
IMPROVEMENTS FOR A COLOURED PETRI NET
SIMULATOR

Miguel Mujica 1, Miquel Angel Piera 1

1Autonomous University of Barcelona, Faculty of Telecommunications and Systems
Engineering,

 Barcelona, Spain

miguelantonio.mujica@uab.es (Miguel Mujica)

Abstract

This paper presents recent developments of a Coloured Petri Net Simulator tool. This tool
integrates some principles taken from constraint logic programming as well as some search
algorithms in order to make the performance of the tool as efficient as possible, some
improvements have been obtained for the reduction of time for the transition evaluation task,
as well as the search method trough the states space. The tool has been coded in an interface
which makes the Coloured Petri Net easy to implement, as well as the results generated
during the exploration easy to being evaluated and presented.

Keywords: Coloured, Petri Nets, Search, CLP, Coverability Tree, Simulation, VBA,
Excel.

Presenting Author’s biography
Miguel A. Mújica Mota was born in Mexico City. He studied
chemical engineering at Autonomous Metropolitan University in
Mexico City, and a Master’s in Operations Research in the National
Autonomous University of México, actually he is a pH Student at
Autonomous University of Barcelona. His professional activities are
in manufacture and production planning fields. His research interest
focus on optimization techniques for Coloured Petri Nets aimed to
solve industrial problems.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
Since its development(1962), Petri Nets have been
widely used as a formalism for modeling systems;
they have some properties that make them very useful
for modeling some characteristics of manufacture and
logistics systems (i.e., concurrency, parallelism, time
modeling) thus they have been widely used for
modeling discrete event systems.

 Some variations of Petri Nets have been developed
for simulation purposes or systems analysis and some
fit for one purpose or another; the Coloured Ones
(CPN) are the kind of Petri Nets that have the feature
that attributes can be attached to tokens (colors), and
with this characteristic the models developed are more
compact than if they were developed with the classical
ones making them very useful for the analysis of
cause and effect relationship, as well as all the
dependence between events [1].

 Due to that, the Coloured Petri Net formalism is
considered as a good one to code a CPN simulator
which enables the analysis of CPN models as well as
the evaluation of the different states of the system in
study.

One key factor in the development of an efficient CPN
simulator is the transition evaluation [2, 3]. Some
authors have faced the problem of improving the
speed of evaluation testing some data structures or
modifying the selection algorithm for the tokens
which enable the transition, generally they use the
restrictions in a passive way, that is choosing the
combinations of tokens which enable the transition,
and after that checking whether the combination
violate the restrictions or not [2,3,4]. The approach
presented in this paper differs from the ones that are
reported since it focuses in the best way of integrating
the logic of the CPN (input nodes, arcs expressions,
transitions, etc) with the variable restrictions imposed
by the Guards. It has been found that using some
principles taken from CLP is possible to use the
present restrictions in the Guard expressions during
the transition evaluation phase to avoid the unfertile
combination of tokens in the input places of a
transition. The transition evaluation algorithm uses
some principles taken from constraint logic
programming (CLP) mainly constraint propagation
and scenario reduction to avoid infertile combination
of tokens and make the transition evaluation as
efficient as possible, firing only the combinations
which enable the transition due to the tokens colours
without violating any of the restrictions imposed to the
variables (GUARDS).

One of the main analysis tools available for CPN is
the one known as Coverability Tree, which is a
logistic tree of the different states that can appear in
the CPN model. This tree stores the relationship
between parent-children states (causal relationship),
events fired, among others. Some problems arise with
the opening of the tree; mainly the growth of the

branches of the tree and time involved in the process,
the time spent in searching for states in the tree that
have already appeared during the evaluation (OLD
NODES), as well as the amount of CPU memory
required to store all the information that can appear in
the state space.

Some search algorithms have been integrated with the
CPN features in order to reduce the time spent to
explore all the branches in the tree in order to find
states which have already appeared or not, and
avoiding to repeat information previously stored.

