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Abstract 

By attaching the absorber to the mechanical system, which is modelled as a one degree of 
freedom system, the new system becomes a two degree of freedom system. Depending on the 
driving frequency of the original system, the absorber needs to be carefully tuned, that is, to 
choose adequate values of the absorber mass and stiffness, so that the motion of the original 
mass is a minimum. The tenable vibration absorber is advantageous primarily in that it 
reduces the amplitude of vibrations in the mechanical system. The control vibration absorber 
is advantageous primarily in that it reduces the amplitude of the vibrations in the system by an 
oscillating force F(t). A vibration absorber is basically a spring-mass-damper system that is 
added to any vibrating system with the aim of reducing the amplitude of vibrations. The 
present article will discuss the method of online suppression of the vibration control LQR 
(Linear Quadratic Control) for a mechanical system by using a vibrating tuneable absorber. 
Several analyses and Matlab m-file for the auto-tuning control have been used. The aim of the 
paper is to acquaint the reader with the design of the incorporated absorber into the vibration 
system, which makes the suppression of the vibration of the mechanical system to a minimum 
possible. 
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1 Introduction 
Consider the vibrating mechanical system as a 
machine, which is compiled of a driven motor, 
gearbox and mechanisms with elastic and damping 
parts and driven parts. Vibration transmitted to the 
frame of this system is possible due to unbalanced 
rotors and mechanisms, the crank gear of the engine, 
clearances in bearings, oscillation of the moving 
driven parts, transient loading by diverging and 
coasting of driving motors, etc.  
The amplitude of the induced vibration is a function of 
the applied force and its frequency. An exciting force 
has the greatest effect when applied at the 
fundamental frequency of the system. The system is 
then excited at resonance, and in the case of a lightly 
damped system, the induced movement can be many 
times greater than the deflection caused by the 
equivalent static force. The ratio between the two 
effects is called the magnification factor.  
Vibration in mechanical systems has two effects: First, 
the very high peak accelerations can mean that the 
effective weight of the vibrating mechanical systems 
increases several-fold, and this may cause its 
destruction. Secondly, people near the mechanical 
systems feel these accelerations, which can be 
uncomfortable or even dangerous. A vibration 
absorber is used to protect the mechanical systems 
from steady-state harmonic disturbance. The 
equivalent model of this mechanical system with a 
reduced main mass m1, located on a cushion with 
coefficient of elasticity k1 and damping coefficient b1 
and the affiliate mass m2 of the absorber, located on a 
control spring with coefficient of elasticity k2 and 
damping coefficient b2 is possible to illustrate as a two 
mass system (Fig. 1).  
In the case when the frequency ω of the acting 
oscillating force F(t) driving the system is the same as 
the frequency ω2 of the vibration of the affiliate mass 
m2 of the absorber, the displacement of the system is 
y1=0. 

2 Model of the mechanical system with 
an absorber 
Consider a model of the mechanical system with 
absorber consisting of a mass m1 suspended on a 
spring with k1 and damping b1 on which a force 
varying harmonically in time with frequency ω and 
maximum amplitude F is acting. The vibration 
absorber consists of a second mass m2, a spring of 
stiffness k2 and damping b2 (Fig. 1).  
The tuneable absorber connected with the vibrating 
mechanical system is advantageous primarily in that it 
reduces the amplitude of the vibrations in the system 
by an acting oscillating force F(t) ( alternative 1, 2 and 
3): 

 
 1) F(t)=meω2sinωt, where m is the mass of the 
unbalanced rotor of mechanical system, e is the 

eccentricity of the unbalanced rotor and ω is the 
angular velocity of the unbalanced rotor -
alternative 1, 
 2) a square wave course of the acting force F(t)   
with an amplitude force F and frequency ω - 
alternative 2, 

       3) the course of the impact load F(t) = F at the 
start of the mechanical system -alternative 3 (Fig. 
10). 
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Fig. 1 The model of the mechanical system with an 
affiliate control absorber m2

3 Design of the absorber  

A system without an absorber is a system with one 
degree of freedom. The system has a circular natural 
frequency given by . The equation of 
motion with forcing is (the influence of the damping 
b1 on the spring is very small):                   

11
2
1 / mk=ω

,)(11111 tFybykym +−−=            (1)                             

where F(t) = Feiωt. The response is harmonic, with y1 = 
Y1eiωt and:                                       

