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Abstract 

The problem of complex systems (information systems, computer networks, for example) 

analysis under uncertain conditions is discussed. This situation arises because of model 

incompleteness. Usually the behavior of some simulation model elements is unknown. The 

paper considers an ontology-based approach for the incomplete simulation model analysis and 

its automatic completion. A behavior procedure for the undefined element is searched for in 

special database and included in simulation model. The paper considers the method of model 

completion, namely, introduces the concept of a “semantic type” and some conditions that 

should be fulfilled for an appropriate behavior procedure to be chosen. The base ontology of 

simulation model representation is discussed and the choice of language OWL is explained. 

The presented example shows the process of simulation model automatic completion, 

illustrates the use of semantic type and additional conditions. The paper is concluded by 

describing the programming tools which provide an ontology-based automatic completion of 

partly described simulation model in simulation system Triad. 

Keywords: Simulation, ontology, simulation model uncertainty, automatic completion, 

Triad. 
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1 Introduction 

The researchers using simulation as a method of 

investigations of complex systems often confronted 

with a problem of analysis of partly described models. 

Usually the behavior (rules of operation) of some 

model components is unknown. For example, it is not 

known, how much time database search will take and 

will it be successful (information system is an object 

of investigations). A designer of computer networks 

does not know the exact behavior of router or another 

device in the early stages of computer networks 

design. A designer needs only a rough algorithm of 

data transfer. He doesn’t know yet this algorithm in 

details.  

It is clear, that under such conditions simulation 

process will not provide accurate account of complex 

system processes. However, despite this fact, a 

researcher wants to carry out a simulation experiment, 

and to obtain some results, which should be 

considered approximate. 

The problem is that the simulation system can not 

perform a simulation experiment if it lacks even one 

procedure describing behavior of any element of 

designed complex system. Therefore substitution of 

lacking behavior procedures with some “appropriate” 

ones taken from standard library is needed to bring the 

model up to full strength. 

This paper describes a process that is known as an 

automatic completion of a simulation model and 

considers an ontology based approach towards 

problem solving used in simulation system Triad.Net 

[1,2,3] 

2 Related works 

Some papers, dedicated to motivations for using 

ontologies in simulation modeling and role of 

ontologies in simulation process, appeared last time 

[4,5,6,7]. Almost all papers consider the process for 

creating ontologies and discuss the special languages 

such as OWL (a language for OWL ontologies 

building). So the process interaction DES domain is 

discussed, and an approach to ontology based 

simulation model representation is presented in [8]. 

The benefits of ontology management methods and 

tools, the role of ontology-based analysis and the 

architecture of OSFM describe in [9]. OSFM is an 

Ontology-driven Simulation Modeling Framework 

(OSMF) solution that provides a “visual programming 

environment” to rapidly compose, build, and maintain 

distributed, federated simulation. The role of 

ontologies in trajectory simulation is discussed [10]. 

The ontology is regarded as the domain model 

component of the reuse infrastructure, and is being 

developed to be a reusable knowledge library on 

trajectory simulations. 

Later we shall consider the representation of model in 

simulation system Triad, main features of this system, 

after that we shall regard the example of partly 

described model and show the application of ontology 

approach to solve the problem of simulation model 

automatic completion. 

3 Model description 

A simulation model µ={STR, ROUT, MES} consists 

of three layers, where STR is a layer of structures, 

ROUT – a layer of routines and MES – a layer of 

messages. 

The layer of structures is dedicated to describe the 

physical units and their interconnections, but the layer 

of routines presents its behavior. Each physical unit 

can send a signal (or message) to another unit. So each 

object has input and output poles. Input poles are used 

for sending messages. Output poles serve for receiving 

messages. A message of simple structure can be 

described in the layer of routines. A message of a 

complex structure can be described in the layer of 

messages only. Many objects being simulated have a 

hierarchical structure. Thus their description has a 

hierarchical structure too. One level of the system 

structure is presented by graph P = {U, V, W}. P-

graph is named as graph with poles. V is a set of 

nodes, presenting the physical units of an object to be 

designed, W – a set of connections between them, U – 

a set of external poles of a graph. Internal poles of 

nodes are used for information exchange within the 

same structure level; in contrast the set of external 

poles serves to send signals (or more complex 

information) to the objects situated on higher or 

underlying levels of description. 

