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Abstract

The dynamics of power electronic system with pulse width modulation (PWM) control is stud-
ied in this paper. Behaviour characteristic for a nonlineardynamical system is observed and
theoretically explained. The set of system parameters influenced on periodic and chaotic oscil-
lations existence are established and presented. For periodic motions, the regularities of their
origin are studied and their possible bifurcations are established. A DC-DC buck converter
controlled by a voltage feedback is taken as a representative system. The studied system is de-
scribed by a system of piecewise-smooth nonautonomous differential equations. The research
are focused on chaotic oscillations analysis and analytical search for bifurcations dependent on
parameter. The most frequent route to chaos by the period doubling is observed in the second
order DC-DC buck converter. Other bifurcations as a complexbehaviour in power electronic
system evidence are also described. The system sensitive dependence to initial conditions vari-
ation is studied and a positive largest Lyapunov exponent asa chaos indicator calculated. Ap-
propriate methods of analysis are applied and used to observe chaotic phenomena. In order to
verify theoretical investigation the experimental DC-DC buck converter was build. The results
were obtained from three sources: mathematical model numerical calculation, electrical circuit
computer simulation and experimental verification from thepractical buck converter circuit. A
very good agreement between theory and experiment was reached.
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1 Introduction

The dynamics of DC-DC buck system is studied. Sys-
tem of this type have a broad range of applications
for power control because of its high power efficiency
and multiple direct current (DC) levels. Examples are
power supplies for radio-electronics, computer equip-
ment or spacecrafts [1, 7].

Ordinary differential equations with discontinuous
right-hand sides constitute an important class of dy-
namical systems which applications to different prob-
lems in science and technology are variety and common
(e.g. power electronics). On the basis of an example of
a buck converter with a pulse width modulation (PWM)
controller there will be determined the regions of peri-
odic and chaotic oscillations. The regularities in the
occurrence of periodic motions will be studied, and the
associated bifurcations described.

There are two main reasons for studying chaotic cir-
cuits. It is important to know when and how this sort of
behaviour can be present in an experimental situation,
and if there is any to avoid it. From a more optimistic
point of view, if a mode of operation is well understood,
it can be useful in engineering. The understanding of
chaotic behaviour in system operating modes can help
to optimise a design process.

2 System description

The experimental example is a DC-DC buck
converter[2, 6] which output voltage is controlled
by a PWM with constant frequency, working in contin-
uous conduction mode (CCM). A operation which is
known as CCM, exists when a inductor current is never
zero. The switches are assumed to be ideal.

In practise it is necessary to regulate low-pass filter out-
put voltagev against changes in a input voltage and a
load current, by adding a feedback control loop as in
Fig. 1. In this proportional controller, a constant refer-
ence voltageVref is subtracted from the output voltage
and the error, is amplified with gainA to form a con-
trol signal, vco = A(v − Vref ). This signal feeds a
PWM circuit comprising a ramp (sawtooth) generator
of frequencyfs and voltagevramp. Switch driven by
comparator conducts whenevervco < vramp. The in-
tended mode of operation is a steady state in which the
output voltage stays close toVref .

The switched operation of converters implies a multi-
topological model in which one particular circuit topol-
ogy describes the system for a particular interval of
time. Also, the operation is cyclic, implying that
the involving topologies repeat themselves periodically.
Thus, a natural way to model such kind of operation
is to split the system into several subsystems, each be-
ing responsible for describing the system in one sub-
interval of time.

Considering that the linear amplifier has gainA, one
can write

vco(t) = A
(

v(t) − Vref

)

. (1)

Fig. 1 Buck converter with proportional closed loop
controller

Then, both control signalvco and ramp voltagevramp

are applied to the comparator, and every time the output
difference changes its sign, the position of the switches
S is commuted in such a way thatS is open when the
control voltage exceeds the ramp voltage. OtherwiseS
is closed.

