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Abstract

When developing new network protocols, new functionalities of network devices, new traffic
models and other novelties, we face the problem of non-existing tools. If we want to simulate
the behavior of the network with a newly developed feature we have to develop a new simulator
or add a new functionality to an existing simulation tool. Both options can be quite complex
and/or time consuming. To facilitate the testing and simulation of a new packet scheduler that
we developed during our research we have developed a simulator for a general model of a
network device. For this purpose we have used the Modular Simulation language, MODSIM
III. It is a general-purpose, modular, block structured language that provides support for object-
oriented programming, discrete event simulation and animated graphics. The simulator includes
modules for the most important elements and functions of a packet network device, modules for
collection of results, and modules for writing the results into a standard format files. We have
tested and validated the operation of the simulator with analytically verifiable settings. The
simulation and analytical results were practically the same. Encouraged with that we have then
simulated newly developed packet schedulers and network device functionalities. Some of the
simulation results are presented in this article, more you can find in corresponding references.
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1 Introduction

Communication networks are constantly evolving. Re-
search and development are bringing ever-new network
protocols, new functionalities of network devices, new
traffic models and other novelties. If we want to simu-
late the behavior of the network with a newly developed
feature, we most often face the problem of non-existing
tools. This problem can be solved with development of
a new simulator or with adding a new functionality to
an existing simulation tool. Both options can be quite
complex and/or time consuming. To facilitate the test-
ing and simulation of a new packet scheduler that we
developed during our research we have also developed
a simulator for a general model of a network device.
In the following sections we first present the motivation
and related work. Then we explain the general structure
and functionality of a packet network device. Next we
present a newly developed schedulker. We introduce
the development platform used for our simulator and
give the detailed description of the developed simulator,
its functionality and operation. At the end we present
the testing and validation of the simulator and some in-
teresting simulation results for a new packet scheduler.

2 Motivation and related work

During our research in the field of packet networks and
Quality of Service (QoS) assurance we have found a lot
of references to a plethora of schedulers and other ele-
ments of network devices. While the analytical results
are plentiful, simulation results are scarcer. Where they
exist, simulations are on one hand carried out by sim-
ulators written in non-dedicated simulation languages
(like C++ and similar) resulting in non-reusable code,
and on the other hand by complex and powerful simu-
lation tools (like NS and similar) where adding a new
functionality and gaining quality simulation results is
not as trivial as it would seem, extremely expensive or
even impossible.

Based on that we have decided to develop a simple
model of a general packet network device, which would
include all the necessary functionalities. Since it is writ-
ten in a dedicated high-level object oriented simulation
language MODSIM III it is easy to understand, upgrade
and modify. Its modularity makes changing a scheduler
an easy task. Since it is a network device simulator,
it does not include functionalities of a higher protocol
levels like TCP or similar.

Since the simulator has been written from scratch it is
difficult to find any related work or make detailed com-
parison to other simulation tools as we have no in-depth
experiences with them.

3 A model of a packet network device

In figure 1 we present a simplified model of a network
device in packet networks.

Packets arriving at a network device are classified into
appropriate queues where they wait to be scheduled for
forwarding. Classification, queuing and scheduling are

performed at a close co-operation with other elements
of a network device, such as admission control (at con-
nection setup or at changing the connection parame-
ters), traffic policing and traffic shaping (during trans-
mission).

Fig. 1 A simplified model of a packet network device

Let us define the basic notions and elements that con-
cern the operation of a network device.

Network device in packet networks is any device that
forwards packets and performs other operations on
packets in transmission.

Flow is a group of packets that share the same proper-
ties. In most cases the flow is defined by packet source
and destination point. The flow can also be defined
through values in the packet header fields.

Admission control acts on entire flows. It grants or
denies a flow the access to network resources.

Traffic policing acts on packets. It monitors the confor-
mance of each packet to agreed traffic specifications. It
can drop the packet or change packet’s service levels.
Traffic policing can also include marking and metering
functions.

