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Abstract

When parameters of model are being adjusted, model is learning to mimic the behaviour of a
real world system. Optimization methods are responsible for parameters adjustment. The prob-
lem is that each real world system is different and its model should be of different complexity.

It is almost impossible to decide which optimization method will perform the best (optimally
adjust parameters of the model). In this paper we compare the performance of several methods
for nonlinear parameters optimization. The gradient based methods such as Quasi-Newton or
Conjugate Gradient are compared to several nature inspired methods. We designed an evolu-
tionary algorithm selecting the best optimization methods for models of various complexity.
Our experiments proved that the evolution of optimization methods for particular problems is
very promising approach.
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1 Introduction

The question "Which optimization method is the best'vnffrﬁgbbs

for our problem?” has not a simple answer. There is no.
method superior to others for all possible optimization
problems. However there are popular methods perform-
ing well on whole range of problems.

Among these popular methods, we can include so variable
called gradient methods - the Quasi Newton method,
the Conjugate Gradient method and the Levenberg-

Marquardt method. They use an analytical gradient (or Units iﬁciy’ér’évowe g
its estimation) of the problem error surface. The gradi- by genetic algorithm
ent brings them faster convergence, but in cases when

the error surface is jaggy, they are likely to get stuck in

a local optima. Fig. 1 The structure of the GAME model is evolved
Other popular optimization methods are genetic algd@Yer by layer using special genetic algorithm. During
rithms. They search the error surface by jumping on € training of a unit, selected optimization method ad-
with several individuals. Such search is usually slowefUsts coefficientsd, ..., a,) in the transfer function of
but more prone to get stuck in a local minima. The Difth€ unit.

ferential Evolution (DE) perform genetic search with an
improved crossover scheme.

Polynomial
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Tab. 1 Optimization methods summary
The search performed by swarm methods can be imag-
ined as a swarm of birds flying over the error surface,

looking for food in deep valleys. You can also imag- |- 20" Search Optimization method
ine that for certain types of terrain, they might miss the| QN Gradient|  Quasi-Newton method
deepest valley. Typical examples of swarm methods are CG Gradient| Conjugate Gradient method
Particle Swarm Optimization (PSO) and Ant Colony | PalDE Genetic | Differtial Evolution ver. 1
Optimization (ACO) that mimics the behavior of real | DE Genetic | Differtial Evolution ver. 2
ants and their communication using pheromone. SADE Genetic SADE genetic method
Optimization methods with different behavior are often | PS5O Swarm | Particle Swarm Optimizatior
combined in one algorithm such as Hybrid of the Ge-| CACO Swarm Cont. Ant Colony Opt.
netic Algorithm and the Particle Swarm Optimization | ACO* Swarm Ext. Ant Colony Opt.
(HGAPSO). DACO Swarm Direct ACO

T . AACA Swarm Adaptive Ant Colony Opt.
We use optimization methods to adjust parameters of .
inductive models. An inductive model can be created API Swar.m AC.O with API heur.
from a data set using some algorithm - in our case the HGAPSO | Hybrid Hybrid of GA and PSO
Group of Adaptive Models Evolution (GAME) algo- | SOS Other | Stoch. Orthogonal Search
rithm [1]. An example of inductive model created by | OS Other Orthogonal Search

GAME algorithm is depicted on the Figure 1. Similarly

to Multi-Layered Perceptron (MLP) neural networks,

GAME units (neurons) are connected in a feedforward oL

network (model). The structure of the model is evolve® Optimization methods

by special niching genetic algorithm, layer by layer. Pay, s naner we use optimization methods, that are im-

rameters of the model (coefficients of units’ transfe - :
functions) are optimized independently. The problengi)lemernGd inthe GAME engine [1] (see Table 1).

is to decide which optimization method should be use®.1 Gradient based methods

Each data set have different complexity. The surface athe most popular optimization method of nonlinear
a model's RMS error depends on the data set, transfprogramming is the Quasi-Newton method (QN) [2]. It
functions of optimized unit and also on preceding uniteomputes search directions using gradients of an energy
in the network. Therefore we might expect, there is ngurface. To reduce their computational complexity, sec-
universal optimization method performing optimally onond derivatives (Hessian matrix) are not computed di-
all data sets. rectly, but estimated iteratively using so called updates