Due to the fact that the discontinuous conduction mode
does not take place, the converter can be represented by
a piecewise linear vector field, described by two sys-
tems of differential equations as follows:

System I:vco ≥ vramp(t)

d

dt

[

v(t)
i(t)

]

=

[

−1/(RC) 1/C
−1/L 0

][

v(t)
i(t)

]

(2)

System II:vco < vramp(t)

d

dt

[

v(t)
i(t)

]

=

[

−1/(RC) 1/C
−1/L 0

][

v(t)
i(t)

]

+ (3)

+

[

0
1/L

]

Vin

wherev is the capacitor voltage andi is the inductor
current. Using the notationx = [v, i]T , (yT donates
the transpose ofy), (2) and (3) can be combined in only
one expression

dx

dt
= f(x, t) (4)

f(x, t) =

[

−1/(RC) 1/C
−1/L 0

]

x(t)+ (5)

+

[

0
Vin/L

]

1s(t).

where

1s(t) =

{

0 if t /∈ s
1 if t ∈ s

(6)
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and
s = {t ≥ 0 : vco < vramp(t)}.

And the ramp voltage is given by

vramp(t) = Vl + (Vu − Vl)t/T

whereVl andVu are respectively the lower and upper
voltages of the ramp andT its period.

3 Methods of theoretical analysis
The nonlinear phenomena includes bifurcations (sud-
den changes in operating mode), coexisting attractors
(alternative stable operating modes), and chaos. If
power converter is going to be designed, a knowledge
about these issues existence and its investigation meth-
ods is vital. Unfortunately, popular analysis includes
in most cases linear methods. Linear methods applied
alone cannot give a wide spectrum of information of
nonlinear phenomena and are insufficient in model pre-
dicting and analysing.

3.1 Largest Lyapunov Exponent

The usual test for chaos is calculation of the largest Lya-
punov exponent (LLE) [13]. A positive LLE indicates
chaos. When one has access to the equations generat-
ing chaos, this is relatively easy to do. The general idea
is to follow two nearby orbits and to calculate their av-
erage logarithmic rate of separation. Infinite time Lya-
punov exponents are suitable for characterising global
behaviour of a system.

For most purposes, only the maximum Lyapunov expo-
nent (LE) is considered. And it determines how sensi-
tive a system is to initial conditions. Generally this is
expressed in the limit as time goes to infinity, and can
be written numerically as

λmax = lim
t→∞

ln
(

d(t)
d0

)

t
(7)

whered(t) is the separation between the trajectories at
time t, andd0 is their separation at time zero, initial
state.

Equation (7) is not directly usable because the system
under consideration tends to be bounded and the rate of
separation of trajectories is different in different regions
of the phase space. If the trajectories at the beginning
of evolution process are separated too much they will
move into different regions, and further separation does
not truly indicate the expansion rate around either tra-
jectory.

Any method that is used for measuring the infinite time
LE must either avoid these problems or must somehow
keep the trajectories together (e.g. using renormalisa-
tion). Consider a particle placed on the trajectory of
interest,x(t), while another particle is placed in some
distance,d0, away aty(t). The particles are evolved
in time until some designated event occurs. At that
time, to prevent the second particle from moving too
far from the first, it is brought back towards the first to

Fig. 2 Poincaré section (map) of limit cycle in the
Poincaré plane (cross-section)

their initial separation,d0. Using this method, the value
of the Lyapunov exponent after thel-th renormalisation
is [14]

λl =
1

tl

l
∑

k=1

ln
d(tk)

d0
(8)

whered(tk) is the separation between the particles be-
fore thek-th renormalisation. This value is equal to the
true Lyapunov exponent when

d(t) ≈ d1−l
0

l
∏

k=1

d(tk) (9)

If one is interested in all LEs, not just the largest,
the more complex procedure of reorthonormalisation is
needed.