Traffic shaping is linked to traffic policing function.
It monitors traffic parameters of individual flows and
makes sure that they stay within the agreed boundaries
(buffering, dropping).

Classifier places the admitted packets into appropriate
queues. Classification is usually a simple and operation
based on values in packet header fields.

Queues in network devices keep packets awaiting
transmission (forwarding). A network device can have
one or more queues on each output port. One queue
can, for instance, store packets that belong to the same
service class or packets that belong to the same flow.

Packet scheduler takes care of the correct order of
packet forwarding. The operation of the scheduler and
its scheduling algorithm are probably the most impor-
tant functions of network devices, especially in connec-
tion to the quality of service assurance. Let us explain
the configuration and control of queues in more detail.

Queue configuration encompasses type, location, and
number of queues. In our work we used multiple FIFO
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(First In First Out) queues on output ports of the net-
work device.

Queue control encompasses classification, queue
memory management, and scheduling algorithm. In
our work we have used service class and flow based
classification of packets into queues. We have not used
any queue memory management, but the simulator it-
self does support it. We have used a number of differ-
ent scheduling algorithms, including a newly developed
one.

More detailed explanation of functionality and opera-
tion of network devices can be found in [1].

4 Newly developed scheduler

During our research of Quality of Service (QoS) as-
surance in packet networks, we have found out that
the most used and promising, especially for the IP net-
works, are the two solutions developed through IETF:
Integrated Services (IS) [7] and Differentiated Services
(DS) [8]-[9]. A more detailed study of mentioned solu-
tions has shown, that both of themhave their advantages
and disadvantages. When comparing the properties of
IS and DS (see [6] for more detail) we concluded that
the best solution is to merge the two concepts into a
new solution called a network with Differentiated and
Integrated Services (DIS) [1], [6].

In a DIS network the type of traffic is recognized and
processed accordingly to its QoS demands. Some pack-
ets are forwarded without detailed examination; other
packets are examined in greater detail and then for-
warded, yet another packets will be examined in greater
detail, changed accordingly to defined rules and then
forwarded.

The operation of DIS network is easiest presented
through example. Let us define 6 service classes de-
noted with letter A to F. In a DS network each of
these service classes would be represented with a cer-
tain value in IP header DS field.

When a packet travels through a network, each network
device on its path checks its service class and acts ac-
cordingly. Let us assume that packets from classes D to
F do not have high priority. They are placed in the ap-
propriate queue based only on their service class with-
out further processing. The class is determined by the
DS field in the packet header. Let us assume that class
C packets belong to a signaling protocol. They must be
examined in more detail in each network device. Let
us assume that that class A and B packets have high
priority. They are examined, processed and put into ap-
propriate queue.

It can be said that packets of classes D to F receive
only one-stage processing (based on a DS field), while
packets from classes A, B and C receive two-stage pro-
cessing. The first stage is based on their DS field in IP
header, where it is determined that they need more de-
tailed processing of the second stage. A simplified pro-
cessing flow for this example is depicted in figure 2. In
our case the traffic of classes A to C requires IS func-

Fig. 2 A simplified packet processing flow in a proposed
DIS network

tionality, while for classes D to F the DS functional-
ity suffice. Our proposal is certainly reasonable when
classes A and B (and consequently also class C) traffic
share is low comparing to class D, E and F traffic.

At the first glance, our proposed DIS network would
work like a DS network, meaning that the traffic dif-
ferentiation would be based on traffic classes. Packets
would be processed according to the values DS fields
in IP header. This mechanism would introduce relative
levels of QoS. Since it is anticipated, that for some time
the majority of traffic on public IP network would re-
quire only relative QoS, the advantages of DS could be
exploited.

But for the minority of traffic with more complex and
stringent QoS demands a few service classes would
be defined. Those classes would receive better ser-
vice with more processing, similar to IS. In addition
to higher demands, such traffic would also use more
network resources. This kind of traffic would have to
exploit advantages of IS concept. And since it is antici-
pated that it will only be a small part of the total traffic,
disadvantages of IS should not come out. At the same
time (at least for this traffic) disadvantages of DS would
be eliminated.