.
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If the excitation frequency ω1 is close to the natural 
frequency ω, the system will resonate – we get a very 
large response. The system will vibrate at any 
excitation frequency, but the amplitude of the 
response is largest when the excitation frequency is 
close to the natural frequency. The concept of the 
vibration absorber is that we want to reduce the 
motion of the mass m1 to zero. To do this, first let us 
modify the SDOF to make it a system with 2 degrees 
of freedom, as shown below.  The equations of motion 
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for the model of the mechanical system with the 
absorber (Fig. 1) are:  
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Substituting y1 = Y1eiωt, y2 = Y2eiωt and F(t) = Feiωt, 
yields two simultaneous equations (the influence of 
the damping b1, b2 on the spring is very small): 
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These equations define the dynamics of the system 
with one-degree of freedom after it has been modified 
by attaching the secondary mass/spring system. The 
extra mass and spring are the absorber. Ideally, we 
want to completely stop the vibration of the primary 
mass m1. We can do this by setting Y1=0 in the first 
equation (2). This yield:  

,
2

2

m
k

=ω or .2ωω =                                       (5)  

That is, if the natural frequency of the added mass-
spring system by itself is the same as the excitation 
frequency, the primary mass will stop moving. What 
this means is that we can tune the absorber to a single 
excitation frequency. 

The amplitude of the acting force on the mechanical 
system is F = 15N (Fig. 1).   Assume there is a 
maximum permissible absorber deflection of Y2 = 10 
mm. The motion of the secondary mass m2 is given by 
the second equation (2). Assuming we use the entire 
clearance for the motion of the absorber, we can 
calculate the absorber stiffness as:  
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Recall that for the absorber to work, its natural 
frequency (before it is fastened to the vibrating 
system) is the same as the excitation frequency (3):  
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where ω = 5 s-1 is the excitation frequency.  

The result of the solution equation (1) is shown in the 
graph of the function in dimensionless variables of the 
amplitude characteristic dependence displacements 
y1/y2 and angular velocities ω/ω2 of the absorber m2 
(Fig. 2). The affiliate mass m2 of the absorber is not 

moveable in the case when the ratio ω/ω2=1. The next 
result is the phase characteristic: The change of the 
motion of the affiliate mass m2 of the absorber is 180o 
in the area when the ratio ω/ω2 = 1 (Fig. 
3).

 Fig. 2 The amplitude characteristic 
compared to dimensionless variables (the 
dotted line is without the absorber) 

 Fig. 3 Phase characteristic compared to 
dimensionless variables 

4 Design of the tuneable absorber 
The next possibility to reduce the adjustable vibration 
in the transient state is with the control absorber, 
where an air-operated spring with a changed 
coefficient of elasticity k2 through the changed 
pressure supply of the air is incorporated. The model 
with affiliate mass m2 of the control absorber’s 
changed coefficient of elasticity k2, an accelerometer a 
located on mass m1 and control unit is shown on Fig. 
1. It is possible to write the state description system 
and model (Fig. 1) in the form: 
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where A is the state matrix, C is the state matrix of the 
output, D is the matrix of the coupling between the 
input and output, Fact is the control force in the air-
operated spring, Ftech is the spurious force from the 
technological process, BBact is the matrix of the control 
input, BtechB  is the matrix of the spurious force input, xm 
is the state vector of the model, y1m is the displacement 
of the model and the vector of the input u is: 

,. mact xGF −=            (9)  

where G is the control matrix. 

It is possible to obtain this state bond with the help of 
the minimization of the integral criterion on the LQR 
(Linear Quadratic Regulator) control [1]: 
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(10) 

where Q and R are balance matrices. The LQR is the 
control, which minimizes the accuracy of the control 
(the first part of Equation (10)) opposite to the power 
excitation (the second part of Equation (10)).     The 
LQR control radiates from complete vector states, 
which in real life must not be in the feedback position. 
In our case, we have to dispose the output parameters 
from the accelerometer a (Fig. 1). One way, in which 
this problem can be solved, is use of the so-called 
state observer, where the parameters from the 
accelerometer are used to reconstruct the state of the 
system. 

5 Results and conclusion  

Vibrations of the mechanical system vanish perfectly 
at a certain frequency when they have a vibration 
absorber with small damping. But if forced 
frequencies vary from the anti-resonance frequency, 
their vibration amplitudes increase significantly. Then, 
the absorber with small damping cannot be applied to 
the structure subjected to variable frequency loads or 
to the loads having high frequency components. The 
present article discusses a method of vibration control 
LQR for a structure by using the vibration absorber 
with small damping. In the method, a variable 
stiffness vibration absorber is used for controlling the 
principle mode. The stiffness is controlled by the 
accelerometer a under the auto-tuning algorithm for 
creating an anti-resonance state. The optimal vibration 
absorber with damping with the air-operated spring is 
also utilized for controlling higher modes. A method 
to obtain the optimal parameters has been presented 
for the vibration absorber, which controls higher 
modes. In order to validate the control method and the 

analysis, experimental tests will be carried out in the 
next phase of research. 