2 CPN Transition Evaluation
2.1 Transition Evaluation

It has been stated that one of the main processes to be
optimized in order to have good performance of a
CPN simulator is the transition evaluation [3]. The
classical approach of making this evaluation is the
“generate and test” type, which evaluates all possible
combinations of tokens within input places in a
transition, and a posteriori the evaluation of constraint
violations is done. Using this approach, CPU time is
wasted testing combinations of tokens which enable
some arc expressions, but violates variable constraints
(Guards).

The transition evaluation in this tool uses variable
constraints in an active way in order to reduce the sets
of tokens to be evaluated of the input places and thus
reducing the time inherent in the evaluation of each
transition.

2.2 Algorithm of Evaluation

The algorithm uses the elements of CPN (colours,
Guards, Arc Expressions) in an active way in order to
make the transition evaluation as fast as possible. It
uses some principles taken from CLP mainly
Constraint Propagation and scenario reduction rules
[5]. The process of evaluation is done as follows:

The first task the algorithm makes is the construction
of a subset for every input place, this is done in a
passive way only comparing the arc expression versus
the colours of the tokens present in the input place,
during this task, it can be discarded the tokens which
do not enable the transition, and in the case that none
of the tokens fit the requirements of the arc expression
in any place, then the transition is not enabled, and the
dynamic evaluation of tokens is stopped. Figure 1
shows the first approach for constructing the subsets.

Fig. 1 The Creation of the first subset

2’(3,3)+1’(4,2)+1’(4,4)

PLACE IN EVALUATION

ARC
EXPRESSION

(4,Y)

FIRST SUBSET

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

The dynamic evaluation of tokens starts evaluating the
left most place of the input places, evaluating each one
of them in a sequential way, starting from the first one
in the list of available tokens.

When one token is chosen, the variable allocation is
made assigning the colour value to the corresponding
variable of the arc expression and then the value
propagation is done for every related variable within
the arc expression using the restrictions in the Guards.

The value is propagated to the corresponding variable
and input place using the relationship stated by the
restrictions in the Guard. When the value propagation
is made and the expression evaluated, the result is
used to form a new subset in the correspondent input
place, which satisfies the restriction and the arc
expression. Fig.2 shows the procedure of assigning
values and propagating the restrictions.

Fig. 2 The Constraint Propagation Process

When the algorithm finally reaches the last input place
(the right most), all the arc expressions and
restrictions must be satisfied using the token in the
first place as a pivot.

After the procedure has reached the right most place,
all the tokens which conform the subsets in the input
places are the ones that are valid for enabling the
transition and do not violate the restrictions imposed
by the Guards. Then the transition fires with all the
possible combinations between the tokens that form
these subsets.

Fig 3 represents the direction of the propagation as
well as the reduction obtained as evaluation of places
advances during the transition evaluation, obtaining
only the feasible combinations of tokens that enable
the transition and satisfies the restrictions in the
guards (shaded areas).

Fig. 3 The Feasible Combinations

This process of evaluation is made for every token
present in the first subset in the first place.

An empirical measurement has been done for the
performance evaluation of the simulator and to
contrast the difference between the generate and test
approach versus the one proposed here. The difference
is outstanding as it can be seen in Table 1 where
shows the time taken to open 200 nodes of the
coverability tree.

TABLE. 1 Time performance with different
transition evaluation methods

EVALUATION

 TYPE

NODES

EXPLORED

TIME SPENT

 FOR EXPLORATION

TIME

REDUCTION

OBTAINED

Generate &

Test
200 50.4 sec ---

CLP Algorithm 200 11.6 sec 77 %

3 Coverability Tree and Information
Management
One problem that arises with the opening of the
coverability tree is the memory overload due to
exponential growth in most of the typical problems
[6]. Therefore it is important to develop a special way
of storing the information generated during the
simulation run in order to maintain all the information
of the tree (parent-children relationship, number of
tokens in places, all the marks appeared, etc). The
information of each mark in the coverability tree is
decomposed in order to take advantage of some
characteristics that can be helpful to avoid repeated
information and therefore save memory and avoid the
overload of memory. The next section explains how
the information if managed.