At this point it should be stressed, that this is not some
sort of ”IS over DS”, but merging of both concepts. In
the first stage the network works similar to a DS net-
work. But in the second stage, only for the traffic of
certain service classes, the network works similar to an
IS network. For more details see [1], [6].

The most critical part of QoS assurance in packet net-
works and in network devices are schedulers. In gen-
eral, a scheduler should satisfy the following, some-
times contradictory, demands:

• simple implementation,

• low complexity,

• fairness and flow protection,

• operation inside agreed boundaries,

High speed networks demand simple schedulers that
can be implemented in hardware. The complexity
should be as low as possible, desirably O(1). This
would ensure the scalability, what is not the case with
O(N) or O(log(N)) schedulers. Fairness is a desirable
feature between flows with the same QoS demands. A
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fair scheduler also provides flow protection (misbehav-
ing flow can not affect the service received by other
flows). Operation inside agreed boundaries means that
the scheduler has predictable and measurable parame-
ters, for instance latency. These parameters could be set
for each individual packet or statistically for each flow.

Since our DIS network introduces two-stage packet
processing, it is straightforward to configure output
queues in the same manner. This also implies two-stage
scheduling. The first scheduling stage should assure
different levels of QoS between existing service classes,
and the second stage should, when necessary, assure
fairness and isolation between flows within the same
service class. Based on above conditions, we proposed
the use of Strict Priority scheduling on the first stage
and the use of Deficit Round Robin (DRR) scheduling
on the second stage. The justification for this is:

• Both schedulers have complexity of O(1).

• Strict Priority scheduling assures relative QoS
levels between service classes. Referring to the
example above, we conclude that class A has the
highest priority and class F the lowest priority. Ac-
cording to the properties of Strict Priority schedul-
ing, class A packets see the entire link bandwidth,
class B packets essentially share bandwidth only
with class A packets, and so on till class F packets.
Since Class A and B traffic is limited, it should not
happen that their packets use entire link bandwidth
and in that way starve lower class packets.

• DRR scheduling [4] assures fairness and isolation
between flows within each service class, mean-
ing that in long term none of the active flows can
get more resources than their reservation. Second
stage scheduling is reasonable only for high prior-
ity service classes like A (guaranteed service) and
B (controlled-load service) in our example.

The detailed analytical and simulation analysis of two-
stage network operation with two-stage scheduling is
presented in [1]. Some results are also presented later
in this paper.

5 Development platform

For the development of our simulator of a general
packet network device we have used the Modular Sim-
ulation language, MODSIM III. It is a general-purpose,
modular, strongly typed, block structured simulation
language, which provides support for object-oriented
programming, discrete event simulation and animated
graphics. It is intended to be used for building process-
based discrete event simulation models through modu-
lar and object-oriented development techniques. MOD-
SIM’s syntax and control mechanisms are similar to
those of Modula-2, Pascal and Ada.

Simulation capabilities of Modsim III are provided both
in library modules and directly through the language.

These modules provide a direct support for all capabil-
ities needed to program discrete-event simulation mod-
els. All MODSIM III objects have the capability of us-
ing Process methods. A ”Process” method is a method
which can elapse simulation time. A process might
WAIT in simulation time and interact at specific simu-
lation times with other processes inside the same object
or included into other objects [10].

An extremely useful feature of the MODSIM III li-
braries is not only a broad choice of modules, functions
and objects, but also the fact that most of those objects
have the built-in possibility for statistical data collec-
tion. That eliminates the need for the time-consuming
post-processing statistical analysis of gained simulation
results.

6 Simulator

Our simulator of a network device is built of several
modules. Each of the modules includes definitions of
one or more simulator objects.

