
MODELING FRAMEWORK FOR HIGH-LEVEL
EVALUATION OF EMBEDDED SYSTEMS

Klemen Perko1, Andrej Trost 2

1 Sipronika d.o.o.
1000 Ljubljana, Tržaška 2, Slovenia

2 University of Ljubljana, Faculty of Electrical Engineering,
1000 Ljubljana, Tržaška 25, Slovenia

klemen.perko@sipronika.si (Klemen Perko)

Abstract

As technology advances, options for realization of heterogeneous systems increase.
Traditional approach to embedded systems design does not offer satisfactory support for
building efficient contemporary designs. Nowadays designers use a variety of hardware (HW)
and software (SW) co-design methodologies in order to meet application constraints as fast as
possible. The paper presents a graphical modeling framework used for high-level modeling,
evaluation and design-space exploration of heterogeneous systems. The framework provides
designer graphical elements for using modeling concepts from system modeling libraries.
Graphical modeling relieves the designer of the manual-typing source code and thus hides
many details of system-level design languages that normally need to be taken care of. The
graphical framework also provides different constraint checks during modeling and
automatically generates an executable model for evaluation of a heterogeneous system.
The applicability of the modeling framework is illustrated within a case study where a
system-level modeling of a simplified digital camera is presented. Case study exemplifies the
use of the framework and shows what information is obtained from an executable model built
on a high-level of abstraction. Evaluation of results serves as a basis for further design
decisions. Graphical modeling enables rapid changes in the model and thus speeds-up design-
space exploration.

Keywords: Embedded systems, High-level design, Graphical modeling, System-level
simulation, Design-space exploration.

Presenting Author’s biography
Klemen Perko received his B.Sc. degree in electrical engineering from
the Faculty of Electrical Engineering, University of Ljubljana, in 2004.
Since then, he has been working as HW and System Design Engineer. In
October 2004, he started working towards the Ph.D. degree at the Faculty
of Electrical Engineering, supported by Ministry of Higher Education,
Science and Technology. His current research interests include HW/SW
codesign, high-level modeling and design of embedded systems and
systems on a single chip.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
System modeling and model evaluation is an
important step in the embedded system design
process. Embedded systems design flow comprises
many steps from initial system specifications toward
actual implementation. Designers are encouraged to
use a variety of HW and SW implementation
technologies in order to meet application constraints
and provide quick time-to-market solutions.
Traditional approach of embedded systems design is
based on selection of an architectural platform and
development of software algorithms for the specified
functionality. First assumption is that execution of
algorithm is performed on microprocessors. After
programming is finished obtained system performance
is evaluated. If real-time constraints are not met,
profiling of algorithm is performed to identify which
parts of algorithm present bottlenecks. Identified parts
are then considered for parallel implementation in
additional circuits (FPGA or ASIC) [1].
For many different reasons traditional design approach
gives suboptimal implementation results. Some ad-hoc
decisions about architecture are made at the earliest
stage of design process. Algorithm profiling also gives
suboptimal results, since implementation of algorithm
can substantially differ if it is implemented in
sequential or parallel architectural resources. One of
weaknesses of traditional approach is that first results
of performance evaluation can not be obtained until
actual programming is finished. Consequently process
of design space exploration is very time consuming
[2,3].
Contemporary methodologies for designing embedded
systems offer conceptual shift away from solving the
problem in a traditionally sequential manner and
concentrate on system-level modeling. Modeling at
system-level assures that heterogeneous information
of HW architectural resources and SW functionality is
collected in one common model. Many different
HW/SW codesign methodologies have been presented
[4]. HW/SW codesign process enables adequate model
evaluation at early stages of design and though helps
avoiding premature and ad-hoc decisions as they
unjustifiably narrow the available design space and
eliminate potentially better design solutions.
Design flow of system-level modeling is presented in
Fig. 1. This is iterative process. Considering
specifications initial system-level model is built.
Models on different abstraction levels are used in
order to manage design complexity [5]. Initial system
model is described on high abstraction level and
evaluated. If evaluation results do not meet
constraints, model is revised in the process of design
space exploration. When satisfactory model at selected
level ob abstraction is obtained, additional information
is added and though level of abstraction is lowered.
This is repeated until implementable model is
obtained.

