Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

BIFURCATIONS AND CHAOS IN AUTOMATIC
CONTROL SYSTEMS

tukasz Kocewiak

Warsaw University of Technology,
Department of Electrical Engineering,
Pl. Politechniki, 00-661 Warsaw,

Poland

lukasz.kocewiak@gmail.com(Lukasz Kocewiak)

Abstract

The dynamics of power electronic system with pulse width adaiion (PWM) control is stud-
ied in this paper. Behaviour characteristic for a nonlingdyamamical system is observed and
theoretically explained. The set of system parametersaenfiad on periodic and chaotic oscil-
lations existence are established and presented. Fodpenwtions, the regularities of their
origin are studied and their possible bifurcations areldistsed. A DC-DC buck converter
controlled by a voltage feedback is taken as a represeatsgstem. The studied system is de-
scribed by a system of piecewise-smooth nonautonomolereliffial equations. The research
are focused on chaotic oscillations analysis and anahgezzrch for bifurcations dependent on
parameter. The most frequent route to chaos by the perioblidgus observed in the second
order DC-DC buck converter. Other bifurcations as a compkdxaviour in power electronic
system evidence are also described. The system sensifieadence to initial conditions vari-
ation is studied and a positive largest Lyapunov exponeat@sos indicator calculated. Ap-
propriate methods of analysis are applied and used to abséaotic phenomena. In order to
verify theoretical investigation the experimental DC-D@k converter was build. The results
were obtained from three sources: mathematical model roatealculation, electrical circuit
computer simulation and experimental verification fromphactical buck converter circuit. A
very good agreement between theory and experiment wasa@ach
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1 Introduction Vs

The dynamics of DC-DC buck system is studied. Sys- ;' . ? J
tem of this type have a broad range of applications ‘ N
for power control because of its high power efficiency N
and multiple direct current (DC) levels. Examples are v
power supplies for radio-electronics, computer equip-
ment or spacecrafts [1, 7].

Ordinary differential equations with discontinuous
right-hand sides constitute an important class of dy-
namical systems which applications to different prob-
lems in science and technology are variety and commd¥ig. 1 Buck converter with proportional closed loop
(e.g. power electronics). On the basis of an example @bntroller

a buck converter with a pulse width modulation (PWM)

controller there will be determined the regions of peri-

odic and chaotic oscillations. The regularities in the

occurrence of periodic motions will be studied, and thenen, poth control signal,, and ramp voltage, qm,
associated bifurcations described. are applied to the comparator, and every time the output
There are two main reasons for studying chaotic cidifférence changes its sign, the position of the switches
cuits. Itis important to know when and how this sort of® IS commuted in such a way thatis open when the
behaviour can be present in an experimental situatiofONtrol voltage exceeds the ramp voltage. Othenise
and if there is any to avoid it. From a more optimistic'S ¢losed.

point of view, if a mode of operation is well understood pye to the fact that the discontinuous conduction mode
it can be useful in engineering. The understanding Qfpes not take place, the converter can be represented by
chaotic behaviour in system operating modes can hejppiecewise linear vector field, described by two sys-
to optimise a design process. tems of differential equations as follows:

2 System description System lveo = vramy(?)

The experimental example is a DC-DC buck 4 v(t) -1/(RC) 1/C v(t)
converter[2, 6] which output voltage is controlled ; i(t) = ~1/L 0 i(t) )
by a PWM with constant frequency, working in contin-

uous conduction mode (CCM). A operation which is

known as CCM, exists when a inductor currentis nevesystem Il:v., < vyqmp(t)

zero. The switches are assumed to be ideal.

