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Abstract  

As technology advances, options for realization of heterogeneous systems increase. 
Traditional approach to embedded systems design does not offer satisfactory support for 
building efficient contemporary designs. Nowadays designers use a variety of hardware (HW) 
and software (SW) co-design methodologies in order to meet application constraints as fast as 
possible. The paper presents a graphical modeling framework used for high-level modeling, 
evaluation and design-space exploration of heterogeneous systems. The framework provides 
designer graphical elements for using modeling concepts from system modeling libraries. 
Graphical modeling relieves the designer of the manual-typing source code and thus hides 
many details of system-level design languages that normally need to be taken care of. The 
graphical framework also provides different constraint checks during modeling and 
automatically generates an executable model for evaluation of a heterogeneous system. 
The applicability of the modeling framework is illustrated within a case study where a 
system-level modeling of a simplified digital camera is presented. Case study exemplifies the 
use of the framework and shows what information is obtained from an executable model built 
on a high-level of abstraction. Evaluation of results serves as a basis for further design 
decisions. Graphical modeling enables rapid changes in the model and thus speeds-up design-
space exploration. 

Keywords: Embedded systems, High-level design, Graphical modeling, System-level 
simulation, Design-space exploration. 
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1 Introduction 
System modeling and model evaluation is an 
important step in the embedded system design 
process. Embedded systems design flow comprises 
many steps from initial system specifications toward 
actual implementation. Designers are encouraged to 
use a variety of HW and SW implementation 
technologies in order to meet application constraints 
and provide quick time-to-market solutions.  
Traditional approach of embedded systems design is 
based on selection of an architectural platform and 
development of software algorithms for the specified 
functionality. First assumption is that execution of 
algorithm is performed on microprocessors. After 
programming is finished obtained system performance 
is evaluated. If real-time constraints are not met, 
profiling of algorithm is performed to identify which 
parts of algorithm present bottlenecks. Identified parts 
are then considered for parallel implementation in 
additional circuits (FPGA or ASIC) [1].  
For many different reasons traditional design approach 
gives suboptimal implementation results. Some ad-hoc 
decisions about architecture are made at the earliest 
stage of design process. Algorithm profiling also gives 
suboptimal results, since implementation of algorithm 
can substantially differ if it is implemented in 
sequential or parallel architectural resources. One of 
weaknesses of traditional approach is that first results 
of performance evaluation can not be obtained until 
actual programming is finished. Consequently process 
of design space exploration is very time consuming 
[2,3].  
Contemporary methodologies for designing embedded 
systems offer conceptual shift away from solving the 
problem in a traditionally sequential manner and 
concentrate on system-level modeling. Modeling at 
system-level assures that heterogeneous information 
of HW architectural resources and SW functionality is 
collected in one common model. Many different 
HW/SW codesign methodologies have been presented 
[4]. HW/SW codesign process enables adequate model 
evaluation at early stages of design and though helps 
avoiding premature and ad-hoc decisions as they 
unjustifiably narrow the available design space and 
eliminate potentially better design solutions. 
Design flow of system-level modeling is presented in 
Fig. 1. This is iterative process. Considering 
specifications initial system-level model is built. 
Models on different abstraction levels are used in 
order to manage design complexity [5]. Initial system 
model is described on high abstraction level and 
evaluated. If evaluation results do not meet 
constraints, model is revised in the process of design 
space exploration. When satisfactory model at selected 
level ob abstraction is obtained, additional information 
is added and though level of abstraction is lowered. 
This is repeated until implementable model is 
obtained. 

 

 
Fig. 1 System-level design flow 

In this paper we will focus on graphical modeling of 
embedded system on the highest abstraction level. We 
present graphical modeling framework used for high-
level modeling of heterogeneous systems. The 
framework was designed in order to relieve designers 
of the burden of repeatedly implementing models of 
some basic concepts. Graphical environment enables 
rapid changes in the model and thus speeds-up design-
space exploration. 
For modeling embedded systems at the earliest stage 
of design, we identified basic elements of these 
systems that are repeatedly needed by designers. UML 
static class diagram notation in Fig. 2 illustrates basic 
elements of embedded system model on high 
abstraction level.  