3.2 Poincaŕe map

There are many cases where discrete-time dynami-
cal systems (maps) naturally appear in the study of
continuous-time dynamical systems defined by differ-
ential equations. The application of such maps in power
electronic systems analysis allows to observe such non-
linear phenomena as bifurcations or chaos.

Before Poincaré will be defined consider a continuous-
time dynamical system defined by

ẋ = f(x), x ∈ R
n, (10)

Assume, that (10) has a periodic orbitL0. Take a point
x0 ∈ L0 and introduce a cross-sectionΣ to the cycle
at this point. The cross-sectionΣ is a smooth hypersur-
face of dimensionn − 1, intersectingL0 at a nonzero
angle. The simplest choice ofΣ is a hyperplane orthog-
onal to the cycleL0 atx0.

Consider now orbits of (10) near the cycleL0. The cy-
cle itself is an orbit that starts at a point onΣ and re-
turns toΣ at the same point. An orbit starting at a point
x ∈ Σ sufficiently close tox0 also returns toΣ at some
point x̃ ∈ Σ nearx0. Moreover, nearby orbits will also
intersectΣ transversely. Thus, a mapP : Σ → Σ,

x → x̃ = P (x),

is constructed. The mapP is called a Poincaré map
associated with the cycleL0.
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(a) (b)

(c) (d)

Fig. 3 1T-periodic system operating mode (a) inductor current waveform (b) current power spectrum density
(c) phase space trajectory of inductor current against a capacitor voltage (d) Poincaré section included one fixed
point

Let introduce local coordinatesξ = (ξ1, ξ2, . . . , ξn−1)
on Σ such thatξ = 0 corresponds tox0. Then the
Poincaré map will be characterised by a locally defined
map P : R

n−1 → R
n−1,which transformsξ corre-

sponding tox into ξ̃ corresponding tõx,

P (ξ) = ξ̃

The originξ = 0 of R
n−1 is a fixed point of the mapP :

P (0) = 0. The stability of the cycleL0 is equivalent
to the stability of the fixed pointξ0 = 0 of the Poincaré
map. Thus, the cycle is stable if all eigenvalues (multi-
pliers)µ1, µ2, . . . , µn−1 of the(n− 1)× (n− 1) Jaco-
bian matrix ofP ,

JP =
dP

dξ

∣

∣

∣

∣

∣

ξ=0

are located inside the unit circle|µ| = 1

3.2.1 Poincaŕe map for periodically forced systems

In several applications the behaviour of a system sub-
jected to an external periodic forcing is described by
time-periodic differential equations

ẋ = f(x, t), (x, t) ∈ R
n × R

1, (11)

wheref(x, t + T0) = f(x, t). System (11) defines an
autonomous system on the cylindrical manifoldX =
S

1 × R
n , with coordinates(x, t(mod T0)), namely

{

ṫ = 1,
ẋ = f(x, t).

(12)

In this spaceX , consider then-dimensional cross-
section Σ = {(x, t) ∈ X : t = 0} and x =
[x1, x2, . . . , xn]T are coordinates onΣ. Clearly, all
orbits of (12) intersectΣ transversely. Assuming that
the solutionx(x0, t) of (12) exists on the intervalt ∈
[0, T0], introduce the Poincaré map

x0 7→ P (x0) = x(x0, T0). (13)

In other words, one has to take an initial pointx0 and
integrate system over its periodT0 to obtainP (x0). By
this construction, the discrete-time dynamical system is
defined.

The advantage of using cylindrical space to present the
solution of the system is that there is a possibility to
observe the evolution of the state of the system,x(t),
as a function of timet ∈ [0, T0], and easily visualise
the possible periodic orbits.

The basic problem with this attitude refers to the
choice of the appropriate sampling frequency. For non-
autonomous systems like in analysed DC-DC buck con-
verter, the driving frequency is a proper choice if any
periodic behaviour of the system is related to the driv-
ing frequency. For switching converters, the switching
frequency is the natural choice. However, this sampled-
data method is in principle not suitable for autonomous
systems which do not possess any externally driven pe-
riodic source.