3.1 Markings and CPU Memory Management

To tackle the problem of the tree growth is necessary
to develop a special way of storing the marks in every

TRANSITION

Restriction Propagation

PLACES

VARIABLE VALUES

X=3 , 2
Z= X+2 = 5 , 4

 FEASIBLE SOLUTIONS
 Sol1 Sol2
P1: 1’(3,7,3) 1’(2,8,3)
P3: 1’(5,6) 1’(4,6)

TRANSITION

[Z =X+2]

1’(X,Y,3)

1’(2,8,3)

1’(4,6,3)

1’(3,7,3)

1’(4,6)

1’(5,6)

1’(3,6)

1’(Z,6)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

part of the tree (place nodes, cardinalities, relations
between nodes). This is done decomposing the
marking in 2 blocks of information. The first level of
information (Colours Level) groups the information of
cardinalities that have the same colours in common,
storing once the colors that appear in one place, and
holding the cardinalities that appear with this colour in
other block of information, maintaining always a
relation between them. Managing the information of
tokens this way, is possible to avoid the duplication of
colour information, since it is common in any colored
Petri net simulator that the colours of the tokens
appear several times while the only characteristic that
changes is the cardinality of the colour (number of
tokens with the same colour). The figure 4 outlines the
idea of grouping the information related to the token
colours.

Fig.4 Grouping the token information

 The second level of information (Relations Level)
relates the information present at the colours level and
the cardinalities that are in use for a specific marking
thus conforming a state or mark of the CPN model
with one relation for the different colours. Having
this relationship done at the relations level, any mark
that appears in the model can be represented with the
tuple of relationship between blocks of information
and the cardinalities used by the colours. It is
important to remark that managing the information
this way not only CPU resources are saved and the
possibility of CPU memory overloaded reduced, but
also the searching through the tree for the nodes is
faster than if each mark would be stored in one block
of information as it will be explained in the next
section.

Figure 5 presents the relationship which defines a state
combining the two levels of information.

Fig. 5 The Decomposition of Information

3.2 Searching for Marks within the Tree

One key task for a simulator performance is the search
of the states previously generated (OLD NODES). A
typical coverability tree can have tens of thousands
nodes, so as the simulator goes away opening the
coverability tree, the search throughout the states
already generated becomes more and more difficult to
achieve, and the performance of the simulator
decreases as time goes by.

This task has been faced taking advantage of the
decomposition of markings. It has been integrated a
dichotomical algorithm mixed with a sequential one
for the search of every mark in the tree, one for the
search through colours in places at colours level, and
another for search through marks at the relations
level. Using this approach the information about
markings is stored in a static way using the unordered
lists, and the ordered copies of these lists are used to
accelerate the search through the state tree.

3.2.1 Search at Colours Level

At this level of information, all the different colours
that appear in the places of the CPN model are stored
in a list, and related to each colour there is a sequence
of cardinalities that appear as simulation goes by.

In order to find one colour in the fastest possible way,
a dichotomical search has been implemented for the
search of the colours in each place of the model. It is
compulsory for the implementation of a dichotomical
search that the information of the colours is ordered in
certain way, therefore it has been created an ordered
copy (which will be dynamic in nature) of the colours
that appear in each place of the CPN model. The copy
will store the colours that appear and with each
element there is a reference to the original location in
the unordered one. The creation of two copies is
necessary since the ordered list will be reordering the
elements as the simulation goes by and each time a
new node is found.

Every time a token appears in a place, it will be used a
dichotomical search through the ordered list to find
the colours of the token and in the case that the token
colours is found, the reference to the location in the
unordered list is used to locate the sequence of
cardinalities that have already appeared with that
token colours, this second search is done in a
sequential way. In the case that the token colours is
not found, then it is stored in the last position of the
unordered list with its corresponding cardinality, and
its position is searched and inserted in the ordered list
to keep it arranged for future searches.

At this level is possible again to take advantage of the
decomposition of the mark, since once a colour is not
found is possible to assure that this mark is a new one,
and using a Boolean variable of the status of the mark
(new or old) is possible sometimes to avoid making
the search at the relations level and save some CPU
time.