Each element or function of a network device (see sec-
tion 3) is realized in a separate object with its own prop-
erties, settings, functionality and behavior. The most
important network device objects are: admissioner ob-
ject, classifier object, queue object, and scheduler ob-
ject. Depending on settings of a simulation we can have
one or multiple instances of listed network device ob-
jects. For traffic generation we have traffic generator
object, which generates packet objects. In addition to
this we have also other objects that take care of reports,
reading simulation settings, writing simulation results
and other tasks. During the simulation objects inter-
act between themselves, what results in creating new
objects, disposing of no longer needed objects, storing
objects for later processing, etc.

The simulator is controlled through input files that con-
tain settings and behavior of the simulator. We can, for
instance, enable or disable some functions of the net-
work device (admissioner), control the number of in-
stances of a certain object (queues), set the algorithm
(scheduler), and more. Simulation results are written
into standard format files that provide the possibility of
semi-automatic graphic representation of results.

A typical example of a simple simulation scenario
would be the following. In a single network device we
have multiple input ports and multiple output ports (we
monitor one output port). On a monitored output ports
we have a scheduler with multiple queues and a classi-
fier. Admissioner is active. Each input port has a ded-
icated traffic generator with its own traffic pattern and
generates one flow.

From a packet’s point of view the simulator works like
this. When a packet object is generated by one of the
traffic generator objects, it is sent to one of the input
ports of the network device. It is first processed by ad-
missioner, and if it conforms to its flow specifications,
it is admitted and sent to the classifier of the appropriate
output port. It is then classified into one of the multi-
ple output queues on that output port. Those queues
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are served by the output port’s scheduler according to
the scheduling algorithm defined. When the packed is
served, its statistics is written to the report file. After
that the packet object is disposed. During that time
many other parameters of the network device are col-
lected, statistically evaluated, and available in the report
files.

7 Simulator testing and validation
We have tested and validated the operation of the sim-
ulator with analytically verifiable settings. First we
compared the results for the simplest queuing system
M/M/1 (see details in [1] and [2]).

Fig. 3 The comparison of analytical and simulation re-
sults in the M/M/1 waiting system for the average wait-
ing time W at system load 0 < ρ < 1.

In figure 3 we see the results for the average packet
waiting time W . Simulation and analytical results are
practically the same and almost indistinguishable in
the figure. With this result we have in the first place
confirmed the correct operation of traffic generators,
the correctness of procedures for choosing simulation
parameters, and the correctness of their calculations.
Since the M/M/1 queuing system is implemented as one
FCFS (First Come First Serve) queue, it is hard to say
that this also confirms the correct operation of the en-
tire simulator. In the M/M/1 queuing system the net-
work device does not use the functions of admissioner,
classifier and scheduler, it essentially works as a buffer.

To test and validate the operation of the network device
part of the simulator we have tested a more complex
queuing system M/G/1 with priorities for different val-
ues of system load ρ and traffic prioritiesp, where p = 4
is the highest priority and p = 1 is the lowest priority
(see details in [1] and [2]).

In figure 4 we see the results for the average packet
waiting time W . As in previous example, also here
the simulation and analytical results are practically the
same. That confirms the correct operation of the other
elements of our simulator (admissioner, classifier and
scheduler).

We have done similar validation test for the DRR sched-
uler, two-stage processing and queuing. More on this
can be found in [1].

Fig. 4 The comparison of analytical and simulation re-
sults in the M/G/1 queuing system with priorities p for
the average waiting time W at system load 0 < ρ < 1.

8 Simulation results for a new scheduler
Encouraged with that we have then simulated our newly
developed packet schedulers and network device func-
tionalities. We have carried out extensive simulations
with many different scenarios that included many dif-
ferent settings. In this article we present our results only
briefly, more you can find in [1].

We have simulated a modified version of DRR sched-
uler. The operation of an original DRR scheduler is
defined in [4], our modifications are explained in de-
tail in [1].The main characteristic of all Deficit Round
Robin (DRR) like scheduling algorithms is their abil-
ity to provide guaranteed service rates for each flow
(queue).