In practise it is necessary to regulate low-pass filter out? | v(t) | _ | =1/(RC) 1/C || v(t)
put voltagev against changes in a input voltage and ait | i(t) —-1/L 0 i(t)
load current, by adding a feedback control loop as in

Fig. 1. In this proportional controller, a constant refer-

ence voltage/,.. ; is subtracted from the output voltage

and the error, is amplified with gaid to form a con- +
trol signal,v., = A(v — V,.c¢). This signal feeds a

PWM circuit comprising a ramp (sawtooth) generator ] ] ] .
of frequencyf. and voltagev, q,,,. Switch driven by wherev is the capacitor voltage aniles thg inductor
comparator conducts whenevey, < v,qmp. The in- current. Using the notatior = [v,i]" , (y* donates
tended mode of operation is a steady state in which tfige transpose of), (2) and (3) can be combined in only
output voltage stays close Q. +. one expression

T

+

Vin

0
1/L

dx
The switched operation of converters implies a multi- 5 = fx.1) 4)
topological model in which one particular circuit topol-

ogy describes the system for a particular interval of

time. Also, the operation is cyclic, implying that flx. 1) — -1/(RC) 1/C ¢ 5
the involving topologies repeat themselves periodically. (x,t) = —-1/L 0 x(t)+ ®)
Thus, a natural way to model such kind of operation
is to split the system into several subsystems, each be-
ing responsible for describing the system in one sub- 0
interval of time.
+ Vin/L 1,(¢).
Consid_ering that the linear amplifier has gain one
can write where
_J o iftées
veolt) = A(v(t) = Viey )- (1) L,(t) = { 1 iftes ©
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and
s = {t >0:0e < ’Uramp(t)}'

And the ramp voltage is given by

'Uramp(t) =Vi+ Vu-W)t/T

whereV; andV,, are respectively the lower and upper
voltages of the ramp arifl its period.

Poincaré
section

X

3 Methods of theoretical analysis , o _ o _
Fig. 2 Poincaré section (map) of limit cycle in the

The nonlinear phenomena includes bifurcations (sugoincaré plane (cross-section)
den changes in operating mode), coexisting attractors
(alternative stable operating modes), and chaos. |If
power converter is going to be designed, a knowled S . . .
about these issues existence and its investigation mgffﬁg |nL|t|aI Sip%raf('onilo'nLtJS'ngrtFE::h”:etnhor% ﬂl]ie Vt?llr’}e
ods is vital. Unfortunately, popular analysis includes)' € Lyapunovexponentarte enormaiisatio

in most cases linear methods. Linear methods appliéﬁ [14] .
alone cannot give a wide spectrum of information of \ — 1 Zln d(tk) ©)
nonlinear phenomena and are insufficient in model pre- =4 P do

dicting and analysing.
whered(ty) is the separation between the particles be-
fore thek-th renormalisation. This value is equal to the

The usual test for chaos is calculation of the largest Lydtue Lyapunov exponent when
punov exponent (LLE) [13]. A positive LLE indicates
chaos. When one has access to the equations generat- -l
ing chaos, this is relatively easy to do. The general idea d(t) ~ dy H d(tr) ©)
is to follow two nearby orbits and to calculate their av- k=1

erage logarithmic rate of separation. Infinite time Lya-

punov exponents are suitable for characterising globdl one is interested in all LEs, not just the largest,
behaviour of a system. the more complex procedure of reorthonormalisation is

] needed.
For most purposes, only the maximum Lyapunov expo-

nent (LE) is considered. And it determines how sensi3-2 Poinca@ map

tive a system is to initial conditions. Generally this iSthere are many cases where discrete-time dynami-
expre;sed in the_Iimit as time goes to infinity, and cagg systems (maps) naturally appear in the study of
be written numerically as continuous-time dynamical systems defined by differ-
ential equations. The application of such maps in power
In (M) electronic systems analysis allows to observe such non-
do (7) linear phenomena as bifurcations or chaos.

