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Abstract

This paper presents the authors’ ongoing work in applying the “Separation of Concerns” (SoC)
software design paradigm to the Instrumentation Framework of a new component-based simula-
tion platform called OSA (Open Simulation Architecture). The SoC paradigm emerged recently
from the research in Component Based Software Engineering (CBSE). It consists in enforcing
the strict separation of the instructions of a program as soon as these instructions have different
functional goals. The first expected benefit of this approach is to improve the re-usability of the
resulting software. In our particular case, applying the SoC paradigm to the Modeling and In-
strumentation concerns means that several instrumentations can be developed for a given model
without any change to the modeling code. Following, the same modeling code may be reused
in various computer simulations and with possibly very different instrumentations, depending
on the goals of the study. The second expected benefit of applying the SoC approach to the
Instrumentation Framework of OSA, as shown in this paper, is to gain a better control on the
instrumentation overhead.
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1 Introduction
A very common motivation for reproducing the behav-
ior of a system in a computer simulation is to be able
to virtually observe (collect data about) the behavior
of that system. The Instrumentation Framework (IF)
refers to the software pieces and programming instruc-
tions required in such computer simulations in order
to implement observations. Computer simulation pro-
grams usually mix a generic (reusable) technical part,
often referred to as the simulation kernel, and more spe-
cific parts that depend on the system under study, usu-
ally simply referred to as the model implementations or
modeling code.

In many simulators, the IF is deeply interleaved in both
parts. When no or little instrumentation support is pro-
vided by the simulator environment (within the kernel,
or thanks to dedicated libraries), the coding part of the
instrumentation is left up to the model developer.

As an example, and without entering yet in the de-
tails, simply consider the proportion of instructions that
appear in bold font in Listing 1: these bold instruc-
tions represent the instrumentation part while the nor-
mal ones represent the modeling part of the example.
Clearly, in this example, the instrumentation represents
a significant part of the code. As will be further dis-
cussed in section 2, no effort was done in this example
to minimize the set of instructions used for instrumen-
tation; but in any case, without special programming
techniques such as the one later described in this paper,
it is nearly impossible to avoid mixing of modeling and
instrumentation instructions.

Listing 1 An instrumented model (Java).
class MobileObject {

private float X;
private float Y;
private SimTime last_time;
private Sampler PosSampler =

new Sampler("POS");

public void newpos(float dX, float dY) {
int sample = 0;
X = X + dX * (Now() - last_time);
Y = Y + dY * (Now() - last_time);
sample = sample +1;
PosSampler.write("X"+sample+"="+X);
PosSampler.write("Y"+sample+"="+Y);

}
...

Indeed, instrumentation instructions typically start, at
the lowest level of the instrumentation, by collecting
raw data from the model. Since the model developper
implements the model, he/she is in the best position for
implementing this collection. For this purpose, and de-
pending on the services and libraries provided by the
simulator being used, he/she may use existing libraries
or services for generating traces, or implement his own
trace generation or data collection mechanism. For ex-
ample, a common practice is to offer support in the sim-
ulation API for the declaration of observable objects
within the modeling code.

In any case, these common practices imply that what-
ever the goals of the study are, all the possible observa-
tions for a given model need to be decided (and hard-
coded) at the time the model is implemented. As a con-
sequence, two strategies may be envisaged: a lazy one
in which the model developer only provides a minimal-
istic set of observable objects, or an exhaustive one in
which the model developer tries to identify the exhaus-
tive set of potentially useful observable objects.

In terms of reuse and performance both approaches
have opposite benefits and drawbacks: assuming that
the execution overhead of the observation is related to
the cardinality of the set of observable objects, then
we may expect a better performance from the lazy ap-
proach than from the exhaustive one; but when trying
to reuse the modeling code for another study, the risk to
not find the needed objects in the set of observable ob-
jects is higher with the lazy approach, which means that
there is a high probability that the code will need to be
modified. And modifying the code of an existing model
simply for instrumentation purposes is a questionable
practice. For example it raises the problem of support-
ing potentially conflicting instrumentations released by
un-coordinated parties or simply the problem of prop-
erly switching from one instrumentation to another in a
simulation study where the same model is reused many
times in various contexts.