Fig. 1 System-level design flow

In this paper we will focus on graphical modeling of
embedded system on the highest abstraction level. We
present graphical modeling framework used for high-
level modeling of heterogeneous systems. The
framework was designed in order to relieve designers
of the burden of repeatedly implementing models of
some basic concepts. Graphical environment enables
rapid changes in the model and thus speeds-up design-
space exploration.
For modeling embedded systems at the earliest stage
of design, we identified basic elements of these
systems that are repeatedly needed by designers. UML
static class diagram notation in Fig. 2 illustrates basic
elements of embedded system model on high
abstraction level.

Fig. 2 Basic elements of embedded system model on

high level of abstraction
Embedded systems are composed from HW
architecture resources and SW functionality.
Functionality can be represented as a composition of
several tasks. Order of task execution is defined with
connections between them (Task2Task). On the other
hand architecture on high abstraction level can be
represented as a composition of several execution
units (ExecUnit), communication units (CommUnit)
and connections between them

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

(ExecUnit2CommUnit). SW functionality is executed
on HW architecture and utilizes its resources. With
mapping process, merging of functionality and
architecture heterogeneity is performed. To define
what architectural resources could specific task utilize
Task2ExecUnit and Task2CommUnit connections are
needed.

2 Graphical modeling framework
Since process of developing graphical framework
from the ground-up is very complex, time-consuming
and expensive we decided to use one of already
developed generic graphical frameworks that can be
configured for our specific needs. Open source
graphical modeling environments found suitable for us
are Eclipse Graphical Editing Framework [6] and
Generic Modeling Environment (GME) [7]. We
decided to use GME since it is more mature, offers
very good user support through online forum and
provides tools for easy integration of the interpreter
for translating the graphical model.

2.1 Generic Modeling Environment - GME
The Generic Modeling Environment (GME) [7] is a
configurable toolkit used for creating domain-specific
modeling, model analysis, model transformation and
program synthesis environments. The configuration is
accomplished through meta-models specifying the
modeling paradigm (modeling language) of the
application domain. The modeling paradigm contains
all the syntactic, semantic and presentation
information regarding the application domain. It
defines concepts used to construct models, their
relationship, organization and graphical presentation,
and rules governing model construction.
The modeling paradigm is created by configuring a
meta-model using the GME meta-modeling language.
Meta-models are used to automatically generate target
domain-specific environment. An interesting aspect of
this approach is that the environment itself is used to
build meta-models. This top-level environment is
called a Meta-metamodel.
The meta-modeling paradigm is based on the Unified
Modeling Language (UML) [8]. The syntactic
definitions are modeled using pure UML class
diagrams and the static semantics are specified with
constraints using the Object Constraint Language
(OCL). This process needs to be done just once. Users
of this domain-specific framework can build their
specific models according to rules defined in the meta-
model.
Fig. 3 illustrates a snippet of the UML meta-modeling
paradigm and its actual corresponding presentation in
GME. The curvy arrows show how individual
modeling elements and their relations are defined by
different parts of the meta-model.

Fig. 3 Creating a domain-specific modeling
framework

GME has a built-in set of generic concepts: folders,
models, atoms, connections, roles, constraints and
aspects. These concepts are the main elements used by
the meta-model developer. We will not make a
detailed presentation of all of them as this would
exceed the scope of this paper. The reader can find it
in [9,10]. We will just point out the concept of
aspects. Aspects provide visibility control. They are
used to allow models to be constructed and observed
from different viewpoints. Existence of parts of the
domain in a particular aspect is determined by the
meta-model. Each part can be either visible or hidden.
The concept of aspects allows the user to employ just
the parts suited for a selected viewpoint and hide all
the others irrelevant for it.
The generated domain-specific environment is then
used to build domain models that are stored in the
model database. GME also provides high-level C++
and Java interfaces for writing plug-in components to
traverse, manipulate and interpret graphical models
into an appropriate text description suiting as input to
Commercial Off-The-Shelf (COTS) analysis tools.
The interpreter needs to be written by the meta-user
because interpreter must be able to translate graphical
models built according to the meta-model.