3.1 Largest Lyapunov Exponent

l

Amaz = tlim
—00
_ , _ . Before Poincaré will be defined consider a continuous-
whered(t) is the separation between the trajectories gfme dynamical system defined by

time ¢, anddy is their separation at time zero, initial
state. x = f(x), x € R", (10)

Equation (7) is not directly usable because the syste
under consideration tends to be bounded and the rate

separation of rajectories is diff.erent.in different re@o . at this point. The cross-sectiahis a smooth hypersur-
of the phase space. If the trajectories at the beglnnl_ ce of dimensiom — 1, intersectingL, at a nonzero

of evollution. process are separated too much Fhey Willgle. The simplest choice &fis a hyperplane orthog-
move into different regions, and further separation doeg,

L . . al to the cycld,( atxq.
not truly indicate the expansion rate around either tra-
jectory. Consider now orbits of (10) near the cydlg. The cy-

cle itself is an orbit that starts at a point @hand re-

Any method that is used for measuring the infinite ime,, ¢ 455 at the same point. An orbit starting at a point
LE must either avoid these problems or must somehoy e 3. sufficiently close tac, also returns ta at some

keep the trajectories together (e.g. using renormalisgy,int ¢ < 37 nearx,. Moreover, nearby orbits will also
tion). Consider a particle placed on the trajectory Oj iarsect: transversely. Thus, amap: & — %
interest,x(¢), while another particle is placed in some ' ' ' '

distanced,, away aty(t). The particles are evolved X — %X = P(x),

in time until some designated event occurs. At that

time, to prevent the second particle from moving tods constructed. The map is called a Poincaré map
far from the first, it is brought back towards the first toassociated with the cycle,.

sume, that (10) has a periodic orbi. Take a point
2! € L, and introduce a cross-sectidhto the cycle
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Fig. 3 1T-periodic system operating mode (a) inductor curseaveform (b) current power spectrum density
(c) phase space trajectory of inductor current against aaty voltage (d) Poincaré section included one fixed
point

Let introduce local coordinatés= (£1,&2,...,&,-1) In this spaceX, consider then-dimensional cross-
on ¥ such thatt = 0 corresponds texg. Then the section ¥ = {(x,t)e X:t=0} and x =
Poincaré map will be characterised by a locally definefk:;, 2o, ..., z,]7 are coordinates o&. Clearly, all
map P : R*~1 — R”~! which transformst corre- orbits of (12) interseckE transversely. Assuming that
sponding tax intogcorresponding &, the solutionx(xo, t) of (12) exists on the interval €
_ [0, Tp], introduce the Poincaré map
PE)=¢ xo — P(xo) = x(x0, Tb). (13)

S . . .
The origin¢ = 0 of R* “is afixed pointofthemap : |, iher words, one has to take an initial poiatand

P(0) = 0. The stability of the cycle.o is equivalent o ate system over its peridd to obtainP(xo). By

to the stability of the fixed poirgy = 0 of the Poincaré yi<’congtruction, the discrete-time dynamical system is
map. Thus, the cycle is stable if all eigenvalues (m“maefined.

pliers) i1, o, . . ., pin—1 Of the(n — 1) x (n — 1) Jaco-

bian matrix ofP, The advantage of using cylindrical space to present the
solution of the system is that there is a possibility to
dpP observe the evolution of the state of the systext,),
Jp = & as a function of time € [0, Ty], and easily visualise
£=0 the possible periodic orbits.
are located inside the unit circle| = 1 The basic problem with this attitude refers to the

3.2.1 Poincaé map for periodically forced systems ~Choice of the appropriate sampling frequency. For non-
piorp y y autonomous systems like in analysed DC-DC buck con-

In several applications the behaviour of a system sulyerter, the driving frequency is a proper choice if any
jgcted to an external _periodic_forcing is described byeriodic behaviour of the system is related to the driv-
time-periodic differential equations ing frequency. For switching converters, the switching
frequency is the natural choice. However, this sampled-

° 1 e X ) y 1
x=f(xt), (xt)eR"xR, (1) {ata method is in principle not suitable for autonomous

wheref(x,t + Tpy) = f(x,t). System (11) defines an systems which do not possess any externally driven pe-

autonomous system on the cylindrical manifald =  fodic source.