The Matlab solution Equations (3) for the parameters 
of the system are in the m-file on Fig. 4: 

 

The constants:%---// 

w = 5; %exciting frequency [rad/sec] 

m1 = 350; % mass m1 [kg]  

k1 =10000;    %coefficient of elasticity k1 [N/m]  

m2 =60;    % affiliate masse m2 [kg] of absorber  

k2 = w^2*m2;    %coefficient of elasticity k2 [N/m]  

b1 = 1;        %damping coefficient b1 [Ns/m]  

b2 = 1;       %damping coefficient b1 [Ns/m]  

%x1 = dy1       velocity [m/s] of the  system  

%x2 = dy2       velocity  [m/s] of the absorber 

%x3 = y1        position y1 [m] of the system 

%x4 = y2        position y2 [m] of the absorber 

%The system with damping %-------------------// 

A = [   -(b1+b2)/m1   b2/m1   -(k1+k2)/m1   k2/m1; 

        b2/m2          -b2/m2   k2/m2          -k2/m2; 

        1              0        0              0; 

        0              1        0              0    ]; 

B = [   1/m1; 

        0; 

        0;    

        0   ]; 

C = [   0   0   1   0   ]; 

D = [   0   ]; 

sys = ss(A,B,C,D); 

%The system without damping%------// 

A = [   -b1/m1  -k1/m1; 

        1       0       ]; 

B = [   1/m1; 

        0   ]; 

C = [   0   1   ]; 

D = [   0   ]; 

sys1 = ss(A,B,C,D); 

%Bode characteristic%------// 

W = 0.1*w:0.1:10*w; 

[mag phase] = bode(sys, W); 

[mag1 phase] = bode(sys1, W); 
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mag = squeeze(mag(1,1,:)); 

mag1 = squeeze(mag1(1,1,:)); 

phase = squeeze(phase(1,1,:)); 

figure(1); 

plot(W./w,mag,'-k',W./w,mag1,':k'); 

axis([0.4 2 0 0.001]); 

xlabel('w/w_h'); 

ylabel('y/y_h'); 

title('Amplitude Characteristic'); 

figure(2); 

plot(W./w, phase,'-k'); 

axis([0 3 -180 0]); 

xlabel('w/w_h'); 

ylabel('Phase [deg]'); 

title('Phase Characteristic'); 

Fig. 4 The Matlab m-file for the solution of the 
tuneable absorber 

If we use the air-operated spring with the changed 
coefficient of elasticity k2 with the possibility to 
regulate the pressure pact for the air in the operated 
spring in dependence to the displacement y1, it is 
possible to reduce this displacement y1 to a minimum 
(Fig. 5, 7 and 9). 

In the case when the frequency ω of the acting force 
F(t) (alternative 1, 2 and 3) driving the mechanical 
system is the same as the frequency ω2 of the 
vibration of the absorber, the displacement y1 of the 
mechanical system after starting (t=10 sec) of LQR 
control is shown on Fig. 5 for alternative 1, on Fig. 7 
for alternative 2 and on Fig. 9 for alternative 3. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Displacement y1 of the mechanical system after 
starting (10 sec) the LQR control (alt. 1) 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Displacement y2 of the absorber after starting 

(10 sec) the LQR control (alt. 1) 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Displacement y1 of the mechanical system after 

starting (10 sec) the LQR control (alt. 2) 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 Displacement y2 of the absorber after starting 
(10 sec) the LQR control (alt. 1) 
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Fig. 9 Displacement y1 of the system after starting (10 

sec) the LQR control (alt. 3) 

 
Fig. 10 Displacement y2 of the absorber after starting 

(10 sec) the LQR control (alt. 3) 

 
Fig. 11 Course of the impact load F(t) = F at the start 

of the mechanical system 

 
Fig. 12 Course of the feedback circuit 

The actuating control signal can theoretically take an 
unlimited value (Fig. 11). It is necessary to respect the 
binding conditions of the actuator (in this case a 
pneumatic spring) and to insert a block into the 
feedback circuit, which will limit the acting control 
signal to a feasible value (Fig. 12). 

The displacement y2 of the absorber is shown on Fig. 6 
(alt.1), Fig. 8 (alt.2) and Fig. 10 (alt.3). If we use the 
air-operated spring with the changed coefficient k2 
with the possibility to regulate the pressure pact = Fact/s 
of the air in the operated spring in dependence to the 
displacement y1, it is possible to reduce this 
displacement y1 in the mechanical system to a 
minimum.  
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