2.2 Building paradigm
To configure GME for specific needs, we built a meta-
model containing information of the basic elements
for modeling embedded systems on high abstraction
level.
As mentioned above, embedded systems at high
abstraction level can be modeled with basic elements
presented in Fig. 2. For clarity of presentation the only
most important elements of our system-level modeling
methodology are presented. The meta-model enables a
model of a typical embedded system to be made-up as
a composition of:

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

• at least one execution unit (ExecUnit),
• any number of communication units (CommUnit),

and
• at least one task (Task).
The restrictions for the numbers of instances in the
actual model are set by multiplicity constraints (e.g.
constraint for the ExecUnit is set to: “1..*”). The meta-
model also defines possible connections between these
elements. The designer can make just the connections
permitted in the meta-model. The connections shown
in Fig. 2 are:
ExecUnit2CommUnit: with these connections the
designer defines the communication units available for
a selected execution unit. Generally an execution unit
can have more than one communication unit and many
different execution units can share the same
communication units. Instances of execution and
communication units connected together compose
system architectural resources.
Task2Task: with these connections the designer
defines the order of task execution. The order is
governed by the tasks’ data dependency and the
direction from the source to destination has to be
followed. Instances of the tasks connected together
with the Task2Task connections compose system
functional description.
Task2ExecUnit: with these connections the designer
assigns execution units responsible for execution of a
selected task. Each task can be assigned to only one
execution unit.
Task2CommUnit: with these connections the designer
defines the communication units available for data-
manipulation operations of tasks. Generally, a task can
use more than one communication unit, but only those
available to the assigned execution unit can be used.
This means that the designer can select only between
those communication units that have been previously
attached with ExecUnit2CommUnit to the execution
unit.
Besides the presented blocks, the meta-model contains
also some other elements required for model
construction and simulation setup. All of them are
listed in Table 1. The event splitter and event joiner
are used for defining the order of task execution. The
event joiner performs an addition of multiple input
events when starting a specific task depends on
execution ending of multiple tasks. Event splitter
triggers multiple tasks in a certain order and can be
used for modeling a SW scheduler. Start and stop
events are used for control of the simulation process.
External event-generator elements serve for imitating
input signals coming from the surroundings where our
system will be operating. Waveform trace and console
log elements serve for setting which data will be
collected from the model during the simulation.
The concept of aspects in GME provides visibility
control. The aspects allow models to be constructed
and viewed from different viewpoints. They show

only elements relevant in a particular aspect. In our
meta-model we implemented four different aspects in
which a model of an embedded system can be viewed.
In the task triggering aspect, the designer enters
functionality of the system by placing and connecting
task instances. The simulation setup elements (start
and stop events) and external-event generators are also
defined in this aspect.
In the architecture aspect, instances of hardware
resources (execution and communication units) are
placed and connections ExecUnit2CommUnit are
defined.
The mapping aspect serves for mapping tasks to
appropriate hardware resources. Only connections
among the already defined instances can be made.
In the simulation setting aspect, WaveformTrace and
ConsoleLog set elements are instantiated and their
appropriate members defined.
Table 1 lists all of the implemented elements of our
meta-model in conjunction with the visibility aspects.
Even if a specific element is visible in more than one
aspect, it can be instantiated or modified only in its
primary aspect. The primary aspect is denoted with a
shadowed cell.
Table 1. Visibility of elements depends on the aspect

 Aspect
Visibility

Task
Triggering

Architecture Mapping
Simulation
Settings

Task • •
Event Splitter •
Event Joiner •
Execution Unit • • •
Bus • • •
Start Event •
Stop Event •
External Event Gen. • •
Waveform Trace •
Console Log (usage) •

For connecting all the elements together, we defined
proper connections in the meta-model. As mentioned
above, we will not describe all of them since this is
not crucial for understanding the idea of our approach.
At this point it needs just to be noted that the
possibility of making connections also depends on the
aspect.