In the next section you can find the short description o[?]'

optimization methods used. Then we compare their pef-he Conjugate gradient method (CG) [4], a non-linear
formance and discuss the question how the best methidrative method, is based on the idea that the conver-
for certain data set can be found. We also experimegence can be improved by considering also all previous
with evolution of optimization methods (see Section 4)search directions, not only the actual one. Restarting
Finally we summarize results over several data sets aifdrevious search direction are forgotten) often improves
recommend the best optimization strategy. properties of CG method [5].
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Fig. 2 There are two optimization modes available in the GAME engine. First mode (Figure a) is less effective and
it is used for units which do not supply analytic gradient of their error. In this mode, gradient methods (QN, CG)
have to compute an estimate of the gradient. In the second (Figure b) mode the analytic gradient supplied by the
unit reduces the number of optimization steps required.

2.2 Genetic search about each other by updating their velocities in terms
. . N ., of local and global bests; when a new best is found,
t(ﬁenetlc ,fAIgor||th{n$GA)P[6] alret_msplrfe_d g.y _Ej)ar\;vm S the particles will change their positions accordingly so
e(I)ry do evo dL'j lon. Iopula |onf 0 Iln t'IVI UES r?r.ethat the new information is "broadcast” to the swarm.
SK/? dve I ﬁccoa;it'nng :t'r';n‘ile ru (:‘ns 0 i e&’?rur'no'i:' ar? ti'n'The particles are always drawn back both to their own
ual has essthat IS computed from IS genetic e?ers;onal best positions and also to the best position of

me[).rmatloni Indwm(zljutils are ctr?ts_sedq z;gd rlnutated ?y% e entire swarm. They also have stochastic exploration
netic opeérators and the most it Individuals are selecle pability via the use of the random constants.

to survive. After several generations the mean fitness 0
individuals is maximized. The Ant colony optimization (ACO) algorithm is pri-
mary used for discrete problems (e.g. Traveling Sales-

Niching methods [7] extend genetic algorithms to do'man Problem, packet routing). However many modifi-

mains that require Ipcation of 'T‘“'“p'e solutions. Theycations of the original algorithm for continuous prob-
promote the formation and maintenance of stable suly

populations in genetic algorithms (GAS). The GAME ems have been introduced recently [12]. These algo-

. thBeterministic CrowdindDC) [81 nich rithms mimic the behavior of real ants and their com-
engine uses thbeterministc Lrow indDC) [8] nich- . munication using pheromone. We have so far imple-
ing method to evolve structure of models. There exi

several other niching strategies such as fithess sharingfermad the following ACO based algorithms:

islands, restrictive competition, semantic niching, etc. The Continuous Ant colony optimization (CACO) was
proposed in [13] and it works as follows. There is an ant
nest in a center of a search space. Ants exits the nest in
direction given by quantity of pheromone. When an
nt reaches the position of the best ant in the direction,

The Differential Evolution (DE) [9] is a genetic al-
gorithm with special crossover scheme. It adds th
weighted difference between two individuals to a thir
mftfﬁwdual.. For etacc:ih 'n.d'v'?#al |n.thh(?[ %OE.L#a“OH’ aNit moves randomly (the step is limited by decreasing
0 sprltng :st_crea eThUSIr;fg e welgl € tlh erence to' iameter of search. If the ant find better solution, it
parent solutions. "he olispring repiaces the parent ) .o 35e5 the quantity of pheromone in the direction of
case it is fitter. Otherwise, the parent survives and i

: : earch [14].
copied to the next generation. The pseudocode, how
offsprings are created, can be found e.g. in [10]. The Ant Colony Optimization for Continuous Spaces
(ACO¥*) [15] was designed for the training of feed for-