 
Fig. 2 Basic elements of embedded system model on 

high level of abstraction 
Embedded systems are composed from HW 
architecture resources and SW functionality. 
Functionality can be represented as a composition of 
several tasks. Order of task execution is defined with 
connections between them (Task2Task). On the other 
hand architecture on high abstraction level can be 
represented as a composition of several execution 
units (ExecUnit), communication units (CommUnit) 
and connections between them 
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(ExecUnit2CommUnit). SW functionality is executed 
on HW architecture and utilizes its resources. With 
mapping process, merging of functionality and 
architecture heterogeneity is performed. To define 
what architectural resources could specific task utilize 
Task2ExecUnit and Task2CommUnit connections are 
needed.   

2 Graphical modeling framework 
Since process of developing graphical framework 
from the ground-up is very complex, time-consuming 
and expensive we decided to use one of already 
developed generic graphical frameworks that can be 
configured for our specific needs. Open source 
graphical modeling environments found suitable for us 
are Eclipse Graphical Editing Framework [6] and 
Generic Modeling Environment (GME) [7]. We 
decided to use GME since it is more mature, offers 
very good user support through online forum and 
provides tools for easy integration of the interpreter 
for translating the graphical model. 

2.1 Generic Modeling Environment - GME 
The Generic Modeling Environment (GME) [7] is a 
configurable toolkit used for creating domain-specific 
modeling, model analysis, model transformation and 
program synthesis environments. The configuration is 
accomplished through meta-models specifying the 
modeling paradigm (modeling language) of the 
application domain. The modeling paradigm contains 
all the syntactic, semantic and presentation 
information regarding the application domain. It 
defines concepts used to construct models, their 
relationship, organization and graphical presentation, 
and rules governing model construction.  
The modeling paradigm is created by configuring a 
meta-model using the GME meta-modeling language. 
Meta-models are used to automatically generate target 
domain-specific environment. An interesting aspect of 
this approach is that the environment itself is used to 
build meta-models. This top-level environment is 
called a Meta-metamodel.  
The meta-modeling paradigm is based on the Unified 
Modeling Language (UML) [8].  The syntactic 
definitions are modeled using pure UML class 
diagrams and the static semantics are specified with 
constraints using the Object Constraint Language 
(OCL). This process needs to be done just once. Users 
of this domain-specific framework can build their 
specific models according to rules defined in the meta-
model.  
Fig. 3 illustrates a snippet of the UML meta-modeling 
paradigm and its actual corresponding presentation in 
GME. The curvy arrows show how individual 
modeling elements and their relations are defined by 
different parts of the meta-model.  

Fig. 3 Creating a domain-specific modeling 
framework 

GME has a built-in set of generic concepts: folders, 
models, atoms, connections, roles, constraints and 
aspects. These concepts are the main elements used by 
the meta-model developer. We will not make a 
detailed presentation of all of them as this would 
exceed the scope of this paper. The reader can find it 
in [9,10]. We will just point out the concept of 
aspects. Aspects provide visibility control. They are 
used to allow models to be constructed and observed 
from different viewpoints. Existence of parts of the 
domain in a particular aspect is determined by the 
meta-model. Each part can be either visible or hidden. 
The concept of aspects allows the user to employ just 
the parts suited for a selected viewpoint and hide all 
the others irrelevant for it. 
The generated domain-specific environment is then 
used to build domain models that are stored in the 
model database. GME also provides high-level C++ 
and Java interfaces for writing plug-in components to 
traverse, manipulate and interpret graphical models 
into an appropriate text description suiting as input to 
Commercial Off-The-Shelf (COTS) analysis tools. 
The interpreter needs to be written by the meta-user 
because interpreter must be able to translate graphical 
models built according to the meta-model. 