2.3 Model interpretation
Important part of our graphical modeling framework
is the model interpreter. The purpose of the interpreter
is to translate all information captured in the graphical
model into a system-level textual description.
For modeling on the system-level, different system-
level design languages have been developed [4].
These languages enable textual description of
system’s HW an SW components.
Our modeling framework is based on SystemC.
SystemC is implemented as a C++ class library and is
standardized by IEEE-1666. The SystemC extends the
capabilities of the C++ by enabling modeling of

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

hardware descriptions [11,12]. It adds important
concepts to the C++ such as concurrent processes
execution, modeling timed events and hardware data
types.
For modeling on a high abstraction level, system level
modeling libraries were developed in our Laboratory
[13,14]. They provide wrappers for modeling
functionality and architecture on a high-level of
abstraction. One of the integral parts of system
modeling libraries is also a built-in support for logging
relevant information about the system during
execution of simulation.
Model interpreter translates graphical elements into
model instances in SystemC. During interpretation it
uses attributes and high level task description in
SystemC code provided by system model designer.
Detailed overview of high level task description will
be explained in next section. Interpreter performs also
different syntactic and semantic checks in order to
verify the graphical model. Errors are reported and the
designer is guided to repair the model. The interpreter
generates the SystemC source code together with
appropriate project files for automatic compilation and
linking. Finally, an executable description of the
system model is obtained.

3 Application of modeling framework
To see how our graphical modeling framework
operates in practice, system-level modeling of a
simplified digital camera will be presented. A digital
camera is a complex system comprising both
mechanistic and electronic components and is very
well-suited as an application case study for our
modeling framework. In accordance with the focus of
this paper we concentrate on high-level aspects of the
design space exploration. We will show that using our
graphical framework for modeling the observed
system on a high abstraction level enables
performance estimation before the implementation is
made. The framework enables rapid changes in the
model (e.g. changes in the mapping aspect can give
better results) and allows very easy exploration of
different system implementations.

3.1 Digital camera system
A digital camera captures and stores images in digital
format on a storage device. Fig 4 depicts a block
diagram of a proposed simplified digital camera
system.
Normal digital camera operations commence with the
process of determining proper settings for the scene or
subject to be photographed. Such tasks typically
involve adjusting the focus, setting image quality,
measuring and gathering shooting parameters, and
selecting appropriate shutter duration and aperture
opening. Once the required parameters are set and the
shutter button is pressed, the following sequence of
operations typically ensues:
• The shutter is closed; the sensor becomes

temporarily inactive, and is instantly flushed off all
residual charges. This step is to prepare the sensor to
capture a new image.
• Depending on the camera and the settings, the
residual charges that are flushed off the sensor may be
analyzed to acquire the proper settings for automatic
point-and-shoot operations.
• The sensor becomes active and, at the same time,
the shutter opens, exposing the sensor to light-
charging it as a result. The shutter remains open for
the specified exposure duration, before closing again.
The image can now be captured and streamed off to
the Image Conditioning module.
• The shutter re-opens, and the camera is ready to
take another picture.

Fig. 4 Block diagram of a proposed digital camera

system

3.2 Model construction
Construction of the initial digital camera model on the
high abstraction level was performed in four aspects
using graphical elements from the meta-model.

3.2.1 Functionality aspect
In the first aspect, functionality of the digital camera is
defined. Simplified functionality of the system can be
divided into nine different tasks presented in Fig. 5.
For simulating the “shutter” button triggering, a start
event element Event_T0 is used.
Tasks readImgSens serves for simulation of the first
reading of data from image sensor. Depending on the
data obtained, task setCptrParams sets parameters for
appropriate shutter duration, aperture opening and
calculates factors for color correction (e.g. white
balance). In task takePicture processor waits for
image sensor to actually capture the image. In task
readImgPlCorr reading of data from image sensor and
color correction with previously calculated factors is
performed. The following four tasks (rgb2yuv-
entrCod) server for compression of obtained image
according to JPEG standard [15]. This encoding
process consists of four consecutive stages: color-
space conversions (rgb2yuv), forward discrete cosine
transform (FDCT) (frwrdDCT), coefficient
quantization (quant) and entropy coding (entrCod).
Other pre and post processing stages (e.g. down-

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

sampling) are omitted here for clarity. In the last task
writeToFlash writing of obtained compressed image
to flash storage media is performed.