The Simplified ~Atavistic Differential ~Evolution ...y jo\ral networks. Each ant represents a point in
T T b "4ihesearchspace. The postion of v ants < compued
Y P .~from the distribution of existing ants in the state space.

lution. It also prevents premature convergence by using

so called radiation fields. These fields have increasddirect Ant Colony Optimization (DACO) [16] uses two
probability of mutation and they are placed to locakypes of pheromone - one for mean values and one for
minima of the energy function. When individualsstandard deviation. These values are used by ants to
reach a radiation field, they are very likely to becreate new solutions and are updated in the ACO way.
strongly mutated. At the same time, the diameter of th : .
radiaggn field is decreased. The global minimum of th(jlhe Adaptive Ant Colony Algorithm (AACA) [17] en-

- : .. fodes solutions into binary strings. Ants travel from
ﬁg%r%%iggg?g ngr]ce)n the diameter of some radiatio east significant bit to the most significant bit and back.

After finishing the trip, the binary string is converted
2.3 Swarm methods to the solution candidate. The probability of change

The Particle Swarm Optimization method (PSO) use decreases with S|gn|f|cance of bit position by boosting
: - >~ ffheromone deposits.

swarm of particles to locate the optimum. Accordin

to [19] particles "communicate” information they find The API algorithm [18] is named after Pachycondyla
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apicalis and it simulates the foraging behaviour of thes: . N
ants. Ants move from nest to its neighborhood and ran
domly explore the terrain close to their hunting sites. If " 7 L
an improvement occurs, next search leads to the san o — -l
hunting site. If the hunt is unsuccessful for more than [ oscoez — H1TH
times for one hunting site, the hunting site is forgotten eso HIEl-
and ant randomly generates a new one. snoe | -
2.4 Hybrid search quevin —| « p [t
. e I [ —
The Hybrid of the GA and the PSO (HGAPSO) algo- | f Il *
rithm was proposed in [19]. PSO works based on socie
adaptation of knowledge, and all individuals are con- " | e (I I *
sidered to be of the same generation. On the contrar o0 os ona
GA works based on evolution from generation to gener RS eror

ation, so the changes of individuals in a single genera-
tion are not considered. In nature, individuals will growfig. 3 The RMS error of models on the Boston data set.
up and become more suitable to the environment befokénits of models were optimized by individual methods.

producing offspring. To incorporate this phenomenon
into GA, PSO is adopted to enhance the top-ranking in

dividuals on each generation. andomor —| O I — {
Pso | o

2.5 Other methods T T T {

The Orthogonal Search (OS) optimizes multivariate eweso — « p—{[ T}

problem by selecting one dimension at a time, mini- s — |

mizing the error at each step. The OS can be used [2(  swc | -] B e— |

to train single layered neural networks. Acorssd | e

We use minimization of a real-valued function of sev- ™" | | |

eral variables without using gradient, optimizing vari- ~“* 7 HT-

ables one by one. The Stochastic Orthogonal Searc | e

(SOS) differs from OS just by random selection of vari- A ‘ 1] !

ables. ‘ w w w

classification accuracy [%]

. D . 5
3 Which optimization method is the best: Fig. 4 The classification accuracy of models optimized

The goal of optimization methods is to find optimal val-by individual methods on two intertwined spirals prob-
ues of coefficients, as, ..., a,, in transfer functions of lem.
GAME units (see Figure 2).

The complexity of this task is dependent on many fac-, . . . .
tors. First of all, the transfer function of actual unit carft€d inductive models using the GAME algorithm. Co-

be of different type and complexity. Then, all precedingfficients of all units in models were optimized by a
units contribute to the complexity of optimization task SiNgl€ optimization method from the Table 1. In the