2.2 Building paradigm 
To configure GME for specific needs, we built a meta-
model containing information of the basic elements 
for modeling embedded systems on high abstraction 
level. 
As mentioned above, embedded systems at high 
abstraction level can be modeled with basic elements 
presented in Fig. 2. For clarity of presentation the only 
most important elements of our system-level modeling 
methodology are presented. The meta-model enables a 
model of a typical embedded system to be made-up as 
a composition of: 
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• at least one execution unit (ExecUnit),  
• any number of communication units (CommUnit), 

and 
• at least one task (Task). 
The restrictions for the numbers of instances in the 
actual model are set by multiplicity constraints (e.g. 
constraint for the ExecUnit is set to: “1..*”). The meta-
model also defines possible connections between these 
elements. The designer can make just the connections 
permitted in the meta-model. The connections shown 
in Fig. 2 are: 
ExecUnit2CommUnit: with these connections the 
designer defines the communication units available for 
a selected execution unit. Generally an execution unit 
can have more than one communication unit and many 
different execution units can share the same 
communication units. Instances of execution and 
communication units connected together compose 
system architectural resources. 
Task2Task: with these connections the designer 
defines the order of task execution. The order is 
governed by the tasks’ data dependency and the 
direction from the source to destination has to be 
followed. Instances of the tasks connected together 
with the Task2Task connections compose system 
functional description.  
Task2ExecUnit: with these connections the designer 
assigns execution units responsible for execution of a 
selected task. Each task can be assigned to only one 
execution unit. 
Task2CommUnit: with these connections the designer 
defines the communication units available for data-
manipulation operations of tasks. Generally, a task can 
use more than one communication unit, but only those 
available to the assigned execution unit can be used. 
This means that the designer can select only between 
those communication units that have been previously 
attached with ExecUnit2CommUnit to the execution 
unit.  
Besides the presented blocks, the meta-model contains 
also some other elements required for model 
construction and simulation setup. All of them are 
listed in Table 1. The event splitter and event joiner 
are used for defining the order of task execution. The 
event joiner performs an addition of multiple input 
events when starting a specific task depends on 
execution ending of multiple tasks. Event splitter 
triggers multiple tasks in a certain order and can be 
used for modeling a SW scheduler. Start and stop 
events are used for control of the simulation process. 
External event-generator elements serve for imitating 
input signals coming from the surroundings where our 
system will be operating. Waveform trace and console 
log elements serve for setting which data will be 
collected from the model during the simulation. 
The concept of aspects in GME provides visibility 
control. The aspects allow models to be constructed 
and viewed from different viewpoints. They show 

only elements relevant in a particular aspect. In our 
meta-model we implemented four different aspects in 
which a model of an embedded system can be viewed.  
In the task triggering aspect, the designer enters 
functionality of the system by placing and connecting 
task instances. The simulation setup elements (start 
and stop events) and external-event generators are also 
defined in this aspect. 
In the architecture aspect, instances of hardware 
resources (execution and communication units) are 
placed and connections ExecUnit2CommUnit are 
defined. 
The mapping aspect serves for mapping tasks to 
appropriate hardware resources. Only connections 
among the already defined instances can be made.  
In the simulation setting aspect, WaveformTrace and 
ConsoleLog set elements are instantiated and their 
appropriate members defined.  
Table 1 lists all of the implemented elements of our 
meta-model in conjunction with the visibility aspects. 
Even if a specific element is visible in more than one 
aspect, it can be instantiated or modified only in its 
primary aspect. The primary aspect is denoted with a 
shadowed cell.  
Table 1. Visibility of elements depends on the aspect 

    Aspect
Visibility 

Task 
Triggering

Architecture Mapping 
Simulation
Settings 

Task •  •  
Event Splitter •    
Event Joiner •    
Execution Unit  • • • 
Bus  • • • 
Start Event •    
Stop Event •    
External Event Gen. •   • 
Waveform Trace    • 
Console Log (usage)    • 

For connecting all the elements together, we defined 
proper connections in the meta-model. As mentioned 
above, we will not describe all of them since this is 
not crucial for understanding the idea of our approach. 
At this point it needs just to be noted that the 
possibility of making connections also depends on the 
aspect. 