CARDINALITIES PLACE COLOUR

2rd Level

1st Level

CARDINALITIES USED RELATIONSHIP BETWEEN PREVIOUS LEVEL

CARDINALITIES PLACE COLOUR

4’(8,6) 7’(8,6)

} 1,3,2,4,7,5,9 8,6

CARDINALITIES COLOUR

9’(8,6)

1’(8,6)

2’(8,6)

3’(8,6)

5’(8,6)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

3.2.2 Search at Relations Level

At this level of information the same approach is
implemented, one unordered copy for the relations
between places of the colours level, and an ordered
one for the dichotomical search of relations. At this
level the Boolean factor obtained from the search at
the colours level (whether the mark is new or not) is
useful to decide if the search should be made or not. If
the mark is considered as a new one, the resulting
relation is added directly to the unordered and ordered
lists without making any search. On the other hand if
it is not known that the mark is new, the dichotomical
search through the ordered list is done. If the mark is
not found (it is a new mark), then it is inserted in the
correspondent position in the ordered list, and it is
stored in the last position of the unordered one. Figure
6 shows the relationship between the two lists.

Fig. 6 An example of the information lists.

It is remarkable that using this strategy, an important
reduction in the performance time is achieved. Since
the number of operations for a dichotomical search
take proportional time to the logarithm of elements in
the list (for n elements, the operations run in O (log n)
worst-case time) the total time spent in finding the
colours and the relations between places is reduced
drastically compared with a strategy which uses a
sequential search (the same operations would take O
(n) worst-case time to find an element) [7]. The table 2
presents the time reductions obtained to explore the
whole tree of a CPN model for a Job-Shop 6x6.

TABLE. 2 Time performance with different
searching methods.

SEARCH

DONE

NODES

EXPLORED

TIME SPENT

 FOR EXPLORATION

TIME

REDUCTION

OBTAINED

Sequential

 Search
117,600 5.5 hrs ---

Dichotomical

 Search
117,600 1.5 hrs 72 .7 %

4 User’s Interface
The CPN simulator has been coded in VBA which
allows using some Microsoft applications as a user’s
interface. In this particular case it has been
implemented with EXCEL since at industry level is
very common the use of this software and the coding
of a CPN become more familiar than if it were
implemented in a different interface.

4.1 Simulator Engine Implementation

The simulator engine is coded using the VBA feature
available in EXCEL, and the tool is available for the
user as a macro, which can be easily called from the
tool bar.

The user must code a CPN model using four
worksheets. The first two worksheets are used for
defining the initial mark of the model (root node in the
coverability tree). The third worksheet is used to code
the structure of the CPN model, and the last one is for
the definition of the relationship between variables
(Guards in the CPN model).

 All the operations performed by the simulator engine
during a simulation run are invisible to the user and
the results are displayed a posteriori in the two first
worksheets.

With the state space generated is possible to analyze
the results using a display interface also coded in
VBA. Using this schema the End-User interacts with
the simulator only at the definition of model and for
the analyzing of the results as can be seen in the figure
7.

 PLACE 1
CARDIN COLOURS

1,1,1,1,1,1
11,2,1-21,1,8-31,2,5-41,1,5-51,2,9-
61,1,3

1,1,1,1,1,1
12,0,3-21,1,8-31,2,5-41,1,5-51,2,9-
61,1,3

1,1,1,1,1,1
11,2,1-22,2,5-31,2,5-41,1,5-51,2,9-
61,1,3

1,1,1,1,1,1
11,2,1-21,1,8-32,3,4-41,1,5-51,2,9-
61,1,3

1,1,1,1,1,1
11,2,1-21,1,8-31,2,5-42,0,5-51,2,9-
61,1,3

1,1,1,1,1,1
11,2,1-21,1,8-31,2,5-41,1,5-52,1,3-
61,1,3

1,1,1,1,1,1
11,2,1-21,1,8-31,2,5-41,1,5-51,2,9-
62,3,3

1,1,1,1,1,1
13,1,6-21,1,8-31,2,5-41,1,5-51,2,9-
61,1,3

1,1,1,1,1,1
12,0,3-22,2,5-31,2,5-41,1,5-51,2,9-
61,1,3

1,1,1,1,1,1
12,0,3-21,1,8-32,3,4-41,1,5-51,2,9-
61,1,3

1,1,1,1,1,1
12,0,3-21,1,8-31,2,5-42,0,5-51,2,9-
61,1,3

1,1,1,1,1,1
12,0,3-21,1,8-31,2,5-41,1,5-52,1,3-
61,1,3

UNORDERED LIST
 (STATIC)