Fig. 5 Functionality description in the task triggering

aspect

3.2.2 Architecture aspect
Previously described tasks need appropriate HW
architecture units so they can utilize their resource to
perform execution of requested operations. In our
case-study we examine impact of three different
architectures on time needed to perform desired
functionality of digital camera.
The first architecture implementation on Fig. 6
contains only one processor P1, image sensor is
connected to P1 via memory bus bImgSens and
memory for image processing during compression is
connected to P1 via memory bus B1. The second
architecture contains two processors – P1 and P2.
Both of them are connected to a shared single port
memory via bus B1. In the third architecture
implementation differs from the second by using dual-
port memory for image processing. Since dual-port
memory allows independent memory access on both
ports it is modeled with two memory buses: B1_PA is
connected to P1 and B1_PB is connected to P2.

Fig. 6 Three different architecture implementations of

digital camera on a high abstraction level

3.2.3 Mapping aspect
Merging of functionality and architecture is performed
in mapping aspect. Each task from functionality aspect
is connected to specific execution unit (e.g. processor
and memory bus). For each architecture
implementation, separate mapping needs to be
performed. E.g. for first architecture implementation

all functionality tasks are mapped on execution unit
P1, and those that perform any data transfer also need
to be mapped to appropriate memory buses (bImgSens
and/or B1). For instance tasks readImgSens and
readImgPlCorr both need to be mapped on both
memory buses.
JPEG compression algorithm allows some parallel
operations. Since the same algorithm needs to be
performed for each of three color planes, there is
possible to perform some tasks in parallel (e.g. when
rgb2yuv the first plane is finished, frwrdDCT for this
plane and rgb2yuv for the second plane can run in
parallel). The possible parallel execution of the tasks
is limited by their data dependency and available HW
resources. In general processors present one execution
unit capable of just sequentially executing many
different tasks. Since there is only one processor in the
first architecture, there is no possibility for any
parallel execution of tasks.
The other two architectures with two processors allow
such parallel operation. As mentioned before they
differ by memory bus configurations.
On Fig. 7 mapping of the tasks on architecture No. 3
is presented. The processor P2 executes only one task:
fwrdDCT, the other tasks are mapped to P1.

Fig. 7 Mapping of tasks on architecture resources for

architecture No. 3
At this point let us briefly explain how the tasks are
actually described. The task model is defined in terms
of architectural resource usage Fig. 8 lists a high-level
algorithm description for the forward DCT encoding
stage (task frwrdDCT). When studying a specific DCT
realization (e.g. [16]), it can be concluded that 11
multiplications and 20 additions are needed to apply
the 1-D DCT transform. These operations represent
abstract functions. The purpose of the triple nested for
loops of Fig. 6 listing, explained from the inside out,
is as follows. The 2-D DCT transform (of an 8x8 pixel
block) is obtained by applying the 1-D DCT transform
to rows first (loop 3) and columns second (loop 2).
The pixels to be transformed must be grouped in
segments of 8x8 pixels (structured block in data

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

domain) (loop 1).
The predefined methods Add, Mult, GetData and
WriteData from our system modeling libraries are
used for modeling architectural resource (i.e.
processor) usage. All method requests are performed
through execution unit interface (m_pExecUnit). The
libraries provide estimations of the execution time for
each method on particular execution unit.
void jpg_frwrdDCT::MainThread()

{ // divide requested size (bytes) into blocks
of 64 bytes

 // do 2 pass 1D DCT

 int blocks = ROUND_UP(m_bytes, 64);

 if(m_bytes % 64)

 cout << sc_time_stamp() << " input size to
frwrdDCT is not 8x8 aligned\n";

 for(int i = 0; i < blocks; i++)