The most significant factor is probably the character ofonfigurationAll, we combined optimization methods
data set. using the technique presented in the Section 4. Because

these experiments were computationally expensive (op-
For this reason we assume that even within singlémization methods not utilizing the analytic gradient
model, different optimization methods might be approneed many more iterations to converge), we repeated
priate to adjust coefficients of units. We designed exthe experiment 5 times for each configuration in case
periments to find out, if a combination of different op-of Building data set and 20 times (20 models) for each
timization methods within single model is better tharconfiguration for Boston and Spiral data sets.
using just one optimization method. Later in this pape .
(see Section 4), we present technique which selects ag:‘e results on Boston data set (Figure 3) show that al-

ropriate method for each unit automatically, by meang'0St &ll methods demonstrated equal performance. Just
gf er\)/olutionary algorithm. ¥, By two Ant Colony derivatives AACA and API performed

significantly worse.
To find out the best optimization method for individual

data sets, we performed following experiments. On the Two intertwined spirals problem (Figure 4) re-

sults are completely different. Ant colony methods
3.1 Comparison of individual optimization meth- showed better classification accuracy than other meth-
ods on different data sets ods.

Several different real world data set were involved inThe average root mean squared errors of individual
the comparison. The detailed description of these dataethods on the Building data set for it's three output
sets can be found in [1]. For each data set, we generariables are shown in the Figure 5. There is no signif-
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Fig. 5 The performance comparison of optimization methods on the Building data set. The size of bars for indi-
vidual methods is proportional to the average testing RMS error of models generated using these methods on the
Building data set. Models were generated individually for each output variable.

icant difference between results for the noisy variabl&he type of optimization method can be easily inherited
(Energy consumption) and the other two. We can difrom parents, because units are evolved by means of
vide optimization methods into the good and bad pemiching genetic algorithm. This genetic algorithm can
forming classes. Good performers are Conjugate Graiso assign appropriate optimization methods to units
dient, Quasi Newton, SADE genetic algorithm, Differ-being evolved. We added the type of the optimization
ential Evolution, and thall configuration standing for into the chromosome (see Figure 6). When new units
all methods participation in models evolution. On theare generated by crossover to the next generation, they
other hand badly performing optimization methods foalso inherit type of optimization from their parent units.
the Building data set are Particle Swarm OptimizationThe result should be that methods, training successful
PAL- Differential Evolution and the Ant Colony Opti- units, ale selected more often than methods, training
mization. PalDE is the second version of the Differpoor performers on a particular data set.

ential Evolution algorithm implemented in the GAME . . . .
engine. The result when the first version of DE perAga'n’_ an experiment was designed to prove this as-
formed well and the second version badly is pellicu-sumpt'on'

lar. It signifies that the implementation and the propes.1 |nheritance of methods

configuration of a method is of crucial importance. In

accordance with results published in [10], our versioNVe prepared configurations of the GAME engine with

of differential evolution outperformed swarm optimiza-several different inheritance settings. In the configura-
tion methods on this data set. tion p0% new units inherit their optimization method

from their paren units. In the configuratigh0% off-
springs have 50% chance to get random method as-
signed. In the configuratign 00% nothing is inherited,

all optimization methods are set randomly.

4 Evolution of optimization methods

In this section we explain thall configuration, that
can be found in Figures in previous Section. We ase have been experimenting with the Mandarin, Antro
sumed that for each data set, some optimization methnd Boston data sets. For each configuration 30 models
ods are more efficient than others. If we select appropriwere evolved. The maximum, minimum and mean of
ate method to optimize coefficients of each unit withirtheir RMS errors for each configuration are displayed
single GAME network, the accuracy will increase. Then the Figure 7. Results are very similar for all config-
problem is to find out which method is appropriate (andirations and data sets. There is no configuration signif-
most effective). icantly better than others. For all data sets we can ob-
) ) ) serve that the@50% and thep100% configuration have
In the "All" configuration, we used simple strategy. sjightly better mean error values and lower dispersion
When a new unit was generated, random method wa§ errors. We chose thg50% configuration to be de-
assigned to optimize the coefficients of units. In casgult in the GAME engine. It means offspring units
the optimization method was inappropriate, coefficientgave 50% chance to get random optimization method

were not set optimally and unit did not survived inassigned otherwise their methods are inherited from
the genetic algorithm evolving units in the layer of theparent units.