3.3 Bifurcations

There are two broad classes of transitions to chaos: the
local and global bifurcations. In the first case one limit
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(a) (b)

(c) (d)

Fig. 4 2T-periodic system operating mode (a) inductor current waveform (b) current power spectrum density
(c) phase space trajectory of inductor current against a capacitor voltage (d) Poincaré section included two fixed
points

cycle or fixed point loses its stability. The local bi-
furcation has three subclasses: period doubling, quasi-
periodicity and intermittency. The most frequent route
is the period doubling also present in the DC-DC buck
converter. In the global bifurcation more fixed points
and/or limit cycles lose its stability. It has two subdivi-
sions, the chaotic transient and the crisis.

In the study of dynamical systems in the form of dif-
ferential equations, a bifurcation occurs when a small
smooth change made to the parameter values (the bifur-
cation parameters) of a system causes a sudden quali-
tative change in the system’s long-term dynamical be-
haviour [10].

The appearance of a topologically nonequivalent phase
portrait under variation of parameters is called a bifur-
cation. Thus, a bifurcation is a change of the topologi-
cal type of the system as its parameters pass through a
bifurcation (critical) value.

Consider a continuous-time system that depends
smoothly on a parameter:

ẋ = f(x, α), x ∈ R
n, α ∈ R

1. (14)

Let L0 (see Fig. 5) be a limit cycle of system (14) at
α = 0. Let Pα denote the associated Poincaré map for
nearbyα; Pα : Σ → Σ,whereΣ is a local cross-section
to L0. If some coordinatesξ = (ξ1, ξ2, . . . , ξn−1) are
introduced onΣ,thenξ̃ = Pα(ξ) can be defined to be
the point of the next intersection withΣ of the orbit of
(14) having initial point with coordinatesξ on Σ. The

intersection ofΣ andL0 gives a fixed pointξ0 for P0 :
P0(ξ0) = ξ0.

Suppose that atα = 0 the cycle has a simple multiplier
µ1 = −1, while −1 < µ2 < 0. Then, the restriction
of Pα to the invariant manifold will demonstrate gener-
ically the period-doubling (flip) bifurcation: A cycle of
period two appears for the map, while the fixed point
changes its stability. Since the manifold is attracting,
the stable fixed point, for example, loses stability and
becomes a saddle point, while a stable cycle of period
two appears. The fixed points correspond to limit cy-
cles of the relevant stability. The cycle of period-two
points for the map corresponds to a unique stable limit
cycle.

Fig. 5 Flip bifurcation of limit cycle

3.3.1 Period doubling bifurcation

If an iterative map is used to model the system, the lin-
earised system needs to be examined. Suppose the iter-
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(a) (b)

(c) (d)

Fig. 6 4T-periodic system operating mode (a) inductor current waveform (b) current power spectrum density
(c) phase space trajectory of inductor current against a capacitor voltage (d) Poincaré section

ative map is

x 7→ f(x, α) x ∈ R
n, α ∈ R

1,

then the JacobianJf = ∂f/∂xT characterising the lin-
earised system is given by evaluated at the fixed point.
The eigenvalues of system can be obtained by solving
the characteristic equation

det(µ1 − Jf ) = 0

In this case, the modulus of the eigenvalues needs to be
taken into account. If one of the eigenvalues is observed
to move out of the unit circle on the real line, through
the point−1, then we may establish a period doubling.
Generally, the bifurcation associated with the appear-
ance ofµ1 = −1 is called a period-doubling (or flip)
bifurcation.

Fig. 7 A fixed point appears at parameterα = 0 in
a saddle-node bifurcation. Forα > 0 there is an at-
tracting fixed point and a saddle fixed point. The cross-
sectional figures depict the action of the planar map at
that parameter value.

Periodic orbits of periods greater than one can come
into (or go out of) existence through saddle-node bifur-
cations, and they can undergo period-doubling bifurca-
tions (see Fig. 7). This kind of behaviour exists in anal-
ysed DC-DC buck converter and it will be shown below.