Poles are very important part of a model. They 

represent “interfaces” of model components: objects, 

routines and graphs: communication links are being 

established through the poles of structure nodes; 

applying routine instance to a structure node consists 

of relating set of routine’s poles to the set of node’s 

poles; also, to complete operation of opening of 

structure node with a graph we need to relate outer 

poles of a graph to the poles of node (outer pole of a 

graph is a set of poles of it’s nodes used to 

communicate with the rest of the model). Thus, when 

a node is opened with a graph or routine is set for a 

node, this node or routine is “inserted” into model and 

interacts with the rest of the model through the 

“interface” described by poles of the node object. 

A set of routines is named as routine layer ROUT. 

Special algorithms – elementary routines – define a 

behavior of a physical unit and are associated with 

particular node of graph P = {U, V, W}. Each routine 

is specified with the set of events (E-set), the linearly 

partly ordered set of time moments (T-set) and the set 

of states {Q-set}. Each state is specified with the 

values of local variables. Local variables are defined 
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in routine. The state is changed only if any event 

occurs. One event schedules another event(s). Routine 

(as an object) has input and output poles too. An input 

pole serves to receive messages, output – to send 

them. A special statement out (out <message> 

through <pole name>) is used to send a message. An 

input event ein has to be emphasized among the other 

events. All input messages are processed by the input 

event, and output messages – by the ordinary events. 

System Triad.Net [3] is advanced discrete-event 

simulation system Triad [1, 2], but it is the 

distributed/parallel one. Conservative and optimistic 

algorithms were designed in Triad.Net. Besides, 

Triad.Net is characterized by the following [1, 2]: 

• Triad language includes the special 

type of variables – type “model”. There are several 

operations with the variable type “model”. The 

operations are defined for the model in general and as 

well as for each layer. For example, one may add or 

delete a node, add or delete an edge (arc), poles, create 

a union or an intersection of graphs. Besides, one or 

another routine (routine layer) using some rules can be 

assigned to the node (structure layer). The behavior of 

the object associated with this node would be changed. 

Besides, there’s no need to retranslate the model. Thus 

a simulation model can be described by linguistic 

structures or built as a result of a model transformation 

algorithm.  

• A simulation model is hierarchical, so 

each model (node) in a structure layer can be 

associated with some substructure.   

• The model analysis subsystem has to 

provide a user with the possibility to formulate not 

regulated request. So the investigator may avoid the 

information superfluity or its insufficiency. The 

investigator can change the set of collected data within 

the simulation run, but model remains invariant. The 

model analysis subsystem has to posses smart 

software tools to analyze the simulation run results 

and to recommend the policy for the following 

simulation runs. 

4 Partly described model 

An ordinary simulation system is able to perform a 

simulation run for a completely described model only. 

As it was described above in a completely described 

model each terminal node vi ∈V has an elementary 

routine ri ∈ROUT. An elementary routine is 

represented by a procedure. This procedure has to be 

called if one of poles of node vi receives a message. 

But some of the terminal nodes vi of partly described 

model have no routines. Therefore the task of an 

automatic completion of a simulation model consists 

either in “calculation” of  appropriate elementary 

routines for these nodes, i.e. in defining ri = f(vi), 

either in “calculation” of a structure graph si = h(vi) to 

open it with (in order to receive more detailed 

description of object being designed). It was 

mentioned above that the routine specifies behavioral 

function assigned to the node but the structure graph 

specifies additional structure level of the model 

description. And at the same time, all structures si 

must be completely described submodels. 

Let’s consider an example of computer network 

fragment simulation. This fragment consists of 

workstations and routers (fig.1.). Each workstation has 

one neighbor (router). Workstations attempt to 

transfers data to another one. Data have to pass some 

routers, but the behavior of routers is unknown. So it 

is necessary to detect all nodes of simulation model, 

find out nodes (vi) without routines, search out the 

appropriate one in data base of routines and fulfill the 

completion of model. Let’s discuss the method of 

model completion suggested by authors. 

 

 

Fig. 1. The fragment of computer network consists of 

workstations and routers. 

5 The method of model completion 

 

The method of a model M completion at a node v is 

based on following. 