In this paper we describe a new approach that gains the
benefits of the two previous approaches without pay-
ing for their drawbacks. This approach is based on the
Separation of Concerns (SoC) paradigm[1], which is a
fundamental basement in recent software designs and
related programming techniques, such as Component-
based Software Engineering (CBSE) and Aspect Ori-
ented Programming (AOP)[2, 3].

As its name suggests, applying the SoC paradigm in our
case consists in separating both the modeling and in-
strumentation concerns from the very beginning of the
simulator design, such that the instructions that serve
each concern are never found intermixed. However, the
instrumentation instructions are still strongly connected
to the modeling instructions, since the primer performs
computations on the latter ones. On the contrary, the
modeling instruction should be kept totally independent
from the instrumentation ones.

2 A Simple Case Study
Let’s consider again, in more details, the Java code of
Listing 1. In this example, we assume that the modeling
part of the code simply consists in recomputing the po-
sition of a mobile object according to it’s current speed
in the plan (dX and dY) , it’s previous position (X and Y)
and the elapsed simulated time since last update. The
instrumentation part of this code consists in generating
traces of the successive values of the two variables X
and Y in a sampling output channel tagged with label
"POS".

This example illustrates how the instrumenting part of
the code (emphasized in bold font) can easily represent
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a noticeable part of the overall code. Indeed, these bold
instructions reflect the typical set of instructions needed
for building an instrumentation:

1. Get successive values of a variable (or object) of
the model. These values are usually called the
samples and the sequence of values a sample-
path[4];

2. Associate a different time-stamp or sequence num-
ber to each of these samples;

3. Forward the samples for further on-line process-
ing (trace generation, statistical processing, log-
ging facility, threshold detection, etc.)

These needs may either have to be explicitly imple-
mented, as in our example, or implicitly provided by
a language construction. In the latter case, the general
technique consists in ensuring that all the observed ob-
jects, such as X and Y in our previous example, share
a common set of (reusable) services for sampling. A
possible application of this construction is the code
of Listing 2. In this second implementation of the
MobileObject class, the sampled variables X and Y
are no more primitive types (float), but a complex
type whose definition may resemble to that of the class
SmplFloat of Listing 3.

Notice that thanks to this second implementation, the
instrumentation “footprint”, or in other words, the size
of instruction set used for the instrumentation is signif-
icantly reduced in Listing 2 compared to the previous
version of Listing 1. Notice also that the instructions
found in Listing 1 are still needed, but are now split in
two parts, one reusable in class SmplFloat and one
specific, in class MobileObject.

Listing 2 Same model as in Listing 1 with a smaller
instrumentation “footprint”.
class MobileObject {

private SmplFloat X = new SmplFloat("POS");
private SmplFloat Y = new SmplFloat("POS");
private SimTime last_time;

public void newpos(float dX, float dY) {
X.set(X.get() + dX * (Now() - last_time));
Y.set(Y.get() + dY * (Now() - last_time));

}
...

Even a reduced instrumentation “footprint” such as the
one presented in Listing 2 seriously impedes the re-
usability of the model code for other experiments. In-
deed, if the simulationist is interested in producing
other samples than the one that are hard-coded in the
model, then the source-code of the model needs to be
modified. Notice also how, in our particular example,
the change from a primitive (float) type to a com-
plex type directly impacts the modeling code (affecta-
tions and setting of X and Y are replaced by setter/getter
functions), due to some Java language technical con-
straints.

Listing 3 Definition of the float sampling object
used in Listing 2.
class SmplFloat {

private int sample;
private float val;
private String tag;
private Sampler sampler;

public SmplFloat(String smpl, String tag) {
sampler = new Sampler(smpl);
this.tag = tag;

}

void set(float new val) {
val = new val;
sample = sample +1;
sampler.write(tag+sample+"="+new val);

}
...