Fig. 8 An attracting fixed point loses stability atα = 0
in a period-doubling bifurcation. Fora > 0 there is a
saddle fixed point and a period-two attractor.

At a period-doubling bifurcation from a period-k orbit
(see Fig. 8), two branches of period-2k points emanate
from a path of period-k points. When the branches split
off, the period-k points change stability (going from at-
tractor to repeller, or vice versa).

4 Computer simulation

Assuming the notation of from used in previous sec-
tions, the parameters of the circuit are:R, C, andL,
the resistance, the capacitance and the inductance of
the circuit respectively;Vl andVu, the lower and upper
voltages of the ramp andT , its period equals1

f
; A, the
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(a) (b)

(c) (d)

Fig. 9 Chaotic system operating mode (a) inductor current waveform (b) current power spectrum density (c) phase
space trajectory of inductor current against a capacitor voltage (d) Poincaré section

gain of the amplifier;Vref , the reference voltage, and
Vin, the input voltage. The buck converter is investi-
gated using the following parameter values:L=20 mH,
C=47 µF, R=22 Ω, A=8.2, Vref =11.3 V, Vl=3.8 V,
Vu=8.2 V, ramp frequencyf=2.5 kHz [3, 6]. There
was investigated the variations ofVin ∈[20 V,35 V] as
the bifurcation parameter. The integration has been per-
formed based onode23tbMatlab-provided algorithm
with variable step size.

4.1 Theoretical model simulation

One of the routes to chaos is by period doubling, which
continues until there are no further stable states avail-
able. At the beginning of simulation when input volt-
age is 20 V circuit exhibits periodic behaviour. Dur-
ing system bifurcation parameter (Vin - input voltage)
changes, periodic state becomes unstable because of
flip bifurcation.

In spectral analysis presented in Fig.3(b) it is observed
as second frequency appearing at half the driving fre-
quency. Further increase in input voltage results in
splitting of two periods (see Fig.4(b)), giving quadru-
pling (Fig.6(b)), octupling and finally chaos in Fig.9(b).
This is called the period doubling cascade route to
chaos.

LLEs plotted against bifurcation parameter are pre-
sented in Fig. 10. As one can see LLE approximately
equals 0 when limit cycle is considered no matter how
complex. Near the last period-doubling bifurcation,
suddenly and at approximately 32.4 V , there is a large
chaotic behaviour. And LLE as a qualitative indicator
of chaos is positive. Further input voltage increasing

shows chaotic oscillations all the time.

Fig. 10 Largest Lyapunov exponent calculated using
difference method

The parametric portrait together with its characteristic
phase portraits constitute a bifurcation diagram. A bi-
furcation diagram of the dynamical system is a stratifi-
cation of its parameter space together with representa-
tive phase portraits for each stratum. It is desirable to
obtain the bifurcation diagram as a result of the qual-
itative analysis of a given dynamical system. It clas-
sifies in a very condensed way all possible modes of
behaviour of the system and transitions between them
(bifurcations) under parameter variations.

Because it is easy to vary, the input voltageVin was
chosen as the bifurcation parameter. TheiL, vC andvco

were sampled at the start of every ramp cycle and plot-
ted as the bifurcation diagram as it is shown in Fig.11.
A period doubling route to chaos is visible. This pro-
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(a) (b) (c)

Fig. 11 Bifurcation diagram withVin as the bifurcation parameter

cess is repeated for every discrete value of the bifurca-
tion parameter in the intervalVin ∈ [20, 35] V.