GAME model. Only appropriate optimization methods . ) )
were able to generate fittest units. FlnaIIy, we would like to answer the question "Which

optimization method is the best?” To be able to do it,
The question is if it is better to assign optimizationwe performed hundreds of experiments on several data
method randomly or inherit it from parent units. sets. Next section presents our results.

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

/—\
( Niching )

|/ Linear transfer unit

o -
' [1001000] STy

Inputs Transfer function

GA
y_=_a1_x]_+_a2_x; +. a; - added into
e __o_o___ chromosomes
. I’ Polynomial trasfer unit
S
:Ioooo11o||2115130 1203211 J\[ pE |

Inputs Transfer function

OROK(
VAL G

~

. 3 2
"/ y=axx,taxx,+ta,

Fig. 6 The example of chromosomes for GAME units with linear and polynomial transfer function. Chromosomes
contain encoded input connections and for some units, the structure of the transfer function is also encoded to be
able to evolve it. The type of the optimization method was appended to the chromosome.

Mandarin inhertance test Antro inhertance test Boston inhertance test
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Fig. 7 The experiments with the inheritance of transfer function and learning method. For all three data sets, the
fifty percent inheritance level is a reasonable choice.

5 Final comparison of methods When All methods are used, superb performance is
. guarantied, but the computation is significantly slower
We used the same methodology as for previous expe{some methods need many iterations to converge). At
ments on Building data set, Boston and Spiral data selgis stage of the research and implementation, we rec-
Along with thes_e dat_a sets, we used diverse real worlgyymend using the Quasi Newton (QN) optimization
data sets described in [1]. method only, because it is the fastest and very reliable.

Optimization methods are ranked according to the a+tthe computing time is not important for you, the evo-

curacy of their models on several data sets. Figure gtlon of optimization methods is the best choice.

displays the results. The evolution of optimization methods is very promis-

. . . . .__ing, and we believe that the performance might in-
Final ranking shows, that the Quasi-Newton optimiza rease, when we improve properties of individual na-

tion method was the most successful from individu - . oL
method. It was also the fastest. The evolution of appr%fyre inspired optimization methods.

priateAll) clearly outperformed all individual methods, In our further research we plan to use the analytic gradi-
but it was much slower than Quasi-Newton methodent to improve the performance of gradient and swarm
The reason is that computing time was wasted by inmethods. We also plan to experiment with switching

efficient methods that do not use analytic gradient af optimization methods (switch to a different method
the error surface (such as PSO). Possible solution is {ghen a convergence is slow).

exclude the least efficient methods (accuracy will de-
crease just marginally), or to enhance these methods by
hybridizing them with gradient based methods. P Acknowledgement

This research is partially supported by the grant Auto-
6 Conclusion mated Knowledge Extraction (KJB201210701) of the

Grant Agency of the Academy of Science of the Czech
The experiments showed that gradient methods likRepublic and the research program "Transdisciplinary
Quasi Newton and Conjugate Gradients performed veiigesearch in the Area of Biomedical Engineering II”
well for all data sets we have been experimenting withtMSM6840770012) sponsored by the Ministry of Ed-

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

[10] J. Vesterstrom and R. Thomsen. A comparative
study of differential evolution, particle swarm op-
timization, and evolutionary algorithms on nu-
merical benchmark problems. Rroceedings of
the 2004 Congress on Evolutionary Computation
volume 2, pages 1980-1987, 2004.

S| [11] Ond'ej Hrstka and Anna Kgerowa. Improve-

I bancrupicy ments of real coded genetic algorithms based on

Balraw differential operators preventing premature con-

vergence. Advances in Engineering Software
35(3-4):237-246, March-April 2004.

[12] S. Tsutsui, M. Pelikan, and A Ghosh. Perfor-
mance of aggregation pheromone system on uni-
modal and multimodal problems. T[hhe IEEE
Congress on Evolutionary Computation, 2005
(CEC2005) volume 1, pages 880-887. IEEE, 2-
5 September 2005.