St x R™ , with coordinatesx, t(mod Ty)), namely 3.3 Bifurcations
i = 1, 12 There are two broad classes of transitions to chaos: the
x = f(x,t). 12)  ocal and global bifurcations. In the first case one limit
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Fig. 4 2T-periodic system operating mode (a) inductor curseaveform (b) current power spectrum density
(c) phase space trajectory of inductor current against aaitgp voltage (d) Poincaré section included two fixed
points

cycle or fixed point loses its stability. The local bi-intersection o2 and L gives a fixed poing, for P :
furcation has three subclasses: period doubling, quadt (&) = &o.

periodicity and intermittency. The most frequent route ] o

is the period doubling also present in the DC-DC bucieuppose that at = 0 the cycle has a simple multiplier
converter. In the global bifurcation more fixed pointst1 = —1, while =1 <z < 0. Then, the restriction
and/or limit cycles lose its stability. It has two subdivi-Of P to the invariant manifold will demonstrate gener-

sions, the chaotic transient and the crisis. ically the period-doubling (flip) bifurcation: A cycle of
period two appears for the map, while the fixed point

In the study of dynamical systems in the form of dif-changes its stability. Since the manifold is attracting,
ferential equations, a bifurcation occurs when a smathe stable fixed point, for example, loses stability and
smooth change made to the parameter values (the bififecomes a saddle point, while a stable cycle of period
cation parameters) of a system causes a sudden qualio appears. The fixed points correspond to limit cy-
tative change in the system’s long-term dynamical becles of the relevant stability. The cycle of period-two

haviour [10]. points for the map corresponds to a unique stable limit

The appearance of a topologically nonequivalent phagé(de'
portrait under variation of parameters is called a bifur-
cation. Thus, a bifurcation is a change of the topologi-
cal type of the system as its parameters pass through a
bifurcation (critical) value.

Consider a continuous-time system that depends
smoothly on a parameter:

x = f(x, ), x €R", a € RL. (14)

a<o a=0

Let Ly (see Fig. 5) be a limit cycle of system (14) at Fig. 5 Flip bifurcation of limit cycle

a = 0. Let P, denote the associated Poincaré map for
nearbyo; P, : ¥ — X,whereX is a local cross-section
to Ly. If some coordinate§ = (&1,&2,...,&,—1) are
introduced ornx,thené = P, (&) can be defined to be
the point of the next intersection with of the orbit of  If an iterative map is used to model the system, the lin-
(14) having initial point with coordinateson . The earised system needs to be examined. Suppose the iter-

3.3.1 Period doubling bifurcation
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Fig. 6 4T-periodic system operating mode (a) inductor curseaveform (b) current power spectrum density
(c) phase space trajectory of inductor current against acgt voltage (d) Poincaré section

ative map is Periodic orbits of periods greater than one can come
into (or go out of) existence through saddle-node bifur-
cations, and they can undergo period-doubling bifurca-
tions (see Fig. 7). This kind of behaviour exists in anal-
then the Jacobiai; = 9f /0xT characterising the lin- ysed DC-DC buck converter and it will be shown below.
earised system is given by evaluated at the fixed point.
The eigenvalues of system can be obtained by solving
the characteristic equation

x — f(x, ) x € R", a € R,

det(pl — Jy) =0

In this case, the modulus of the eigenvalues needs to be
taken into account. If one of the eigenvaluesis observed
to move out of the unit circle on the real line, through
the point—1, then we may establish a period doublingfig. 8 An attracting fixed point loses stability @t= 0
Generally, the bifurcation associated with the appeajn a period-doubling bifurcation. Far > 0 there is a

ance ofu; = —1is called a period-doubling (or flip) saddle fixed point and a period-two attractor.
bifurcation.

a<Q o=0 a>0

At a period-doubling bifurcation from a peridderbit
(see Fig. 8), two branches of peri@é-points emanate
from a path of period: points. When the branches split
off, the periodk points change stability (going from at-
tractor to repeller, or vice versa).