There was computed that stable 1T-periodic orbit (limit
cycle) is initially found (see Fig. 3) and continued until
some value near 24.5 V. Then, a first period-doubling
bifurcation occurs, and the stability of the 1T-periodic
orbit is lost in favour of the 2T-periodic orbit which ap-
pears at this value as it is shown in Fig. 4. This 2T-
periodic orbit also loses stability in a period-doubling
bifurcation near 31.15 V shown in Fig. 6. The unstable
orbits cannot appear in a bifurcation diagram what was
shown in Fig. 11. Near the last period-doubling bifur-
cation, suddenly and at approximately 32.4 V , there is
a large chaotic behaviour, as can be seen in Fig. 9.

Parallel branches of 6T-periodic orbit are detected in
a neighbourhood ofVin=30.000 V which is shown in
Fig. 11. This undergoes its own period-doubling cas-
cade which ends in a six-piece chaotic attractor coex-
isting with the main 2T-periodic stable orbit. A fur-
ther branch of 12T-periodic orbit is found in a neigh-
bourhood ofVin=32.15 V (see Fig. 11) and born af-
ter a saddle-node bifurcation and coexisting with the
8T-periodic stable orbit generated at the third period-
doubling of the 1T-periodic main orbit, which gives rise
to a twelve-piece chaotic attractor via a period-doubling
cascade once again.

The Poincaré section diagram (see Fig. 3(d), 4(d),
6(d), 9(d)) come into being as a result of simulated
waveforms sampling synchronised with the ramp volt-
age, one sample of the current and voltage variables at
the beginning of the ramp. Then the representation in
the state space of the points obtained with this proce-
dure gives the discrete evolution of the system. For pe-
riodically driven (non-autonomous) systems, like most
of the fixed frequency switching converters, informa-
tion about periodicity can be easily obtained by sam-
pling the waveforms. Essentially, one take a waveform
from computer simulation in this case, extract its value
at periodic time instants equals ramp signal period and
look for specific patterns.

4.2 Electrical circuit computer simulation

In order to compare mathematical model and designed
circuit, PSpice simulation has been carried out before
DC-DC buck converter laboratory realisation.

Fig. 12 Circuit diagram of the experimental buck con-
verter

The power circuit (see. Fig.12) uses a power metal-
oxide-semiconductor field-effect transistor (MOSFET)
IRF9640 and power standard recovery diode 1N4001.
The DC input voltage has been varied from 20 to 35 V,
control circuit have been supplied from a stable +12 V
rail. The ramp generator, based on a 555 timer, pro-
duces a sawtooth waveform. Wide band dual opera-
tional amplifier TL082 is used as a comparator and a
difference amplifier. Comparator is fed by sawtooth
waveform and difference amplifier that takes the dif-
ference betweenv andVref derived from the +12 sta-
bilised rail.

The values of circuit components give approximately
similar system as previously simulated:L =20 mH,
C =47µF, R =22Ω, T =400µs,Vl =3.8 V,Vu =8 V
andVref =12 V. There has been carried out the simu-
lation of designed circuit before physical realisation.
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V(C)

11.8000V 11.8500V 11.9000V 11.9500V11.7624V
I(L)

500.0mA

550.0mA

600.0mA

466.7mA

622.6mA

(a)

V(C)

11.6V 11.8V 12.0V 12.2V 12.4V
I(L)

400mA

500mA

600mA

700mA

750mA

(b)

V(C)

11.4V 11.6V 11.8V 12.0V 12.2V 12.4V 12.6V
I(L)

400mA

500mA

600mA

700mA

800mA

350mA

(c)

V(C)

11.0V 11.5V 12.0V 12.5V 13.0V
I(L)

300mA

400mA

500mA

600mA

700mA

800mA

(d)

Fig. 13 Phase space trajectory obtained from PSpice
(a) 1T periodic orbit (b) 2T periodic orbit (c) 4T pe-
riodic orbit (d) chaotic orbit

The results of simulation using PSpice are compara-
ble to simulated mathematical model and presented in
Fig. 13. It is the strong evidence of circuit designing
correctness. Phase space trajectory changes as a result
of period doubling bifurcation are clearly shown.