2.3 Model interpretation 
Important part of our graphical modeling framework 
is the model interpreter. The purpose of the interpreter 
is to translate all information captured in the graphical 
model into a system-level textual description.  
For modeling on the system-level, different system-
level design languages have been developed [4]. 
These languages enable textual description of 
system’s HW an SW components.  
Our modeling framework is based on SystemC. 
SystemC is implemented as a C++ class library and is 
standardized by IEEE-1666. The SystemC extends the 
capabilities of the C++ by enabling modeling of 
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hardware descriptions [11,12]. It adds important 
concepts to the C++ such as concurrent processes 
execution, modeling timed events and hardware data 
types.  
For modeling on a high abstraction level, system level 
modeling libraries were developed in our Laboratory 
[13,14]. They provide wrappers for modeling 
functionality and architecture on a high-level of 
abstraction. One of the integral parts of system 
modeling libraries is also a built-in support for logging 
relevant information about the system during 
execution of simulation.  
Model interpreter translates graphical elements into 
model instances in SystemC.  During interpretation it 
uses attributes and high level task description in 
SystemC code provided by system model designer. 
Detailed overview of high level task description will 
be explained in next section. Interpreter performs also 
different syntactic and semantic checks in order to 
verify the graphical model. Errors are reported and the 
designer is guided to repair the model. The interpreter 
generates the SystemC source code together with 
appropriate project files for automatic compilation and 
linking. Finally, an executable description of the 
system model is obtained. 

3 Application of modeling framework 
To see how our graphical modeling framework 
operates in practice, system-level modeling of a 
simplified digital camera will be presented. A digital 
camera is a complex system comprising both 
mechanistic and electronic components and is very 
well-suited as an application case study for our 
modeling framework. In accordance with the focus of 
this paper we concentrate on high-level aspects of the 
design space exploration. We will show that using our 
graphical framework for modeling the observed 
system on a high abstraction level enables 
performance estimation before the implementation is 
made. The framework enables rapid changes in the 
model (e.g. changes in the mapping aspect can give 
better results) and allows very easy exploration of 
different system implementations. 

3.1 Digital camera system 
A digital camera captures and stores images in digital 
format on a storage device. Fig 4 depicts a block 
diagram of a proposed simplified digital camera 
system.  
Normal digital camera operations commence with the 
process of determining proper settings for the scene or 
subject to be photographed. Such tasks typically 
involve adjusting the focus, setting image quality, 
measuring and gathering shooting parameters, and 
selecting appropriate shutter duration and aperture 
opening. Once the required parameters are set and the 
shutter button is pressed, the following sequence of 
operations typically ensues: 
• The shutter is closed; the sensor becomes 

temporarily inactive, and is instantly flushed off all 
residual charges. This step is to prepare the sensor to 
capture a new image. 
• Depending on the camera and the settings, the 
residual charges that are flushed off the sensor may be 
analyzed to acquire the proper settings for automatic 
point-and-shoot operations.  
• The sensor becomes active and, at the same time, 
the shutter opens, exposing the sensor to light-
charging it as a result. The shutter remains open for 
the specified exposure duration, before closing again. 
The image can now be captured and streamed off to 
the Image Conditioning module. 
• The shutter re-opens, and the camera is ready to 
take another picture.  

 
Fig. 4 Block diagram of a proposed digital camera 

system 

3.2 Model construction 
Construction of the initial digital camera model on the 
high abstraction level was performed in four aspects 
using graphical elements from the meta-model. 

3.2.1 Functionality aspect 
In the first aspect, functionality of the digital camera is 
defined. Simplified functionality of the system can be 
divided into nine different tasks presented in Fig. 5. 
For simulating the “shutter” button triggering, a start 
event element Event_T0 is used.  
Tasks readImgSens serves for simulation of the first 
reading of data from image sensor. Depending on the 
data obtained, task setCptrParams sets parameters for 
appropriate shutter duration, aperture opening and 
calculates factors for color correction (e.g. white 
balance). In task takePicture processor waits for 
image sensor to actually capture the image. In task 
readImgPlCorr reading of data from image sensor and 
color correction with previously calculated factors is 
performed. The following four tasks (rgb2yuv-
entrCod) server for compression of obtained image 
according to JPEG standard [15]. This encoding 
process consists of four consecutive stages: color-
space conversions (rgb2yuv), forward discrete cosine 
transform (FDCT) (frwrdDCT), coefficient 
quantization (quant) and entropy coding (entrCod). 
Other pre and post processing stages (e.g. down-
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sampling) are omitted here for clarity. In the last task 
writeToFlash writing of obtained compressed image 
to flash storage media is performed.  