|~

T
//T///

4 Computer simulation
Fig. 7 A fixed point appears at parameter= 0 in ) . , ,
a saddle-node bifurcation. Fer > 0 there is an at- Assuming the notation of from used in previous sec-
tracting fixed point and a saddle fixed point. The crosdions, the parameters of the circuit ar&; ¢, and L,

sectional figures depict the action of the planar map af€ resistance, the capacitance and the inductance of
that parameter value. the circuit respectivelyy; andV,,, the lower and upper

voltages of the ramp ari, its period equal%; A, the
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Fig. 9 Chaotic system operating mode (a) inductor currentfeam (b) current power spectrum density (c) phase
space trajectory of inductor current against a capacitliage (d) Poincaré section

gain of the amplifier;}V,..r, the reference voltage, and shows chaotic oscillations all the time.
Vin, the input voltage. The buck converter is investi-

gated using the following parameter valués:20 mH, 410
C=47 uF, R=22 Q, A=8.2, V,.;=11.3 V, ;=38 V, O S SO ot
V,.=8.2 V, ramp frequency=2.5 kHz [3, 6]. There ' Eam—
was investigated the variations ©f, <[20 V,35 V] as
the bifurcation parameter. The integration has been pe
formed based onde23t b Matlab-provided algorithm
with variable step size.

o
T

=

.............................

[N
T

Largest Lyapunav exponent LLE

4.1 Theoretical model simulation 0ar

02F
One of the routes to chaos is by period doubling, whict ok - —
continues until there are no further stable states avai i

able. At the beginning of simulation when input volt- _ i
age is 20 V circuit exhibits periodic behaviour. Dur-Fig. 10 Largest Lyapunov exponent calculated using
ing system bifurcation parametdr;(, - input voltage) difference method
changes, periodic state becomes unstable because of
flip bifurcation.

The parametric portrait together with its characteristic
In spectral analysis presented in Fig.3(b) it is observeghase portraits constitute a bifurcation diagram. A bi-
as second frequency appearing at half the driving fréurcation diagram of the dynamical system is a stratifi-
quency. Further increase in input voltage results igation of its parameter space together with representa-
splitting of two periods (see Fig.4(b)), giving quadru-jve phase portraits for each stratum. It is desirable to
pling (Fig.6(b)), octupling and finally chaos in Fig.9(b).obtain the bifurcation diagram as a result of the qual-
This is called the period doubling cascade route t@ative analysis of a given dynamical system. It clas-
chaos. sifies in a very condensed way all possible modes of

LLEs plotted against bifurcation parameter are rebehaviour of the system and transitions between them
p 9 P P bifurcations) under parameter variations.

sented in Fig. 10. As one can see LLE approximatel
equals 0 when limit cycle is considered no matter hoBecause it is easy to vary, the input voltagg was
complex. Near the last period-doubling bifurcationchosen as the bifurcation parameter. Theve anduv,,
suddenly and at approximately 32.4 V , there is a largeere sampled at the start of every ramp cycle and plot-
chaotic behaviour. And LLE as a qualitative indicatotted as the bifurcation diagram as it is shown in Fig.11.
of chaos is positive. Further input voltage increasing\ period doubling route to chaos is visible. This pro-
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Fig. 11 Bifurcation diagram witl¥;,, as the bifurcation parameter

cess is repeated for every discrete value of the bifurcd-2 Electrical circuit computer simulation

tion parameter in the intervé,, € [20, 35] V. . .
In order to compare mathematical model and designed

circuit, PSpice simulation has been carried out before
There was computed that stable 1 T-periodic orbit (limiDC-DC buck converter laboratory realisation.
cycle) is initially found (see Fig. 3) and continued until
some value near 24.5 V. Then, a first period-doubling
bifurcation occurs, and the stability of the 1T-periodic
orbitis lost in favour of the 2T-periodic orbitwhichap- .1
pears at this value as it is shown in Fig. 4. This 2T- o Revg,
periodic orbit also loses stability in a period-doubling « 5. |=
bifurcation near 31.15 V shown in Fig. 6. The unstable=+., Tu...
orbits cannot appear in a bifurcation diagram what was "« ==
shown in Fig. 11. Near the last period-doubling bifur- L
cation, suddenly and at approximately 32.4 V, there is =%
a large chaotic behaviour, as can be seen in Fig. 9. ﬁ