The goal of the Instrumentation Framework presented
in this paper is to allow any instrumentation on a model
with the guarantee of a void “footprint”. In other word,
we want to be able to produce the same results as the
one produced in the example of Listing 1 but with the
constraint that the code of the model never needs to
be modified and contains no other instructions than the
ones of Listing 4. Of course, the instrumentation in-
structions have to be placed somewhere, but our goal is
to ensure that these instructions are never found inter-
leaved with modeling instructions.

Listing 4 The goal: same model as in Listing 1 with a
void instrumentation “footprint”.
class MobileObject {

private float X;
private float Y;
private SimTime last_time;

public void newpos(float dX, float dY) {
X = X + dX * (Now() - last_time);
Y = Y + dY * (Now() - last_time);

}
...

3 Overview of OSA
OSA (Open Simulation Architecture) is a new collab-
orative platform for component-based discrete event
simulations[5, 6, 7]. It relies on the ObjectWeb’s Frac-
tal component model[8] and one its Java-based imple-
mentation called AOKell[9]. The front-end Graphical
Interface is based on the Eclipse IDE[10, 11]. OSA also
provides a public repository based on the Apache Foun-
dation’s maven building system that automatically com-
putes the dependencies between the components used
for a given simulation.

3.1 The Fractal Component Model

Fractal is the ObjectWeb Consortium component refer-
ence model. Fractal is neither a software environment
nor a run-time executive. It is a specification. In other
words, it is a set of rules and features that a component-
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based software architecture is supposed to follow or im-
plement in order to be compliant with this model. Frac-
tal does not mandate the use of any specific program-
ming language. On the contrary, it allows to combine
component implementations possibly based on differ-
ent programming languages.

Hereafter, we summarize some of these key features
(see [12] for the complete description).

Component external structure

A Fractal component is an object-oriented unit of code
that has external interfaces. These interfaces may be
of two kinds: either client or server. The former emits
service requests, the latter receives service requests. In-
terfaces are named. Their name must be unique for a
given component but names may be reused for naming
interfaces in other components. A client interface is in-
tended to be bound to a server interface.

Hierarchical structure

Components may have a hierarchical structure (fig. 1).
Hierarchical components are made of a controller part
(also called membrane) and a content part. The content
part is composed of one or more components. Since
a controller and its content recursively form a compo-
nent it may have external interfaces. It may also have
internal interfaces. As external interfaces, internal in-
terfaces may be either of type client, or of type server.
Internal interfaces are only available to components of
the content part. A component of the inner part may
only bind its external interfaces to external interfaces
of other inner components or to the inner interface of
its surrounding controller. Therefore, the model strictly
forbids a component to bind its external interfaces to
the ones of components outside its controller or inside
its neighboring (inner part) components.

controller
content

binding
export import binding

normal binding

Fig. 1 Example of Fractal hierarchical component.

Introspection

Introspection is the ability for an object to collect useful
information about other objects (possibly including it-
self). In the Fractal model, components have the ability
to introspect their interfaces. For example, a component
may retrieve its own list of available internal and exter-
nal interfaces. Depending on the component type, they
may also have other introspection capabilities, such as

inner content architecture for composite (hierarchical)
components.

Functional and controller interfaces

A functional interface is an interface used to offer or ob-
tain services to or from other components. A controller
interface is a server-only interface that is offered to the
content part of a component to access non-functional
services, such as introspection, (re)configuration, per-
sistence, service policy, life cycle control (ability to
start/stop a component), and so on.

Factories and templates

A factory component is a component that has the abil-
ity to create other components. Fractal distinguishes
two kinds of factories: generic factories, that have the
ability to create several kinds of components, and stan-
dard component factories, that only have the ability to
create one kind of component. Templates components
are a special kind of standard factory components, that
may be recursively composed of factories, and serve as
a model to create normal components in a quasi isomor-
phic manner (isomorphic meaning the created compo-
nent has the same hierarchical structure as its creator
template). Since factories are components and compo-
nents are created from factories, a special component is
required to initiate the recursion. This special compo-
nent is a generic component factory called “bootstrap”.

Shared components

The Fractal model allows a component instance to ap-
pear simultaneously in the content of several distinct
enclosing components. Such components are called
shared components. This property has two noticeable
consequences: (i) a shared component is placed under
the control of several surrounding controller compo-
nents and (ii) a shared component may directly interact
with components located in the inner parts of several
distinct components.

Architecture Description Language

Fractal’s Architecture Description Language (ADL) is
a convenient mean for describing the architecture of
the components that form a Fractal application. Frac-
tal’s ADL is an XML based language that describes
the topology of (hierarchical) components, client/server
bindings, name and initial attribute values of compo-
nents. An example of ADL file is given in Listing 5.
The corresponding Fractal application is illustrated on
figure 2.

The Fractal ADL definitions can be split in various files.
Furthermore, the language supports extensions and pro-
vides an heritage mechanism to ease the overloading
of definitions. Therefore, the Fractal ADL allows for
a proper separation of concerns, despite no particular
layout is enforced in the Fractal specification. The ADL
language is parsed by a specialized Fractal factory com-
ponent: in order to fully (recursively) read the descrip-
tion of a Fractal application, it is sufficient to ask this
factory to read and instantiate the root component of the
application which is no more than one line of Java code.
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Listing 5 Fractal ADL used to implement layout of figure 2.
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition skipped ... >

<definition name="HelloWorld">
<interface name="m" role="server" signature="java.lang.Runnable"/>

<component name="Client">
<interface name="r" role="server" signature="java.lang.Runnable"/>
<interface name="cs" role="client" signature="Service"/>
<content class="ClientImpl"/>

</component>

<component name="Server">
<interface name="ss" role="server" signature="Service"/>
<content class="ServerImpl"/>

</component>

<binding client="this.m" server="Client.r"/>
<binding client="Client.cs" server="Server.ss"/>

</definition>

ss

cs

r

m

ClientImpl ServerImpl

HelloWorld

Client Server

controllers

Fig. 2 Components layout of Fractal’s HelloWorld ex-
ample.

3.2 The OSA Architecture

The OSA software architecture follows a layered (or
N-tier) design, in which the layers mainly correspond
to the various functional concerns identified in fig. 3.
Since one the strongest design principles of OSA is to
separate concerns, each of these layers is designed inde-
pendently and kept self-contained as much as possible.
Eventually, these “concern-layers” are interleaved and
mixed at the very last time, using AOP and CBSE tech-
niques and tools such as AspectJ and Fractal-AOKell.

Deployment

Administration

Simulation

Modeling

Instrumentation

Experimentation

Analysis

Validation & Verification

External
Tools

Simulation runs scheduling
Middleware settings

Users mamangement
Functionnal extensions, plugins 

Simulation engin configuration
Simulation engine development

Model architecture specification
Data probe definition

Scenario definition

Model component development

Data aggregation and collection

Scenario parameters setting

Plotting, visualisation, animation
Statistical analysis

Outputs comparison
Conformance testing

Eclipse
IDE

Integration

Functionnal ConcernsUser Interface Typical tasks

Functionnal extensions ...

Fig. 3 OSA functional architecture.

User Interface Layer

The OSA architecture must provide tools to assist users
in many tasks. Furthermore, the architecture should en-
force a strong cooperation of these tools, using an in-
tegrated and easily extensible environment. For this
purpose, as shown on fig. 4, we selected the Eclipse
platform[10, 11] as the front-end Graphical User Inter-
face.

C/C++

AspectJ

EMF/GEF

Fractal ADL

Discrete Events

Instrumentation

Web/FtpDAV

Subversion/CVS

Maven

Ant

plugs−in

models

params

probes

scenarios

experiments

Data

deploy.

Java

...

Eclipse

GUI

Programming

set up
Models & scenarios

Archiving &
releasing

Building, Testing &
Running

Data analysis, ...

packages

Results

Interactions Plugs−in Function Outputs

Fig. 4 OSA’s Eclipse-based Graphical User Interface
and Interactive Functions

Eclipse already provides a large amount of plugs-in
to assist developers in various software development
tasks: specification, development in several program-
ming languages, unit testing, debugging, source code
management, and so on. Some of these plugs-in are
dedicated to the development of new Eclipse plugs-in,
which explains the ever growing list of available plugs-
in, and consequently its ever growing popularity.

An interesting feature of the Eclipse plugs-in is their
ability to be extended. Indeed the Eclipse plug-in API
defines extensions points[13]: plugs-in that implement
such extension points (this is not mandatory) may be
extended in order to build new enriched or specialized
versions of the initial plugs-in.
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Eclipse plugs-in are mainly used to build new Eclipse
perspectives. An Eclipse perspective is dedicated orga-
nization of the Eclipse Graphical User Interface (GUI),
offering support and specialized tools for a particular
task.

Therefore, the development of the OSA user interface
mainly consist in providing new Eclipse plugs-in and
perspectives to support users in (possibly) all the tasks
of the simulation study life-cycle. For example, on fig.
4, one of our contribution is the Fractal ADL plug-in,
built on top of the Eclipse EMF and GMF libraries
(Eclipse Modeling Framework and Graphical Editing
Framework). This general purpose plug-in for editing
Fractal ADL files offers extensions points for special-
ized ADL extensions, such as the ones we have im-
plemented for the OSA needs (eg. for discrete event
scheduling and instrumentation setting).

Execution Layer

A middle-ware layer may optionally be used to support
the execution of the simulations. Indeed, such architec-
tures are often criticized for their potentially poor per-
formance. Since performance is a critical issue for sim-
ulation, this architectural choice may be questionable.
As a matter of fact, the middle layer is not mandatory in
the OSA architecture. Indeed, in the Fractal component
model, the distribution of component executions across
a network through a middle-ware is an optional feature
that may, or may not be activated. Since this is imple-
mented as a non functional feature of components, the
decision of activating or not this feature is totally trans-
parent. In other words, it does not require any change
in the component functional implementation.

The OSA architecture allows the distribution of the sim-
ulation executions across the network in different man-
ners:

• distribution of several simulation-runs, each one
executing on a single computer node. In this case,
the distribution support required is very limited (a
“gang-scheduler” facility);

• distribution of one (or several) simulation runs
across the network, simply using the Fractal model
ability to distribute transparently the execution of
the components, but without any cooperation of
the simulation engine. Since the minimal require-
ment of the simulation engine, whether it executes
in parallel or not, is to ensure consistency of event
processing between components, this implements
de facto the so-called conservative mode of paral-
lel execution[14];

• distribution of one (or several) simulation runs
across the network, using the Fractal model abil-
ity to distribute the execution of the components,
and the cooperation of the simulation engine. Pro-
vided the components have the persistence non-
functional feature in order to regularly save their
global simulation state, this lead to the so-called
optimistic mode of parallel execution[14];

Fig. 5 Anatomy of an OSA component.

• the last form of distribution, which is somehow
complementary of the previous ones, is achieved
when the middle-ware is used to bridge together
several simulation architectures, using the HLA
standard for example[15].

Architecture Description Layer

So far, the standard Fractal ADL has been extended for
the needs of OSA as follows:

• Event scheduling: in OSA an event corresponds
to a method invocation (functor) scheduled at a
given time in simulation. The event is scheduled
directly at the level of the component that provides
the method that will be called;

• Probes definition: as will be further explained in
section 4, probes are used to collect the data sam-
ples needed for generating the outputs of the sim-
ulation. The ADL was extended to allow the spec-
ification in each component of the variables to ob-
serve in order to produce these samples.

Discrete-Event Engine Layer

The simulation engine is distributed over all compo-
nent that have a surrounding membrane implement-
ing the simulation non-functional services (represented
by the “SimC” box on fig. 5). The simulation en-
gine offers a process-oriented model of execution: a
process corresponds to a living entity of the simu-
lation (a thread). Each process has its own control
flow, and may be interrupted on various blocking con-
ditions (ie. on locks, waits and sleeps instructions).
These blocking services are accessed through a dedi-
cated simulation-controller interface (fig. 6).
Component with a simulation-controller in-
terface are called active components and those without
such an interface are called passive components.

During the simulation, the functional part of the com-
ponent (the model) may use the following services, that
are provided by the simulation-controller in-
terface:
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Fig. 6 Internal architecture of the simulation-controller.

• current time(): returns the current simu-
lated time;

• abort()/terminate(): requests abnor-
mal/normal termination of the simulation execu-
tion;

• object = wait(key, timeout),
release(key, object): wait blocks the
current executing thread on a key object until an-
other thread calls releasewith the same key ob-
ject. Furthermore this wait/release mechanism al-
lows the releaser to transmit an object reference
to the waiter, a mechanism inspired from Hoare’s
Communicating Sequential Processes[16]; option-
ally, the waiting may be guarded with a timeout
that sets the maximal simulated time after which
the waiting thread must be woken up;

• spin lock(), spin unlock(),
spin trylock(): a basic locking mech-
anism for ensuring mutual exclusion inspired
from the Linux kernel API[17]

• schedule myself(time, method,
param): this primitive is used to schedule new
events; indeed, in OSA, an event corresponds to
the execution of a method at a specified time of
the simulation.

However, this simulation API may be replaced or
masked by another one. This is a powerful mean for
reusing existing models developed for other discrete-
event simulators that have their own different simula-
tion APIs. In other words, OSA can easily mimic other
simulators and therefore reuse their existing models.
Moreover, the components used in a given simulation
scenario are not forced to all share the same API which
mean that, theoretically, components developed for var-
ious simulators may inter-operate in the same simula-
tion scenario.

A second reason for ensuring such a versatile archi-
tecture is to allow for experimentations at the simula-
tion engine level. In this case, OSA may be used as
a testbed, for example to compare the performances of
various distributed implementations of the engine.

4 The OSA Instrumentation Framework

The OSA Instrumentation Framework (OIF) is a new
layer of the OSA architecture. The OIF is connected
to the existing component hierarchy with a two-level
structure: a lower sampling level and a higher sample-
processing level, as shown on fig. 7. The sampling level
is in charge of collecting data samples in the model
components during the simulation runs. Data samples
correspond to successive values taken by the observed
objects during a simulation run. Each sample is time-
stamped with the current simulated time or a sequence
number.

P
P

P

P

samples

MEAN
I/O

MAX
I/O

Modeling Plane

Instrumentation Plane

Probes

commands
engine

road

vehicle

modeling
components

components

sample
processing

Fig. 7 OSA’s Instrumentation Framework

At the lowest level, the data samples are automatically
generated every time an observed object is modified,
thanks to AOP techniques. The AOP technique cur-
rently used in OSA is based on the the AspectJ weaver
and the AspectJ Java language extension[18]; it is fur-
ther described hereafter in section 4.1.

The samples are directed to a dedicated controller,
called the probe, which is placed in the surrounding
membrane of each model component that owns at least
one observed object. Thus, modeling components that
are not instrumented don’t embed any instruction re-
lated to instrumentation.

The probes in turn forward their samples to a central
dispatching component called the SuperSampler (not
represented on figure 7). This SuperSampler is a me-
diator between the two levels of the OIF. It is in charge
of relaying the samples received from the probes to the
processing components of the upper layer.

The components of the upper layer are in charge of
the on-line statistical processing and implements In-
put/Output policies of samples. For this purpose
we plan to reuse the COSMOS Fractal component
framework[19].

The specification of which variables to observe is taken
from an Instrumentation descriptor file. This file is an
XML file that obey the OSA ADL specification, which
is an extension of the Fractal ADL. This descriptor and
the building process from the source files to the final
simulation execution is then described in section 4.2.
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4.1 Data samples generation

Without entering the details (see [18] for more details),
the most important additional constructions offered by
the AspectJ language are the following:

• Aspect: this construction resembles a Java class
definition, with attributes and methods declara-
tion, but with additional constructions, such as the
ITD and Advice briefly described hereafter;

• Inter-Type Declaration (ITD): this construction is
used to extend an existing type declaration (a Java
class or Interface) with new elements (new at-
tributes or methods);

• Advice: an advice is a piece of code that exe-
cutes every-time a particular instruction of the ini-
tial program is reached. This particular instruc-
tion is specified using an AspectJ pattern-matching
construction called a pointcut. An advice may be
executed prior, in place of, or after the instruction
identified by the pointcut.

In OSA, we use the AspectJ’s advice construction to
trap the successive values of the observed variables.
For this purpose we need to define pointcuts that, for
each observed variable, specify the time at which the
observed variable is set. For example, in AspectJ,
to specify that we want to trap the times at which
the variable X of class MobileObject in package
example.package is set, we use the following dec-
laration:

public pointcut trap X(float X):
set(float example.package.MobileObject.X)
&& args(X);

Then, this pointcut may be used to define an ad-
vice, such as the following that calls the method
forward to probe(float val, int id)
which is supposed to forward the trapped value to the
probe indicating the origin of the data with its id:

after(float X):trap X(X) {
forward to probe(X,MobileObject X ID);

}

In the previous example, notice the use of the after
AspectJ keyword, that means that the corresponding
code must be executed after the value of the observed
variable X is changed.

4.2 OSA Building Workflow with Instrumentation

The OSA building workflow with Instrumentation is
depicted on figure 8.

The building workflow starts with the following set of
source files and XML descriptors, that are either pro-
duced manually or through a Eclipse-based helper or
editor1 :

1At the time of writing, Eclipse support is not yet available for all
these files

• The Instrumentation Descriptors are XML files
that obey the OSA ADL syntax. They list the
observed objects in each OSA model component.
Any Java language type may be observed. How-
ever, non primitive types need to be extended (us-
ing an AspectJ ITD) with a sampling function that
computes the value of the sample. This function is
provided in a separate source file or library;

• The Models sources and Engine Sources;

• The Deployment Descriptors are another type of
XML files that describe the location of the physi-
cal computational resources requested for running
the simulation. This file is not an ADL file because
it is never read by the OSA ADL factory; it is read
prior to the start of the execution of the OSA sim-
ulation, and thus before the OSA ADL factory is
created. This file is used by the OSA deployment
facility to prepare the distribution and execution of
the OSA components (including the ADL factory)
in several (distributed) Java Virtual Machines.

• The Model Descriptors are XML files that obey
the OSA ADL syntax. They describe the topology
of the components that describe the Model of the
system that is to be simulated. The result is a hier-
archical component set whose root represents the
whole Model of the System to be simulated. The
previously described Instrumentation Descriptors
are tightly connected to this Model Descriptors in
the following manner: the root of Model is at-
tached to the root of the Instrumentation in such
a way that the result is a new Fractal application
that contains both the Model components and the
Instrumentation components. Hence, the two level
of the architecture depicted on figure 7.

The Listing 6 shows an example of an Instrumentation
ADL descriptor. This example instruments a variant
of the Fractal “HelloWorld” example presented in sec-
tion 4.1. The modification is such that the component
named “Client” has an additional X attribute of type
float. The first part of the listing shows that the
root definition of this ADL extends the “HelloWorld”
ADL presented in Listing 5. Then, the definition of the
“Client” component is extended with a new probe that
contains one statevar declaration. Indeed, recall
that, in each component, a probe may collect the sam-
ples generated from several observed objects. In our
case, the only observed object is the ClientImpl.X
attribute of type float.