 {// pass 0 - horizontal, pass 1 - vertical

 for(int pass = 0; pass < 2; pass++)

 {

 for(int line = 0; line < 8; line++)

 { m_pExecUnit-GetData(this,true,&b1_pb,

 -1);

 // 11MUL, 20ADD

 m_pExecUnit->Mult(this, 11);

 m_pExecUnit->Add(this, 20);

 m_pExecUnit-
>WriteData(this,true,&b1_pb,-1);

 } } } }

Fig. 8 High-level description of DCT. Although
functionally incomplete, algorithm features are

captured.

3.2.4 Simulation settings aspect
An image from the simulation setting aspect is shown
in Fig. 9. A set named camera_2p2b is selected and its
members (both execution units P1, P2, and
communication units – dual-port memory B1_PA,
B1_PB) are shown. All the other architectural
resources are shadowed. In this way, the designer
defines resources used for producing value-change-
dump (VCD) traces and console log files during
model execution.

Fig. 9 Selecting architecture resources for waveform

traces

3.3 Results
System model evaluation results are obtained after
interpretation, compilation and execution of the
designed graphical model for each of three
architectures. Analysis of these results provides basis
for further design decisions.

Table 2 summarizes utilization results of architecture
resources and total amount of time for single image
processing for all three implementations. The table is
split into the architectural part and functionality part
(Tasks). The architectural part shows the resource
execution time (RET), i.e. summation of the time the
services are required from a specific resource.
Complementary, the functionality part presents tasks’
active and wait timings. The numbers stated in the
active column represent the percentage of the time a
specific task is being actively executed on a specific
resource. Similarly, the numbers stated in the wait
column represent the time a specific task has to wait
for a specific resource to become available – this is the
time interval during which a task may be executed
regarding data dependency, but its execution is not
started because of the unavailability of HW resources.
Analysis of the results from Table 2 for architecture
No. 1 shows that tasks needed involved in JPEG
compression wait for their execution quite large
amount of time because of high utilization of
processor. It can also be seen that the most time
consuming task (52%) is frwdDCT. Consequently this
also shows that it would be good decision if this task
could be mapped on another processor. Analysis of
the results for architecture No. 2 shows that total
amount of time needed for single image processing
has dropped for 17,1%. It can also be seen that
contentions on single port memory for image
processing present bottleneck, since task frwdDCT
waits for memory to be freed for 21,35ms. Results for
architecture No. 3 shows that total amount of time
dropped for 34,3% regarding to architecture No. 1.
Graphical framework also enables generation of VCD
waveforms with timing details about tasks execution
and usage of architecture resources.

4 Conclusion and future work
We present a modeling framework used for high-level
modeling of heterogeneous systems. It provides
graphical design elements for using modeling
wrappers from system modeling libraries. Graphical
modeling relieves the designer of manual typing the
source code and thus hides many details of the
SystemC code that normally need to be taken care of.
Thus the designer can put more effort on actual
modeling. Our modeling framework also provides
different constraint checks during modeling and
integrates support for simulation settings. When
modeling is completed, an executable model is
automatically generated to simulate the system
behavior on a high abstraction level. Our case study
exemplifies the use of our framework and shows
information obtained from the executable model built
on a high-abstraction level. Results of simulation are
estimations of architecture resource contention and
utilization, time needed for task execution and timing
diagrams. Evaluation of these results serves as a basis
for model evaluation and further design decisions.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

Graphical modeling enables rapid changes in the
model (e.g. changes in the mapping aspect can give
better results) without time-consuming manual
SystemC code rewriting.

Even though high-level and functionally incomplete
models are used, it is shown that the results obtained
by our modeling framework offer solid further design
guidance. The benefits include a greatly reduced
exploration time and higher-level algorithm capturing
that is especially suitable for component-based data
capturing.
In our future work we intend to include support for
modeling task interruption and to handle priorities of
tasks execution in order to achieve efficient modeling
of operating systems. We plan to provide a
hierarchical approach to model building as it will
significantly improve handling complexity of large
models. Our intention is to enable a graphical
composition of the task description by providing a
library of commonly used methods. The library will
provide cost estimations for execution of the methods
on various architectural resources.