RiB -
464l fRFos40
2 lug

Parallel branches of 6T-periodic orbit are detected in IR
a neighbourhood o¥;,,=30.000 V which is shown in C e b
Fig. 11. This undergoes its own period-doubling cas- T
cade which ends in a six-piece chaotic attractor coex-
isting with the main 2T-periodic stable orbit. A fur-
ther branch of 12T-periodic orbit is found in a neigh-_. L )
bourhood ofV;,,=32.15 V (see Fig. 11) and born af- Fig. 12 Circuit diagram of the experimental buck con-
ter a saddle-node bifurcation and coexisting with th¥erter
8T-periodic stable orbit generated at the third period-
doubling of the 1T-periodic main orbit, which gives rise
to a twelve-piece chaotic attractor via a period-doublin@he power circuit (see. Fig.12) uses a power metal-
cascade once again. oxide-semiconductor field-effect transistor (MOSFET)
IRF9640 and power standard recovery diode 1N4001.
) 3 ) ) ) The DC input voltage has been varied from 20 to 35V,
The Poincaré section diagram (see Fig. 3(d), 4(dyonirol circuit have been supplied from a stable +12 V
6(d), 9(d)) come into being as a result of simulateqyj| - The ramp generator, based on a 555 timer, pro-
waveforms sampling synchronised with the ramp Volty,ces a sawtooth waveform. Wide band dual opera-
age, one sample of the current and voltage variables @na| amplifier TL082 is used as a comparator and a
the beginning of the ramp. Then the representation ifltference amplifier. Comparator is fed by sawtooth
the state space of the points obtained with this procgyayeform and difference amplifier that takes the dif-

dure gives the discrete evolution of the system. For pgarence between andV,.; derived from the +12 sta-
riodically driven (non-autonomous) systems, like mosjjised rail.

of the fixed frequency switching converters, informa-

tion about periodicity can be easily obtained by sam¥he values of circuit components give approximately
pling the waveforms. Essentially, one take a waveformimilar system as previously simulated: =20 mH,
from computer simulation in this case, extract its valu€ =47 uF, R =220, T =400us,V, =3.8V,V, =8V

at periodic time instants equals ramp signal period anahdV;..; =12 V. There has been carried out the simu-
look for specific patterns. lation of designed circuit before physical realisation.
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a positive voltage regulator LM7812 that provides a
, N T T stable +12 V rail for the control circuit. The ramp
A A ~ generator, based on a LM555 timer, produces an accu-
( ) ( o ) rate sawtooth waveform. As the comparator is applied
' s LM311 and as the difference amplifier is used a com-
Lo SN ~ plementary metal-oxide-semiconductor (CMOS) oper-
: ‘ ational amplifier LMC662. Comparator is fed by a saw-
tooth waveform and a difference amplifier that takes the
difference between andV;..; derived from a +12 sta-
bilised rail.

.....

@

The results from the laboratory experiment are similar

to the simulations from PSpice and from Matlab and

are presented in Fig. 14. As is able to observe the qual-
itative character of all results is the same. Every time

bifurcations and chaotic oscillations are presented.

(© @ 6 Results comparison

Fig. 13 Phase space trajectory obtained from PSpids order to verify obtained results there will be a

(a) 1T periodic orbit (b) 2T periodic orbit (c) 4T pe- breakdown presented. The outcomes of mathematical

riodic orbit (d) chaotic orbit model from Matlab in comparison with the results from
PSpice simulated circuit and the physical laboratory ex-
periment will be shown.

The results of simulation using PSpice are comparahe results were obtained from three sources:

ble to simulated mathematical model and presented in

Fig. 13. It is the strong evidence of circuit designing 1. Numerical calculations from Matlab. There was
correctness. Phase space trajectory changes as a result the mathematical model simulated.

of period doubling bifurcation are clearly shown.
pert ubling briurcat ¥ ST 2. Simulation using PSpice, with consideration of

. e - additional effects present in practical realisation
5 Practical verification (non-ideal elements).

