
most effective).

In the ”All” configuration, we used simple strategy.
When a new unit was generated, random method was
assigned to optimize the coefficients of units. In case
the optimization method was inappropriate, coefficients
were not set optimally and unit did not survived in
the genetic algorithm evolving units in the layer of the
GAME model. Only appropriate optimization methods
were able to generate fittest units.

The question is if it is better to assign optimization
method randomly or inherit it from parent units.

The type of optimization method can be easily inherited
from parents, because units are evolved by means of
niching genetic algorithm. This genetic algorithm can
also assign appropriate optimization methods to units
being evolved. We added the type of the optimization
into the chromosome (see Figure 6). When new units
are generated by crossover to the next generation, they
also inherit type of optimization from their parent units.
The result should be that methods, training successful
units, ale selected more often than methods, training
poor performers on a particular data set.

Again, an experiment was designed to prove this as-
sumption.

4.1 Inheritance of methods

We prepared configurations of the GAME engine with
several different inheritance settings. In the configura-
tion p0% new units inherit their optimization method
from their paren units. In the configurationp50% off-
springs have 50% chance to get random method as-
signed. In the configurationp100% nothing is inherited,
all optimization methods are set randomly.

We have been experimenting with the Mandarin, Antro
and Boston data sets. For each configuration 30 models
were evolved. The maximum, minimum and mean of
their RMS errors for each configuration are displayed
in the Figure 7. Results are very similar for all config-
urations and data sets. There is no configuration signif-
icantly better than others. For all data sets we can ob-
serve that thep50% and thep100% configuration have
slightly better mean error values and lower dispersion
of errors. We chose thep50% configuration to be de-
fault in the GAME engine. It means offspring units
have 50% chance to get random optimization method
assigned otherwise their methods are inherited from
parent units.

Finally, we would like to answer the question ”Which
optimization method is the best?” To be able to do it,
we performed hundreds of experiments on several data
sets. Next section presents our results.
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Fig. 7 The experiments with the inheritance of transfer function and learning method. For all three data sets, the
fifty percent inheritance level is a reasonable choice.

5 Final comparison of methods

We used the same methodology as for previous experi-
ments on Building data set, Boston and Spiral data sets.
Along with these data sets, we used diverse real world
data sets described in [1].

Optimization methods are ranked according to the ac-
curacy of their models on several data sets. Figure 8
displays the results.

Final ranking shows, that the Quasi-Newton optimiza-
tion method was the most successful from individual
method. It was also the fastest. The evolution of appro-
priate(All) clearly outperformed all individual methods,
but it was much slower than Quasi-Newton method.
The reason is that computing time was wasted by in-
efficient methods that do not use analytic gradient of
the error surface (such as PSO). Possible solution is to
exclude the least efficient methods (accuracy will de-
crease just marginally), or to enhance these methods by
hybridizing them with gradient based methods.

6 Conclusion

The experiments showed that gradient methods like
Quasi Newton and Conjugate Gradients performed very
well for all data sets we have been experimenting with.

When All methods are used, superb performance is
guarantied, but the computation is significantly slower
(some methods need many iterations to converge). At
this stage of the research and implementation, we rec-
ommend using the Quasi Newton (QN) optimization
method only, because it is the fastest and very reliable.
If the computing time is not important for you, the evo-
lution of optimization methods is the best choice.

The evolution of optimization methods is very promis-
ing, and we believe that the performance might in-
crease, when we improve properties of individual na-
ture inspired optimization methods.

In our further research we plan to use the analytic gradi-
ent to improve the performance of gradient and swarm
methods. We also plan to experiment with switching
of optimization methods (switch to a different method
when a convergence is slow).
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