[13] Christian Blum and Krzysztof Socha. Training
feed-forward neural networks with ant colony op-
timization: An application to pattern classifica-
tion. In Proceedings of Hybrid Intelligent Sys-

Points

Fig. 8 Final comparison of all tested methods. Points
are derived from the ranking for each data test - better
position means more points.

ucation, Youth and Sports of the Czech Republic. tems Conference, HIS-200pages 233-238, Los
Alamitos, CA, USA, 2005. IEEE Computer Soci-
8 References ety.

[14] L. Kuhn. Ant Colony Optimization for Continuous

[1] P. Kordk. Fully Automated Knowledge Extrac- Spaces PhD thesis, The Department of Informa-

tion using Group of Adaptive Models Evolution tion Technology and Electrical Engineering The

PhD thesis, Czech Technical University in Prague, University of Queensland, October 2002.

FEE, Dep. of Comp. Sci. and Computers, FEEj 5] George Bilchev and lan C. Parmee. The ant

CTU Prague, Czech Republic, September 2006." ~ ¢o|ony metaphor for searching continuous design
[2] R.B. Schnabel, J.E. Koontz, and B.E. Weiss. A spaces. IrSelected Papers from AISB Workshop

modular system of algorithms for unconstrained on Evolutionary Computingpages 25-39, Lon-

minimization. Technical Report CU-CS-240-82, don, UK, 1995. Springer-Verlag.

Comp. Sci. Dept., University of Colorado at Boul-[16] M. Kong and P. Tian. A direct application of

der, 1982. ant colony optimization to function optimization
[3] Salane and Tewarson. A unified derivation of problem in continuous domain. In Ant Colony

symmetric quasi-newton update formulasip- Optimization and Swarm Intelligence, 5th Inter-

plied Math 25:29-36, 1980. national Workshop, ANTS 2006, Brussels, Bel-

[4] J. G. Wade. Convergence properties of the  gium, September 4;2006.
conjugate gradient method. available at www{17] Y. Li and T. Wu. An adaptive ant colony sys-
math.bgsu.edu/ gwade/texamples/example2.ixt, tem algorithm for continuous-space optimization
September 2006. problems.J Zhejiang Univ S¢i4(1):406, 2003.

[5] Jonathan Richard Shewchuk. An introduction td18] N. Monmarcle, G. Venturini, and M. Slimane.
the conjugate gradient method without the agoniz- ~ On how pachycondyla apicalis ants suggest a new
ing pain. Technical report, School of Computer ~ search algorithm. Future Gener. Comput. Syst.
Science Carnegie Mellon University, Pittsburgh, ~ 16(9):937946, 2000.

PA 15213, August 1994. [19] Chia-Feng Juang and Yuan-Chang Liou. On the
[6] J. Holland. Adaptation in Neural and Artificial hybrid of genetic algorithm and particle swarm
SystemsUniversity of Michigan Press, 1975. optimization for evolving recurrent neural net-

work. In Proceedings of the IEEE Interna-
tional Joint Conference on Neural Netwoyk®l-
ume 3, pages 2285-2289, Dept. of Electr. Eng.,

of llinios at Urbana-Champaign, May 1995, Nat. Chung-Hsing Univ., Taichung, Taiwan, 25-

i 29 July 2004.
[8] S. W. Mahfoud. A comparison of parallel and se- ; )
quential niching methods. I8ixth International [20] K.M. Adeney and M.J. Korenberg. An easily cal

! . culated bound on condition for orthogonal algo-
Conference on Genetic Algorithmpages 136~ rithms. InIEEE-INNS-ENNS International Joint

143, 1995. ] ] ] ] Conference on Neural Networks (IJCNN'Q0pI-
[9] R. Storn and K. Price. Differential evolution - a ume 3, page 3620, 2000.

simple and efficient heuristic for global optimiza-

tion over continuous spaceslournal of Global

Optimization 11:341-359, 1997.

[7] Samir W. Mahfoud. Niching methods for genetic
algorithms. Technical Report 95001, lllinois Ge-
netic Algorithms Laboratory (llliGaL), University

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM



