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Abstract 

Five years after the introduction of two classes of advanced control systems for continuous 
pulp digesters, only one of the classes is still in use after 5 years of operation. The five 
systems in current use are simple Excel sheets which the operators report are very 
satisfactory. The use of the six model-based systems has been discontinued even though they 
had the potential to increase the production by 2% compared to 0.5% for the Excel sheet 
based system. The current challenge is to develop a system that combines the benefits of the 
model-based system with the robustness of the Excel sheet based system. It is vital for the 
system to be robust in the sense that it is transparent and easy for the operator to maintain. 
Robustness is essential in many parts of the system, including measurement, process model 
validation, the ability of the model to adapt to changes in the process, optimisation 
algorithms, and of course the model itself. The optimisation algorithm here is a model 
predictive control algorithm that returns set-points for the PI controllers. The challenges when 
constructing such a system are in instilling operator confidence, filtering of misleading 
measured data, adaptation of process parameters when the process parameters change, and 
combined validation of measurements and process models. These challenges are met by using 
a combination of physical and statistical models and methods based on them such as model 
predictive control (MPC) and parameter estimation. The model should be maintained by a 
qualified engineer who should be able to explain the system to the operator so that it is 
understood and confidence is maintained in the system. 
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1 Introduction 

The amount of data collected during a process has 
increased tremendously over the last twenty years. 
Both the number of signals monitored and the 
frequency of collection have increased. However, the 
application of the data to process control remains 
predominantly manual, although displays of trends in 
the data are often available on monitors. The use of 
these data in automatic control is mostly as single loop 
PI or PID controls, and the use of the data in 
diagnostics is rudimentary at present. With respect to 
production planning systems, these are at most tools 
for supporting the manual control, with a few 
exceptions. The reason for this is that there is an 
insufficient level of confidence in the systems among 
the operators. If the system is prone to faults or if 
there is no compensation for sensor drift, control 
cannot be left fully to the system, and thus they are 
often not used, even though they would be likely to 
improve performance. 

An example of this is the case where an automation 
engineer participated in eleven installations of 
advanced control systems for continuous pulp 
digesters. Five of these used simple Excel sheets to 
indicate how to make the set points. The other six 
were based on more sophisticated mathematical 
models. Five years after installation, the five simple 
Excel sheets were still in use and the operators were 
very satisfied with their performance. Not one of the 
model-based control systems were in use at the end of 
the five year period. This was because the operators 
did not really understand the system, and were not 
capable of maintaining it. The engineer concluded that 
had the model-based systems been used throughout, 
production could have increased by 2 %, compared to 
the 0.5 % that was achieved with the Excel sheet 
based system. 

Both the Excel sheet and the model based systems 
have attractive features. The Excel sheet based system 
is easy to maintain without a great deal of training. 
However, the model-based system has greater 
potential to increase productivity. We wish to combine 
the robustness and simplicity of the Excel sheet based 
system with the additional benefits of the model-based 
system. This paper will discuss the construction of 
such a model that may be applied in the power plant 
and process industries. The use of data and new 
possibilities in this area are highlighted, new areas of 
research are presented, as well as potential obstacles 
we foresee in following these avenues of research. 

1.1 The Excel sheet based method 

The planning tool in the Excel sheet based method for 
a continuous digester uses a lookup table method (Fig. 
1). In this method, a recipe is applied to the input, 
which produces set points that produce the desired 

output. This method is simple and direct and therefore 
easy for the operator to understand. 

 
Fig 1. Excel sheet based method. 

1.2 The model-based method 

The model based method (Fig. 2) was troublesome to 
maintain in the long run, and required more input from 
the engineer than the Excel sheet based method. This 
method needs both a recipe and a number of additional 
factors depending on the desired quality of the results. 
The system used a predictor to optimize the set-points. 

 
Fig 2. Model-based method. 

The integration of support during the start-up of this 
system has been shown to be very important. 

1.3 Making it easier and more complex 

It is possible to reconcile the apparently conflicting 
need for simplicity in the interface and complexity in 
the model. If the Excel based method interface is 
retained and some of the more complex and user-
unfriendly parts of the model based method are 
automated and better supported, the model based 
method is made easier and the Excel sheet method is 
made more sophisticated. This additional complexity 
however only occurs in the background and the 
operator still sees the same interface. Additional 
training in running the system and understanding the 
basics of the model in the background would also be 
needed to maintain the feeling of having control of the 
system. Robustness is maintained by gaining the trust 
of the process engineers as well as putting in place a 
support agreement with the developer of the system. It 
is also important to highlight the value of the process 
models and to be prepared to absorb the cost of 
keeping them up to date. Process models quickly 
become obsolete when not updated, a fact that is not 
always recognised. 
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2 Robustness in a wider sense 

Robustness requires the inclusion of all the important 
variables in the system, and that these can be 
measured - either directly or indirectly. These 
measurements should then be used to adapt the 
statistical, physical or combined statistical and 
physical model to the real system. This adaptation has 
to be performed in such a way that only relevant data 
are considered by the model. If model-based control is 
going to be used, it is essential to have full control of 
all the measurements. If a sensor is faulty it should be 
ignored, or the reading adjusted to show an estimated 
value to the control system. This challenge can be 
resolved with data reconciliation and process 
performance monitoring using physical models. A 
view of the relationships between different steps is 
shown in Fig. 3. The system illustrated here is the 
production optimization Excel sheet based system and 
the underlying structure of the parts needed for the set-
point optimization. 

 
Fig 3. Combined method. 

The successful application of the model depends on 
support for the process engineer from the support 
engineer, who should be an expert on the process 
model and the whole system. The day to day operation 
of the system should not require such support.  

As it is difficult to have full trust in something that is 
not fully understood, it is important for the operators 
as well as the process engineers to understand the 
workings behind the control function. This 
understanding can be gained in a training simulator 
system. Lack of trust reduces the motivation to use the 
system. The most successful systems are those where 
the operator feels fully in control. This feeling of 
being in control was a factor in the success of the 
Excel based system. The operators of the system had a 
good understanding of the way it worked and 
therefore felt comfortable enough to continue using it. 
A good control system should therefore have a 
structure that includes robustness and is easy to 
understand, thereby increasing operator confidence. 
When it comes to process production optimization, all 
aspects must be considered, including the requirement 
for maintenance, and the risk of unforeseen problems 
arising. Any alarm filtering or maintenance on 

demand systems that are fitted, while they can solve 
some important problems, also have to be integrated 
and optimized so that they do not cause new ones. 

3 System parts 

The process models are at the heart of the system. 
Maintenance costs for the process models may occur 
at a number of points in the system such as control 
and adaptation of process models. The validation step 
and relationships between the system parts are shown 
in Fig 4.  

 
Fig. 4. Combined and extended system. 

The system in Fig. 3 consists of a number of different 
parts that each solves a specific task. The system in 
Fig. 4 adds measurement data and process model 
validation to deal with measurement errors and 
process model errors. The next section deals with 
these functions, beginning with the measurement data 
from the process and ending with the Excel sheet 
interface, and demonstrates their necessity in a future 
robust control system. 

3.1 Measurement collection and quality of 
measurements 

Computers and computer networks have made it 
possible to collect huge amounts of data from 
industrial processes. Sensors have been developed to 
measure new properties directly or indirectly. Storage 
capacity of hard disks and removable media such as 
CDs and DVDs is increasing rapidly. Together, these 
developments have increased the amount of data 
collected in the process industry. With the available 
technology it is possible to store all sensor data that is 
produced from the moment the data collection system 
is installed. However, only a selected range of 
measurement tags are collected and stored in practice. 
In many cases the collected data is stored using a 
moving time window. It can range from seconds to 
years, depending on the type of measurement data and 
what it is used for. 
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Measurements used for monitoring and those used for 
reports to authorities (such as environmental reports 
and measured properties used for taxation) are stored 
for years. Sensor data for process control and low 
priority alarms are not usually stored. Filters are 
applied to reduce noise by high-pass or low-pass 
filters or averaging functions. Dead bands are also 
commonly used so that data is only recorded when 
large enough changes in the measured values occur. 
This effectively decreases the amount of data stored 
when the process deviates from the steady state. This 
also has the effect of reducing the strain on the data 
network during the steady state operation of the 
system. It is also common practice to compress data 
using averaging functions. This can be done in stages. 
For example, average data on a minute-by-minute 
basis can be stored as hourly averages when the data is 
more than a week old. It is important to realise that all 
these data reduction methods are irreversible. A 
simple calculation reveals that one year’s data of 1000 
tags with minute average values can be compressed 
using reversible methods such as zip files, to 12 GB of 
stored data. This kind of data in combination with a 
well structured process log with causes for downtime 
and process disturbance is the key to building useful 
statistical models and is valuable for diagnostics. 

3.2 Measurement data and process model 
validation 

The error in output from a process model can be 
divided into measurement faults and process model 
faults. Measurements error sources can be described 
as faults in the sensor or in the positioning of the 
sensor. The model fault is described either as faults in 
the structure of the model, which means that not all 
streams transporting mass and heat have been 
accounted for correctly, or as parameters not correctly 
tuned. The process model must be protected from 
erroneous data and bad tuning in order to avoid model 
faults and inaccurate descriptions of the process. 
Examples of techniques to deal with the problem of 
errors in measurement data and process parameters are 
described below. 

3.3 Treatment of measurements and data 
reconciliation 

Apparent faults must be removed from measurement 
data so that they do not corrupt the process model 
calculations and results. A detection of a fault is often 
used to trigger an alarm and is an indication that 
something has gone wrong. Detection of faults can be 
achieved by measurement of threshold values or by 
observers noting discrepancies between the 
measurement and predicted values. Isolation of 
measurement faults in the process industry is not done 
automatically. It has to be carried out by experienced 
maintenance personnel, operators or engineers. 
However, fault isolation could be automated to some 
degree with the use of robust process models. Self 
diagnosis, which includes fault isolation in sensors is 

common for an increasing number of products, for 
example in cars and printers, for a limited number of 
faults. These products are mass produced and 
therefore the unit cost for developing such a 
diagnostic system is low. 

There is great potential for using process models for 
multiple applications, but the quality of the models are 
limited by the quality of the input measured variables. 
Several techniques are used for signal validation. 
Some of these use models to predict signal values and 
compare predicted values with measured values to 
validate the measurement. When the model is 
developed and fully working, the next step is to tune 
the constants in the equations. The model is tuned 
with process data for a number of different operational 
conditions by measuring the signal as a function of 
time. If the deviation between the model prediction 
and the measured value is above a certain level, the 
model is adjusted iteratively until the prediction is 
good enough for the operating conditions. Thereafter 
the conditions are changed and the model is tuned for 
the new conditions. The tuning proceeds 
systematically according to a pre-prepared scheme. 
This can be performed using different algorithms, but 
they are basically different versions of the same 
principles. 

The example presented in Fig. 5 shows the deviation 
between predicted and measured values for five 
different sensors. Where the deviation remains 
constant over the observation period as shown for the 
sensors Fl2, Fl3, Fl4, and Fl5, there is no warning. For 
sensor Fl1 the deviation changes and the system 
indicates that the condition of the sensor should be 
examined. 
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Fig. 5 Deviation between the model prediction and 

measured values for a number of related sensors [1]. 

Setting up a mass balance over a process is an 
efficient tool to detect leaks and flow sensors that are 
out of calibration. The flow and the sensors are 
described in a network (also called a graph) made up 
of nodes and connecting arcs. A method called data 
reconciliation, which makes use of redundant flow 
sensors can be used to reduce noise. The method 
solves a weighted optimization problem where all 
sensors are used in order to reduce sensor noise, and 
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the constraints involve the graph model [2, 3]. This 
method requires that there are no gross errors in the 
measured flows. Examples of implementations and 
tests have been described for a refinery [4] and 
chemical process [5]. In the refinery example it was 
concluded that leaks and badly calibrated equipment 
were found, and substantial financial savings were 
achieved mainly by better measurement of mass flow 
of produced refinery products. The data reconciliation 
method has also been investigated by for a flue gas 
channel in a heat and power plant [6]. The authors and 
their co-researchers are developing methods for fault 
isolation in gas and steam turbines [7] and for 
measuring moisture content in flue gas using 
combined statistical and physical models. The flue gas 
moisture content measurement has been implemented 
in a heat and power plant [8]. 

3.4 Combined process model and sensor 
validation 

Measurement validation requires a robust and correct 
process model and process model validation requires a 
reliable set of measured data. The combination of 
simultaneous process and model validation is a 
complex problem that has not yet been solved. The 
authors are making continuous efforts to solve such 
problems [9]. One way to validate a process model is 
to estimate the parameters while running the model on 
a reliable data set and analyzing the changes in the 
parameters.  

3.5 Process models and model adaptation 

As we are considering model-based approaches, first 
principles models are an essential part of the 
algorithm. These models are often combined with 
statistical models, for example where there is an 
insufficient number of on-line measurements. The 
continuous digester model has been published earlier 
[10] and is not further described here. 

With the model adaptation we aim to update the 
parameters in the model continuously. This can be 
achieved by estimating the parameters within a time 
window under the supervision of the support engineer 
to ensure safe tuning. We propose that this task be 
semi-automated as there are numerous factors to 
consider when it comes to filtering data during tasks 
such as maintenance and start and shutdown 
procedures. 

3.6 Optimization and control 

Optimization can be realized using a Model Predictive 
Control (MPC) algorithm. This is a multivariable 
model predictive control technology [11]. A combined 
statistical and physical process model is one way to 
control the process in a MPC. The main advantage of 
MPC is its ability to handle multivariable processes 
with strong interactions between process variables and 
with constraints involving both process and state 
variables. The potential of this control method is 
dependent on the quality of the process model and of 

the measured variables. With a good mass balance 
simulation of the process the MPC is less dependent 
on the measured variables [12]. The system discussed 
here is based on PI control loops and the set-points are 
set by operators with guidance from the Excel sheet. If 
the set-points were input directly into the MPC this 
stage would not be necessary, but the demand on 
robustness would be much higher than before. 
Therefore, such closure of the loop can only be carried 
out with caution and when the process is not disturbed 
by actions not taken into account by the system, such 
as maintenance. 

4 Examples of combined models within 
different applications 

Process industry uses a number emerging techniques 
on a test scale and others in day-to-day work. For 
example, MPC is used by ABB in their ProcessIT 
platform. Processes that have very high downtime 
costs and high impact on the environment when the 
process goes out of control - such as nuclear power 
plants and large chemical industries - already use 
model-based early detection systems. These methods 
are now becoming available for processes with lower 
downtime costs such as pulp and paper, and power 
plants. 

An example of the use of simulation models in 
connection with optimization solvers was 
implemented in the DOTS project, a €5 million EU 
joint project between Sweden, Finland, Germany and 
France [13]. Here the physical model interacted with 
different optimization solvers. This was done both to 
make direct use of the dynamic simulator to find the 
optimum process pass for the next minutes to hours 
and to verify that the solution was feasible if a 
conventional optimization was used for a simplified 
problem formulation. 

One of the drivers for new techniques and methods is 
the shift of maintenance methods from repairing 
broken equipment to time scheduled maintenance and 
the possibility of condition based maintenance 
(CBM). Monitoring the condition of process 
equipment becomes more important as the process is 
automated. The increasing complexity of the 
equipment means that many more personnel would be 
needed to continuously track performance and 
condition. Knowing the equipment condition also 
gives the advantages of potentially increasing up-time, 
narrowing margins to full capacity of a process, and 
makes it easier to detect differences between normal 
and abnormal operation. In short, knowing the 
condition of the equipment confers the ability to 
utilize the plant better. 
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5 Challenges when implementing 
combined statistical and physical models 

Many industrial processes are non-steady state. In a 
paper machine the wire gets clogged and sensors are 
fouled. In a roll mill rolls are torn down. Generally the 
production switches between different product grades 
or capacities on a frequent basis, and so on. This 
makes it difficult to use the exact same model all the 
time. As the operational conditions are very different, 
statistical models are normally difficult to implement, 
whereas physical models tuned by process data are 
potentially very useful. To achieve this, parameters in 
the physical models need to be adapted to compensate 
for the varying conditions. The adaptation can be done 
by continuous retuning of the model or by switching 
between different values of predefined parameters. 
This is easy in theory, but in reality there are many 
issues to consider. Firstly, the relevant conditions that 
need to be adapted to must be identified. Otherwise 
the adaptation may destabilize the model prediction 
rather than improve it. 

The adaptation can be both of parameters in a process 
model and of tuning parameters in a control algorithm. 
In both cases the collected data has to be pre-treated in 
some way. The data have to be evaluated so that 
reliable data is used and data that is invalid for 
whatever reason is rejected. This is not a trivial task. 
Parameter estimation is the preferred method for 
adaptation. It may be wise to filter signals with 
different sampling frequency and then update parallel 
models. It is advisable to keep any old models for 
comparison. It is often advisable to use an old model 
until the cause of drift in the model prediction is 
understood to avoid problems when the cause of drift 
is removed. Once this has been done, the adapted 
models are likely to give significantly improved 
performance over a longer time period. It may even be 
possible or desirable to include the cause of the drift 
as a new variable. If for instance the drift in paper 
quality is due to clogging of the wire, time for 
replacement or cleaning can be included as a time 
function, even though it would not be measured as a 
‘real variable’. 