DRR services flows in a strict round-robin order. It has
complexity O(1) and it is easy to implement. Its latency
is comparable to other frame-based schedulers. A de-
tailed operation of DRR algorithm can be found in [4].
Below is the list of variables used:

R transmission rate of an output link,
N the total number of active flows,
ri the reserved rate of flow i,
wi weight assigned to each flow i,
Qi quantum assigned to flow i.

Because all flows share the same output link, a neces-
sary constraint is that the sum of all reserved rates must
be less or equal to the transmission rate of the output
link: ∑

i

ri ≤ R (1)

Let rmin be the smallest of ri: rmin = min∀i ri. Each
flow i is assigned a weight that is given by:

wi =
ri

rmin
. (2)

Note that ∀i ∈ 1, 2, · · · , N holds wi ≥ 1. Each flow
i is assigned a quantum of Qi bits, that is a whole pos-
itive value, i.e. Qi ∈ N . This quantum is actually
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the amount of service that the flow should receive dur-
ing each round robin service opportunity. Let us define
with Qmin the minimum of all the quanta. Then the
quantum for each flow i is expressed as:

Qi = wiQmin. (3)

Fig. 5 Average packet delays of DRR scheduler at Qi =
2000 bytes, at exponential packet length distribution.
Flow 1 is misbehaved and sends 5 times more data than
agreed.

Fig. 6 Average packet delays of DRR scheduler at Q1 =
Q2 = 3000 and Q3 = Q4 = 9000 bytes, at exponential
packet length distribution. Flow 2 is misbehaving.

The consequence of the above constraints and defini-
tions is, that if a flow i sends more data as it is enti-
tled to through the size of its quantum Qi (misbehaved
flow), its queue will become larger and packets will ex-
perience greater delay, while the other flows will remain
unaffected. This implies that DRR is fair and provides
flow protection.

To prove the above claims, we have simulated a sce-
nario where one of the flows is misbehaving and send-
ing 5 times more data that it is entitled to through its
quantum.

In figure 5 we see that the delay of the misbehaving
flow 1 quickly rises above all boundaries as the system
load ρ approaches 1. When ρ exceeds 1 (overload that
is caused by the misbehaving flow) it only affects flow
1, the other three flows are unaffected.

In figure 6 we see another scenario with average delays
of flows that have quantum values Q1 = Q2 = 3000
and Q3 = Q4 = 9000 bytes, and exponential packet
length distribution. Flow 2 with reservation Q2 = 3000
bytes is misbehaving - sending more data than agreed.
The results show that its delays very quickly rise above
all limits while delays of other flows, that behave ac-
cording to agreed parameters, experience expected de-
lays.

We gain similar results for two-stage scheduler. We use
the strict priority scheduler on the first stage and the
DRR scheduler on the second stage.

In figure 7 all flows have the same quantum. We see
that flows are differentiated by its delay according to the
priority class they belong to. But flows inside the same
priority class have exactly the same average delay.

Situation is s bit different at the presence of a misbe-
having flow. In figure 8 we have one misbehaving flow
in each priority class. We see that the delay rises only
for the misbehaving flow and does not affect other flows
inside the same priority class. But since we have strict
priority queuing on the first stage, misbehaving flows of
high priority classes affect all the flows in low priority
classes.

9 Conclusion

The developed simulator has proven its functionality
and provided us with interesting results for a newly de-
veloped scheduler. Since the simulator is built-up of
modules it can be easily upgraded, we can easily add
new functionality or reuse some of its modules in other
simulators (what we have recently successfully done).

The main contribution of our work and at the same time
also the implication is the simulator itself. The sim-
ulator makes a solid foundation for further research -
adding a new scheduler, admission policy or classifier
settings is easy and straightforward. Another contribu-
tion is the proposal of a DIS network with a simulated
set of schedulers with proven behavior.
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