ORDERED LIST
 (DYNAMIC)

PLACE 1
ORIGIN COLOURS

B4
11,2,1-21,1,8-31,2,5-41,1,5-51,2,9-
61,1,3

B3
11,2,1-21,1,8-31,2,5-41,1,5-51,2,9-
62,3,3

B12
11,2,1-21,1,8-31,2,5-41,1,5-52,1,3-
61,1,3

B13
11,2,1-21,1,8-31,2,5-42,0,5-51,2,9-
61,1,3

B14
11,2,1-21,1,8-32,3,4-41,1,5-51,2,9-
61,1,3

B5
11,2,1-22,2,5-31,2,5-41,1,5-51,2,9-
61,1,3

B9
12,0,3-21,1,8-31,2,5-41,1,5-51,2,9-
61,1,3

B10
12,0,3-21,1,8-31,2,5-41,1,5-52,1,3-
61,1,3

B6
12,0,3-21,1,8-31,2,5-42,0,5-51,2,9-
61,1,3

B8
12,0,3-21,1,8-32,3,4-41,1,5-51,2,9-
61,1,3

B7
12,0,3-22,2,5-31,2,5-41,1,5-51,2,9-
61,1,3

B11
13,1,6-21,1,8-31,2,5-41,1,5-51,2,9-
61,1,3

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

Fig.7 User Interaction with the Simulator.

4.2 Applicability for Real Problems

The simulator tool is for general purpose, and the type
of problems that can be solved using this methodology
are quite broad since it depend only that the CPN
model is formulated in accordance to the syntax
defined by the macro. Obviously the tool performance
varies depending on the model size, number of
transitions, number of tokens in places, etc. It was
tested for the Job-Shop 6x6 [8] modeled with a CPN
which is shown in figure 8.

Fig. 8 CPN model for the Job-Shop 6x6

This problem is modeled with three places and one
transition, where the first place P1 holds the
information about the status of each one of the jobs
using three colours to hold these information, for
example the first token with colours 11, 2, 1 means
that the first job is doing the first task (11), using the
machine number two (2), and the time spent doing that
task lasts one time unit (1). The second place holds the
tokens which carry logic information for the model in
the colours, the case of the first token with colours
11,0,3 means that the job 1 doing the first task (11)
needs the machine number zero (0), and the time of
that task will use three time units (3). The place P3

hold the tokens which represent the availability of
machines, the first token means that at the present
state, the machine number zero is available to be used
(0). Finally using the Guards, the relationships
between variables are fixed, and the transition is
completely specified.

4.3 Simulator Interaction

As it has been previously mention, the interaction
between the end-user and the simulator tool is via
EXCEL worksheets, and the results presented by the
tool uses also the worksheets. For any CPN model, the
structure definition of the model and the initial mark
must be done using the decomposition principles
mentioned in section 3.Figure 9 shows how the initial
mark is defined using the worksheets for the CPN
model of figure 8.

2
3
4
5

A B C D E F
CARDINALITY COLOR1 CARDINALITY COLOR2 CARDINALITY COLOR3
1,1,1,1,1,1 11,2,1-21,1,8-31,2,5-41,1,5-51,2,9-61,1,3 1,1,1,1,1,1,1,1,1,1 11,0,3-12,1,6-13,3,7- 1,1,1,1,1,1 0-1-2-3-4-5

WORKSHEET ONE

1
2
3
4
5
6

A B C D
x x x x
USED CARDINALITY C1C2C3 ORIGIN CELL OLD NODES
1,1,1,1,1,1&1,1 b3-d3-f3 B3

WORKSHEET TWO

Fig. 9 The two levels of Information (Worksheets)

Therefore the end-user must make the decomposition
of the first mark (root node) in order to start the
simulation.