5 Practical verification

(a) (b)

(c) (d)

Fig. 14 Phase space trajectory measured in a laboratory
(a) 1T periodic orbit (b) 2T periodic orbit (c) 4T peri-
odic orbit (d) chaotic orbit

The power circuit uses a power MOSFET IRF9640 and
a Schottky diode. Probably the greatest deviation from
theoretical model poses the coil series resistance not in-
cluded in the mathematical equations and equals 0.3Ω.
The DC input voltage from 20 to 35 V is passed through

a positive voltage regulator LM7812 that provides a
stable +12 V rail for the control circuit. The ramp
generator, based on a LM555 timer, produces an accu-
rate sawtooth waveform. As the comparator is applied
LM311 and as the difference amplifier is used a com-
plementary metal-oxide-semiconductor (CMOS) oper-
ational amplifier LMC662. Comparator is fed by a saw-
tooth waveform and a difference amplifier that takes the
difference betweenv andVref derived from a +12 sta-
bilised rail.

The results from the laboratory experiment are similar
to the simulations from PSpice and from Matlab and
are presented in Fig. 14. As is able to observe the qual-
itative character of all results is the same. Every time
bifurcations and chaotic oscillations are presented.

6 Results comparison
In order to verify obtained results there will be a
breakdown presented. The outcomes of mathematical
model from Matlab in comparison with the results from
PSpice simulated circuit and the physical laboratory ex-
periment will be shown.

The results were obtained from three sources:

1. Numerical calculations from Matlab. There was
the mathematical model simulated.

2. Simulation using PSpice, with consideration of
additional effects present in practical realisation
(non-ideal elements).

3. Experimental results from the practical buck con-
verter circuit.

The 4T-orbit (limit cycle) has been chosen for the sake
of sufficient complexity and is presented in Fig.15.
Such a presentation enables clear observation of be-
haviour present in the system. This attractor appears
after second flip bifurcation and is a premise of chaotic
phenomena existed in the DC-DC second-order buck
converter with the voltage control.

7 Conclusion
The main objective was to present nonlinear system
analysing methods and its application in power elec-
tronics. The DC-DC second-order buck converter with
the voltage control was taken as an example. The main
aim was to build a converter which is able to work
in chaotic operating mode basis of the mathematical
model. Simultaneously there were shown analytical
methods helpful in detecting, analysing and classifying
this kind of nonlinear behaviour.

Additionally it was presented that nonlinear analysis
describes analysed system more accurately and ex-
plains phenomenons (e.g. subharmonics, bifurcations
and chaos), which cannot be detected by using linear
approach of analysis. It proves that it could be useful
in circuits study, specially in a field where high relia-
bility is essential, like in spacecraft power systems or
terrestrial power systems.
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Fig. 15 4T periodic limit cycle comparison (a) 4T periodic orbit from Matlab (b) 4T periodic orbit from PSpice
(c) 4T periodic orbit obtained in a laboratory

The investigation was carried out in three different ways
and the results were compared. There were considered
three independent cases: the mathematical model sim-
ulated in Matlab, the circuit builded from components
exist in reality and simulated in PSpice and the labora-
tory experiment. All of cases give satisfactory results
and they have been described in relevant sections.

8 Future work

The theory of chaos has been recently applied in engi-
neering but at present there are a lot of analysis meth-
ods, which can be used in the DC-DC buck converter.

There is a possibility to find an application of following
methods:

1. Several discrete-time maps have been defined to
develop the analysis of nonlinear phenomena in
DC-DC converters. Except for stroboscopic maps
described in this paper there are also A-switching
and S-switching ones. Application can provide
more information about system and give more ac-
curate system description.

2. Lyapunov exponents computation from short time-
series. This method has a strong application in sys-
tem analysis with unknown description and could
be used directly in power electronics.

One cannot exclude the possibility of other forms of bi-
furcation that may occur in this class of switching con-
verters. In future there is also a possibility to study the
same converter controlled under a different scheme.
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