Then, the second part of this listing shows that a new
component, named sampleMean, is added in hier-
archy defined by the ADL. This new component is a
sample-processing component. It lays in the upper-
level of the OIF. This sample-processing component
contains a sampleprocessor definition that refer-
ences the state-variable declared in the previous probe.
This is how the connection between the probe and the
sample-processing component is established.
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Fig. 8 OSA Building Workflow with Instrumentation

The first step of the simulation building workflow con-
sists in compiling the Java sources and weaving the As-
pectJ source files of the Models and simulation engine,
and to produce the AspectJ code of the probes. This lat-
ter code is automatically generated by a custom gener-
ator that parses the Instrumentation Descriptors with an
XML parser based on the JAXB library. Then, a second
step of compilation and weaving is required, in order
to compile the previous generated code. The third step
consists in parsing the Deployment Descriptor in order
to prepare for the (possibly) distributed execution of the
components. This distributed execution is handled by
the FractalRMI contributed middle-ware library2. Fi-
nally, the Fractal ADL factory component is started and
starts reading the Instrumentation ADL which, in turn,
references the Modeling ADL. This workflow is han-
dled thanks to the Maven building system, that auto-
matically solves any dependency issue.

5 Conclusion
In this paper we presented our ongoing work on build-
ing an Instrumentation Framework by applying the
“Separation of Concerns” paradigm. The result of this
design is that the OSA model components can be instru-
mented without any modification to their code. This
Separation of the Modeling and Instrumentation con-
cerns has many benefits.

First, when a given model is reused several times in
the same simulation scenario, this model may be in-
strumented independently and differently each time it

2Available on the Fractal’s forge at
http://fractal.objectweb.org/.

is instantiated in the scenario. Second, since the instru-
mentation is fully stored apart from the model, several
instrumentations can be build concurrently without in-
terfering with each other. This is useful for example
for studies that require many simulations with various
instrumentations. Third, the AOP technique described
in this paper should theoretically lead to a minimal in-
strumentation overhead without introducing a limita-
tion on the number and types of objects that can be
instrumented. However, this last claim about perfor-
mance still needs to be demonstrated. Last, it should
be noted that despite the OIF is part of the OSA Ar-
chitecture, it is rather loosely coupled to the rest of the
architecture and should therefore be easily reusable in
most Fractal applications. Indeed, instrumenting a sim-
ulation application or a general purpose application is
very similar.

Our future development directions will be to implement
an Eclipse-based user friendly interface for the OIF. In-
deed, the OIF is currently operational3 but in order to
build new instrumentations the end-user has to write the
ADL/XML descriptors files manually.

Our future research directions will be to work on the de-
ployment and performance optimization issues. Indeed,
the data flows generated by the instrumentation during
a simulation are very important and rapidly increase as
the number of simulated entities increases. Since we
plan to run distributed simulations of very large sys-

3The OSA software is available under LGPL license from the
INRIA forge at http://osa.gforge.inria.fr. See also
the OSA wiki web site for general information about the project:
http://osa.inria.fr/.
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Listing 6 An example of an Instrumentation Descriptor file
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://osa/util/adl/stdsim.dtd">

<definition name="cs.adl.Instrumentation" extends="HelloWorld">
<component name="Client" definition="ClientImpl">

<probe>
<statevar name="ClientImpl.X" type="float"/>

</probe>
</component>

<component name="sampleMean">
<interface name="sampleprocessorItf" role="server" signature="<...>.SampleProcessorItf" />
<content class="osa.util.operations.SampleProcessorMean" />
<controller desc="primitiveSim" />
<sampleprocessor signature="sampleprocessorItf">

<statevar name="ClientImpl.X" componentname="client" type="float"/>
</sampleprocessor>

</component>

</definition>

tems such as Peer-to-Peer networks systems, this issue
of performance and scalability will become our major
concern.
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