5 Results and Conclusions
In the case of transition evaluation it is clear that using
the CLP principles in accordance with the CPN logic
is possible to achieve important reductions in
evaluation time as it has been shown in section 2.

In addition, the tool has been tested with the model for
the Job-Shop 6x6 [8] and the time to explore the
whole coverability tree were reduced in 72 % when
using the new search technique with the dichotomical
algorithm implemented. Therefore it is clear that using
this approach for the searching through the colours
and relations lists, the overall performance of the
simulator reduces dramatically the time spent for the
process of exploring and opening the tree. Is fair to
mention that this kind of methodology for coding a
CPN simulator has the advantage that it can be used as
an optimization technique as well as only as a

CPN MODEL COVERABILITY TREE

CPN SIMULATOR

END - USER

INPUTS RESULTS

P2 P1 P3

1’(X,Y,*) 1’(J,W,P) 1’(E,W,P) 1’(E,W,P) 1’(Z) 1’(Z)

[X=E]
[Y=Z]
[J=X+1]

Mo=[1’(11,2,1)+1’(21,1,8)+1’(31,2,5)+1’(41,1,5)+1’(51,2,9)+1’(61,1,3),
1’(11,0,3)+1’(12,1,6)+1’(13,3,7)+1’(14,5,3)+1’(15,4,6)+1’(16,8,1)+1’(21,2,5)+1’(22,4,10)+
1’(23,5,10)+1’(24,0,10)+1’(25,3,4)+1’(26,8,1)+1’(31,3,4)+1’(32,5,8)+1’(33,0,9)+1’(34,1,1)+
1’(35,4,7)1’(36,8,1)+1’(41,0,5)+1’(42,2,5)+1’(43,3,3)+1’(44,4,8)+1’(45,5,9)+1’(46,8,1)+
1’(51,1,3)+1’(52,4,5)+1’(53,5,4)+1’(54,0,3)+1’(55,3,1)+1’(56,8,1)+1’(61,3,3)+1’(62,5,9)+
1’(63,0,10)+1’(64,4,4)+1’(65,2,1)+1’(66,8,1) ,
1’(0)+1’(1)+1’(2)+1’(3)+1’(4)+1’(5)]

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

simulator, since it is possible to explore all the
possible states of the model (coverability tree), while
the ones that are available generally function as an
evaluation technique where the transition evaluation
chooses the tokens which enable a transition in a
random way [2, 8].

6 References
[1] Jensen, K 1997. “Coloured Petri Nets: Basic

Concepts, Analysis Methods and Practical Use”.
Vol. 1 Springer-Verlag. Berlin.

[2] Gaeta R. 1996, “Efficient Discrete-event
Simulation of Coloured Petri Nets”. In
Transactions on software Engineering vol 22

[3] Sanders M.J. 2000 “Efficient Computation of
Enabled Transition Bindings in High-Level Petri
Nets.” In Proceedings if the 2000 IEEE
International Conference o Systems

[4] Bisgaard, Haag, T. , Rudmose T, “Optimizing a
Coloured Petri Net Simulator”, University of
Aarhus, 1994

[5] McAllester, David. 1992 “Constraint Satisfaction
Search” in Artificial Intelligence Lecture Notes

[6] Gambin A, Piera M. A, Riera D., “A Petri Nets
Based Object Oriented Tool for the Scheduling of
Stochastic Flexible Manufacturing System” IEEE,
1999

[7] Mehlhorn, K, “Data Structures and
Algorithms2,Graph algorithms and NP-
completeness”, Berlin,Springer-Verlag 1984

[8] Dauzère-Pères, S., Lasserre, J.B, “An integrated
approach in Production Plannig and Scheduling”,
Lecture Notes and Mathematical Systems,
Springer.Verlag, Berlin., 1994

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