 
Fig. 5  Functionality description in the task triggering 

aspect 

3.2.2 Architecture aspect 
Previously described tasks need appropriate HW 
architecture units so they can utilize their resource to 
perform execution of requested operations. In our 
case-study we examine impact of three different 
architectures on time needed to perform desired 
functionality of digital camera.  
The first architecture implementation on Fig. 6 
contains only one processor P1, image sensor is 
connected to P1 via memory bus bImgSens and 
memory for image processing during compression is 
connected to P1 via memory bus B1. The second 
architecture contains two processors – P1 and P2. 
Both of them are connected to a shared single port 
memory via bus B1. In the third architecture 
implementation differs from the second by using dual-
port memory for image processing. Since dual-port 
memory allows independent memory access on both 
ports it is modeled with two memory buses: B1_PA is 
connected to P1 and B1_PB is connected to P2.  

 
Fig. 6  Three different architecture implementations of 

digital camera on a high abstraction level 

3.2.3 Mapping aspect 
Merging of functionality and architecture is performed 
in mapping aspect. Each task from functionality aspect 
is connected to specific execution unit (e.g. processor 
and memory bus). For each architecture 
implementation, separate mapping needs to be 
performed.  E.g. for first architecture implementation 

all functionality tasks are mapped on execution unit 
P1, and those that perform any data transfer also need 
to be mapped to appropriate memory buses (bImgSens 
and/or B1). For instance tasks readImgSens and 
readImgPlCorr both need to be mapped on both 
memory buses.  
JPEG compression algorithm allows some parallel 
operations. Since the same algorithm needs to be 
performed for each of three color planes, there is 
possible to perform some tasks in parallel (e.g. when 
rgb2yuv the first plane is finished, frwrdDCT for this 
plane and rgb2yuv for the second plane can run in 
parallel). The possible parallel execution of the tasks 
is limited by their data dependency and available HW 
resources. In general processors present one execution 
unit capable of just sequentially executing many 
different tasks. Since there is only one processor in the 
first architecture, there is no possibility for any 
parallel execution of tasks.  
The other two architectures with two processors allow 
such parallel operation. As mentioned before they 
differ by memory bus configurations. 
On Fig. 7 mapping of the tasks on architecture No. 3 
is presented. The processor P2 executes only one task: 
fwrdDCT, the other tasks are mapped to P1. 

 
Fig. 7  Mapping of tasks on architecture resources for 

architecture No. 3 
At this point let us briefly explain how the tasks are 
actually described. The task model is defined in terms 
of architectural resource usage Fig. 8 lists a high-level 
algorithm description for the forward DCT encoding 
stage (task frwrdDCT). When studying a specific DCT 
realization (e.g. [16]), it can be concluded that 11 
multiplications and 20 additions are needed to apply 
the 1-D DCT transform. These operations represent 
abstract functions. The purpose of the triple nested for 
loops of Fig. 6 listing, explained from the inside out, 
is as follows. The 2-D DCT transform (of an 8x8 pixel 
block) is obtained by applying the 1-D DCT transform 
to rows first (loop 3) and columns second (loop 2). 
The pixels to be transformed must be grouped in 
segments of 8x8 pixels (structured block in data 
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domain) (loop 1). 
The predefined methods Add, Mult, GetData and 
WriteData from our system modeling libraries are 
used for modeling architectural resource (i.e. 
processor) usage. All method requests are performed 
through execution unit interface (m_pExecUnit). The 
libraries provide estimations of the execution time for 
each method on particular execution unit. 
void jpg_frwrdDCT::MainThread() 

{ // divide requested size (bytes) into blocks 
of 64 bytes 

 // do 2 pass 1D DCT 

 int blocks = ROUND_UP( m_bytes, 64 ); 

 if( m_bytes % 64 ) 

 cout << sc_time_stamp() << " input size to 
frwrdDCT is not 8x8 aligned\n"; 

 for( int i = 0; i < blocks; i++ ) 

 {// pass 0 - horizontal, pass 1 - vertical 

  for( int pass = 0; pass < 2; pass++ ) 

  { 

   for( int line = 0; line < 8; line++ ) 

   { m_pExecUnit-GetData(this,true,&b1_pb, 

    -1); 

    // 11MUL, 20ADD 

    m_pExecUnit->Mult(this, 11 ); 

    m_pExecUnit->Add(this, 20 ); 

    m_pExecUnit-
>WriteData(this,true,&b1_pb,-1); 

 } } } } 

Fig. 8 High-level description of DCT. Although 
functionally incomplete, algorithm features are 

captured. 

3.2.4 Simulation settings aspect 
An image from the simulation setting aspect is shown 
in Fig. 9. A set named camera_2p2b is selected and its 
members (both execution units P1, P2, and 
communication units – dual-port memory B1_PA, 
B1_PB) are shown. All the other architectural 
resources are shadowed. In this way, the designer 
defines resources used for producing value-change- 
dump (VCD) traces and console log files during 
model execution. 

 
Fig. 9 Selecting architecture resources for waveform 

traces 

3.3 Results 
System model evaluation results are obtained after 
interpretation, compilation and execution of the 
designed graphical model for each of three 
architectures. Analysis of these results provides basis 
for further design decisions. 

Table 2 summarizes utilization results of architecture 
resources and total amount of time for single image 
processing for all three implementations. The table is 
split into the architectural part and functionality part 
(Tasks). The architectural part shows the resource 
execution time (RET), i.e. summation of the time the 
services are required from a specific resource. 
Complementary, the functionality part presents tasks’ 
active and wait timings. The numbers stated in the 
active column represent the percentage of the time a 
specific task is being actively executed on a specific 
resource. Similarly, the numbers stated in the wait 
column represent the time a specific task has to wait 
for a specific resource to become available – this is the 
time interval during which a task may be executed 
regarding data dependency, but its execution is not 
started because of the unavailability of HW resources. 
Analysis of the results from Table 2 for architecture 
No. 1 shows that tasks needed involved in JPEG 
compression wait for their execution quite large 
amount of time because of high utilization of 
processor. It can also be seen that the most time 
consuming task (52%) is frwdDCT. Consequently this 
also shows that it would be good decision if this task 
could be mapped on another processor. Analysis of 
the results for architecture No. 2 shows that total 
amount of time needed for single image processing 
has dropped for 17,1%. It can also be seen that 
contentions on single port memory for image 
processing present bottleneck, since task frwdDCT 
waits for memory to be freed for 21,35ms. Results for 
architecture No. 3 shows that total amount of time 
dropped for 34,3% regarding to architecture No. 1.  
Graphical framework also enables generation of VCD 
waveforms with timing details about tasks execution 
and usage of architecture resources.  

4 Conclusion and future work 
We present a modeling framework used for high-level 
modeling of heterogeneous systems. It provides 
graphical design elements for using modeling 
wrappers from system modeling libraries. Graphical 
modeling relieves the designer of manual typing the 
source code and thus hides many details of the 
SystemC code that normally need to be taken care of. 
Thus the designer can put more effort on actual 
modeling. Our modeling framework also provides 
different constraint checks during modeling and 
integrates support for simulation settings. When 
modeling is completed, an executable model is 
automatically generated to simulate the system 
behavior on a high abstraction level. Our case study 
exemplifies the use of our framework and shows 
information obtained from the executable model built 
on a high-abstraction level. Results of simulation are 
estimations of architecture resource contention and 
utilization, time needed for task execution and timing 
diagrams. Evaluation of these results serves as a basis 
for model evaluation and further design decisions. 
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Graphical modeling enables rapid changes in the 
model (e.g. changes in the mapping aspect can give 
better results) without time-consuming manual 
SystemC code rewriting. 

Even though high-level and functionally incomplete 
models are used, it is shown that the results obtained 
by our modeling framework offer solid further design 
guidance. The benefits include a greatly reduced 
exploration time and higher-level algorithm capturing 
that is especially suitable for component-based data 
capturing. 
In our future work we intend to include support for 
modeling task interruption and to handle priorities of 
tasks execution in order to achieve efficient modeling 
of operating systems. We plan to provide a 
hierarchical approach to model building as it will 
significantly improve handling complexity of large 
models. Our intention is to enable a graphical 
composition of the task description by providing a 
library of commonly used methods. The library will 
provide cost estimations for execution of the methods 
on various architectural resources. 