5 References
[1] M. Finc, A. Žemva. A systematic approach to

profiling for hardware/software partitioning.
Computers & electrical engineering, 31:93-
111,2005

[2] A. A. Jerraya. Long Term Trends for Embedded
System Design. CEPA 2 Workshop Digital
Platforms for Defence, Brussels, March 15-16
2005

[3] A. A. Jerraya, W. Wolf. Hardware/Software
Interface Codesign for Embedded Systems. IEEE
Computer Society, 38:63-69, 2005

[4] A. Habibi, S. Tahar. A Survey on System-On-a-
Chip Design Languages. Proc. IEEE 3rd
International Workshop on System-on-Chip
(IWSOC'03), page 212-215, Calgary, Canada,
June-July 2003, IEEE Computer Society Press,

[5] L. Cai, D. Gajski. Transaction Level Modeling:

An Overview. CODES+ISSS’03, page 19-24,
Newport Beach, California, USA, October 2003,
ISBN:1-58113-742-7

[6] http://www.eclipse.org/gef/
[7] http://www.isis.vanderbilt.edu/Projects/gme
[8] http://www.uml.org/
[9] A. Ledeczi, et al. The Generic Modeling

Environment. Workshop on Intelligent Signal
Processing, Budapest, Hungary, May 17, 2001.

[10] Institute for Software Integrated Systems,
Vanderbilt University. A Generic Modeling
Environment: GME 6 User's Manual, Version 6.0.
Vanderbilt University, Nashville, 2006

[11] http://www.systemc.org/
[12] D. C. Black & J. Donovan. SystemC from the

ground up. Springer. 2004
[13] J. Dedič. Enovito razvojno okolje za sočasno

načrtovanje strojne in programske opreme,
doktorska disertacija, Univerza v Ljubljani,
Fakulteta za elektrotehniko, 2006

[14] J. Dedič, M. Finc, A Trost. A Framework For
High-Level System Design Exploration.
Informacije MIDEM, 36:151-160, 2006

[15] V. Bhaskaran, K. Konstantinides. Image and
Video Compression Standards. Second Edition.
Kluwer Academic Publishers. 1997

[16] http://www.ijg.org

Table 2. Utilization results and total amount of time spent for single image processing
 One processor,

single-port RAM
Two processors,
single-port RAM

Two processors,
dual-port RAM

Architecture P1 BUS1 P1 P2 BUS1 P1 BUS1_PA P2 BUS1_PB

RET[ms] 123,496ms 86,502ms 73,686ms 89,058ms 86,502ms 55,789ms 37,350ms 67,707ms 49,152ms

Tasks [ms] active/wait active active/wait active/wait active/wait active/wait active active/wait active

readImgSens 1,64/0,00 1,64 1,64/0,00 / 1,64/0,00 1,64/0,00 1,64 / /
setCptrParams 0,00/0,00 / 0,00/0,00 / / 0,00/0,00 / / /
takePicture 1,00/0,00 / 1,00/0,00 / / 1,00/0,00 / / /
readImgPlCorr 9,83/0,00 4,91 9,83/0,00 / 4,91/0,00 9,83/0,00 4,92 / /
rgb2yuv 15,89/33,25 9,91 26,86/23,57 / 9,91/10,97 15,89/19,27 9,91 / /
frwrdDCT 67,71/42,26 49,15 / 89,06/0,00 49,15/21,35 / / 67,71/0,00 49,15
quant 19,98/6,77 14,75 22,10/5,26 / 14,75/2,13 19,98/2,54 14,75 / /
entrCod 6,84/29,59 5,53 11,59/11,28 / 5,53/4,75 6,84/5,31 5,53 / /
writeToFlash 0,61/36,52 0,61 0,66/35,87 / 0,61/0,05 0,61/22,51 0,61 / /
Total [ms] 123,496ms 102,431 ms 81,080ms

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