TekRun_| —_— Trigd _ Tek Run ] Trigd

3. Experimental results from the practical buck con-
verter circuit.

) //) /\ The 4T-orbit (limit cycle) has been chosen for the sake
i / e (/\/ ¢ of sufficient complexity and is presented in Fig.15.
o Such a presentation enables clear observation of be-

haviour present in the system. This attractor appears

i TR T o after second flip bifurcation and is a premise of chaotic
B g ] phenomena existed in the DC-DC second-order buck
(@ (b) converter with the voltage control.
Tek Run | — — Trig’d _ Tek Run [7:‘—! Trig’'d
. 7 Conclusion
’\\ v The main objective was to present nonlinear system

4 analysing methods and its application in power elec-
tronics. The DC-DC second-order buck converter with
the voltage control was taken as an example. The main

b O S SRS L T RSP O S| aim was to build a converter which is able to work
o in chaotic operating mode basis of the mathematical
(©) (d) model. Simultaneously there were shown analytical

. . i methods helpful in detecting, analysing and classifying
Fig. 14 Phase space trajectory measured in a laboratqpys kind of nonlinear behaviour.

(a) 1T periodic orbit (b) 2T periodic orbit (c) 4T peri- N ) ) )
odic orbit (d) chaotic orbit Additionally it was presented that nonlinear analysis

describes analysed system more accurately and ex-

plains phenomenons (e.g. subharmonics, bifurcations
The power circuit uses a power MOSFET IRF9640 andnd chaos), which cannot be detected by using linear
a Schottky diode. Probably the greatest deviation frorapproach of analysis. It proves that it could be useful
theoretical model poses the coil series resistance not im- circuits study, specially in a field where high relia-
cluded in the mathematical equations and equal$20.3 bility is essential, like in spacecraft power systems or
The DC input voltage from 20 to 35 V is passed througlierrestrial power systems.

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

075 TekRun | —1 — Trig'd
T T T T T T T T

>
A

e
\\_/
B

L1 T

n4 i i ’7: ]
1nrome 18 120121 122 123 124 125 128 1.4V 1.6V 1.8V 120V 122V 12.4v 126V @ 100V cha]mM 200us] A chd 7_S78mA
iy .
Ve ) v(©) 0.00000 s

(@ (b) (©)

Fig. 15 4T periodic limit cycle comparison (a) 4T periodibibrfrom Matlab (b) 4T periodic orbit from PSpice
(c) 4T periodic orbit obtained in a laboratory

The investigation was carried out in three differentway§3] F. Angulo, C. Ocampo, G. Olivar, R. Ramos. Non-
and the results were compared. There were considered linear and nonsmooth dynamics in a DC-DC buck
three independent cases: the mathematical model sim- converter: Two experimental set-up$Nonlinear
ulated in Matlab, the circuit builded from components  Dynamics46:239-257, 2006.

exist in reality and simulated in PSpice and the laborg4] J. Awrejcewicz, C.H. LamarqueBifurcations and
tory experiment. All of cases give satisfactory results  Chaos in Nonsmooth Mechanical Systenword

and they have been described in relevant sections. Scientific, London, 2003.
[5] V. Guohui, S. Banerjee, E. Ott, J.A. Yorke. Border-
8 Future work collision bifurcations in the buck converteCir-

o _cuits and Systems |: Fundamental Theory and Ap-
The theory of chaos has been recently applied in engi- pjications 45:707-716, 1998.
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There is a possibility to find an application of following _ Neéw Power Electronic Techniquez3:1-5, 1997.
methods: [7] Y.H. Lim, D.C. Hamill. Bifurcations and chaos in

models of spacecraft power systensternational
Symposium on Nonlinear Theory and its Applica-
tions 1:335-338, 1998.
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