5 References 
[1] M. Finc, A. Žemva. A systematic approach to 

profiling for hardware/software partitioning. 
Computers & electrical engineering, 31:93-
111,2005 

[2] A. A. Jerraya. Long Term Trends for Embedded 
System Design. CEPA 2 Workshop Digital 
Platforms for Defence, Brussels, March 15-16 
2005 

[3] A. A. Jerraya, W. Wolf. Hardware/Software 
Interface Codesign for Embedded Systems. IEEE 
Computer Society, 38:63-69, 2005 

[4] A. Habibi, S. Tahar. A Survey on System-On-a-
Chip Design Languages. Proc. IEEE 3rd 
International Workshop on System-on-Chip 
(IWSOC'03), page 212-215, Calgary, Canada, 
June-July 2003, IEEE Computer Society Press,  

[5] L. Cai, D. Gajski. Transaction Level Modeling: 

An Overview. CODES+ISSS’03, page 19-24, 
Newport Beach, California, USA, October 2003, 
ISBN:1-58113-742-7 

[6] http://www.eclipse.org/gef/ 
[7] http://www.isis.vanderbilt.edu/Projects/gme 
[8] http://www.uml.org/ 
[9] A. Ledeczi, et al. The Generic Modeling 

Environment. Workshop on Intelligent Signal 
Processing, Budapest, Hungary, May 17, 2001. 

[10] Institute for Software Integrated Systems, 
Vanderbilt University. A Generic Modeling 
Environment: GME 6 User's Manual, Version 6.0. 
Vanderbilt University, Nashville, 2006  

[11] http://www.systemc.org/ 
[12] D. C. Black & J. Donovan. SystemC from the 

ground up. Springer. 2004 
[13] J. Dedič. Enovito razvojno okolje za sočasno 

načrtovanje strojne in programske opreme, 
doktorska disertacija, Univerza v Ljubljani, 
Fakulteta za elektrotehniko, 2006 

[14] J. Dedič, M. Finc, A Trost. A Framework For 
High-Level System Design Exploration. 
Informacije MIDEM, 36:151-160, 2006 

[15] V. Bhaskaran, K. Konstantinides. Image and 
Video Compression Standards. Second Edition. 
Kluwer Academic Publishers. 1997 

[16] http://www.ijg.org 
 

Table 2.  Utilization results and total amount of time spent for single image processing 
 One processor, 

single-port RAM 
Two processors, 
single-port RAM 

Two processors, 
dual-port RAM 

Architecture P1 BUS1 P1 P2 BUS1 P1 BUS1_PA P2 BUS1_PB 

RET[ms] 123,496ms 86,502ms 73,686ms 89,058ms 86,502ms 55,789ms 37,350ms  67,707ms 49,152ms 

Tasks  [ms] active/wait active active/wait active/wait active/wait active/wait active active/wait active 

readImgSens 1,64/0,00 1,64 1,64/0,00 / 1,64/0,00 1,64/0,00 1,64 / / 
setCptrParams 0,00/0,00 / 0,00/0,00 / / 0,00/0,00 / / / 
takePicture 1,00/0,00 / 1,00/0,00 / / 1,00/0,00 / / / 
readImgPlCorr 9,83/0,00 4,91 9,83/0,00 / 4,91/0,00 9,83/0,00 4,92 / / 
rgb2yuv 15,89/33,25 9,91 26,86/23,57 / 9,91/10,97 15,89/19,27 9,91 / / 
frwrdDCT 67,71/42,26 49,15 / 89,06/0,00 49,15/21,35 / / 67,71/0,00 49,15 
quant 19,98/6,77 14,75 22,10/5,26 / 14,75/2,13 19,98/2,54 14,75 / / 
entrCod 6,84/29,59 5,53 11,59/11,28 / 5,53/4,75 6,84/5,31 5,53 / / 
writeToFlash 0,61/36,52 0,61 0,66/35,87 / 0,61/0,05 0,61/22,51 0,61 / / 
Total [ms] 123,496ms 102,431 ms 81,080ms 
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