It sometimes happens that models that work very well 
at first drift away and become almost useless after a 
period of a few months, due to changes in non-
measured variables. An example of this was seen 
when using multivariate data analysis at Dynäs, a pulp 
and paper mill in Sweden. 15 different paper 
properties were predicted from models produced from 
process data and near infra red (NIR) spectra of pulp 
sampled at certain positions. During the first two to 
four weeks the model produced good predictions for 
many of the properties, but after four months many of 
the predictions were too poor to be used in the 
operations. For instance, the prediction power Q2 for 
Tensile index dropped from 0.82 to around 0.65 over 
this period. The main reason for this was a 

combination of drifting sensors and clogging of the 
paper machine wire. Some of these could have been 
compensated for by additional measurements, which 
would have resulted in robust soft sensors [14]. 

Robustness of the models can be closely related to the 
factors discussed above with respect to adaptation. It 
may sometimes be better to have a less accurate but 
more stable model to avoid instabilities in the process. 
This is because shutdowns are often more serious than 
sometimes suboptimal operating conditions. 
Robustness can sometimes be achieved by using mean 
values computed in a moving window approach, so 
that steep changes are smoothed out. However, this 
can also make it difficult to notice real process 
disturbances, which may cause significant negative 
effects on the overall process performance. An 
example of this was in a paper machine application, 
where the consistency at the head box was fluctuating 
heavily [15]. A decision was taken to strongly filter 
the signal. However, when the sensor was moved five 
meters downstream the noise level was significantly 
reduced. When the previously applied filtering was 
removed it was then possible to see strong spikes that 
turned out to be correlated to many of the paper 
breaks. When the cause of these spikes was eliminated 
(a poor control of switching between two water 
filters), the number of paper breaks was reduced by 
29%, estimated to be worth US$7 million per year in 
increased production. In this case the filtering, whose 
purpose was to produce a robust application, instead 
masked a real problem, even though the signal looked 
better. 

The combination of physical models and process data 
can produce more robust overall solutions that can be 
used for both diagnostics and control. One example of 
this is the use of a physical model to connect different 
physical properties in a complex process. This is 
implemented at Korsnäs pulp mill. Here we measure 
NIR spectra of ingoing wood chips. The fibers are 
followed through the mill using a physical model 
(using Modelica). A specific parameter value for 
chemical reactivity of the wood is used to predict the 
dissolution of lignin from fibers as a function of time, 
concentrations of chemicals, temperature, production 
capacity and other factors. By measuring the kappa 
number of the fibers produced as well as residual 
alkali and dissolved lignin of the extracted liquors and 
comparing these to the predicted values, the NIR 
spectra can be correlated to the reactivity of the 
incoming wood. Subsequently the NIR spectra can be 
used to predict the properties of the outgoing pulp, and 
for MPC on the continuous digester. Additionally, 
different diagnostics can be performed such as 
identification of hang ups and channelling. The 
diagnostics is also used to identify normal operations 
and the data that can be used to fine-tune the wood 
properties. This is an example of how a combination 
of physical models and statistical models with 
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measured data can produce more robust controls as 
well as diagnostics [1]. 

In another application a soft sensor was made with a 
combined statistical and physical model to predict the 
‘ring crush test’ on paper board. The physical model 
resulted in a very robust base for the system, and the 
parameter estimation resulted in good output values 
[16]. This application was implemented at several 
mills and gave good results for years without retuning. 

6 Conclusions 

It is important to be aware of the possible uses of the 
different data that are generated in a process, because 
the decisions that are made about filtering, 
compression etc., affect the possibilities of later 
analysis and of building data driven models in the 
future. The methods need to be more transparent to the 
user or completely automated. Examples have been 
described of the powerful applications based on 
combined statistical and physical process models. 

Applied research that simplifies and lowers the 
threshold for acceptance of methods based on 
combined statistical and physical models is one of the 
keys to better use of the data collected in process 
industry and power plants. An alternative is to keep 
developing new methods that make use of existing 
process models, in order to avoid having to develop 
new models for each application and the costs for 
maintaining several distinct models. Adaptation of 
process models and robustness in sensor output data 
are increasingly important when an automated method 
is to be implemented. 
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