Node v is represented by sets In(v) and Out(v) of input 

and output poles respectively, its name and semantic 

type. Its poles are described by types of messages 

passing through them. Node v is located in some 

“environment” of the model M, it is adjacent to certain 

nodes vk of the model. Nodes vk for their part are also 

described by their poles, names, semantic types and 

environments. 

All this information imposes restrictions on possible 

routine for v. It must not be chosen randomly. Despite 

some remaining freedom of choice, it should be 

picked out from some limited set. 

Router 

Router 

Router 

Router 

Router 
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An elementary routines library is created for a given 

simulation domain. The library should be consistent 

with domain ontology. 

The “semantic type” concept is used to provide means 

for selection of an appropriate objects “opening”. A 

semantic type of the node defines a possible object 

class from certain domain. The given node can 

represent objects of this class in a model. For example, 

when computing systems are simulated, one can 

define such semantic types as “processor”, “register”, 

“memory unit”. Or, when queuing systems are 

simulated, such semantic types as “queue”, “server” 

and “generator” would be appropriate. Using 

information, obtained from semantic type of a node, 

one can pick out an appropriate specification for it. 

It is necessary to use special statement <object name> 

=> <semantic type name> in order to declare semantic 

type of an object. 

Semantic type could be declared by statement type 

<semantic type name>.  

The fragment of Triad program can be given below. 

This fragment illustrates the statements mentioned 

above (to declare semantic type and to denote 

semantic type). 

 

Fig. 2. The fragment of Triad program (Program 1) 

with the semantic types. 

An internal form of the simulation model can be 

gained as a result of a program run (fig.3.): it is a 

graph, each node of the graph represents a workstation 

or a router. Each workstation has a semantic type 

“host”, each router – semantic type “router”. 

 

Fig.3. The internal form of computer network and 

semantic types 

6 Corresponding routine instance search 

So called specification, configuration and 

decomposition conditions are used to test the routine 

instance for each undefined node in order to complete 

simulation model. First of all, consider a specification 

condition. Closely related to specification condition is 

such a concept as “semantic type”. This concept was 

discussed earlier. 

Let us assume that v – terminal node, r –routine 

instance from the a knowledge base. Let us introduce 

the function equtype(v,r), defining specification 

condition performance. The result of this function is 

true, if the semantic type Type(v), assigned to the node 

corresponds to a semantic type Type(r), associated to 

routine instance found in the knowledge base. 

Semantic type T1 corresponds to semantic type T2, if 

T1 is a superclass T2 (i.e. 12 TT ⊂ ). 

By this means the condition of specification is true if 

found routine instance corresponds to the semantic 

type of the node or to more special type. 

Some specific type Object is introduced to provide 

the processing of the objects with unknown semantic 

type. Semantic type Object is a parent to all other 

semantic types. Any node is considered to be 

belonging to this parent type Object. If several 

particular semantic types are denoted the node is 

marked as belonging to each of them. Therefore 

routine instance without specified semantic type (more 

precisely, semantic type Object is specified) can be 

applied only to the node without definite semantic 

type. However, only routine instances belonging to the 

intersection of several semantic types can be applied 

to the nodes with these several types. For  example, if 

we want to describe the node with a several functions 

(working as a router and host at the same time), we 

should declare both semantic types for it. In this case 

Type Router,Host; 

integer i; 

 M:=dStar(Rout[5]<Pol[4]>); 

 M:=M+node Hst[8]<Pol>; 

 M.Rout[0]=>Router; 

 for i:=1 by 1 to 4 do 

  M.Rout[i]=>Router; 

  M:=M+edge(Rout[i].Pol[1]—

Hst[2*i-2]); 

  M:=M+edge(Rout[i].Pol[2]—

Hst[2*i-1]); 

 endf; 

 for i:=0 by 1 to 7 do 

  M.Hst[i]=>Host; 

 endf; 

Rout[4] 

Type:Router 

Rout[0] 

Type:Router 

Rout[2] 

Type:Router 

Rout[1] 

Type:Router 

Rout[3] 

Type: Router 

Hst[2] 

Type:Host 

Hst[5] 

Type:Host 

Hst[4] 

Type:Host Hst[3] 

Type:Host 

Hst[1] 

Type:Host 

Hst[0] 

Type:Host 

Hst[6] 

Type:Host 

Hst[7] 

Type:Host 
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routine instances belonging only to one of these types 

would not be sufficient. We should find routine 

instance belonging to the intersection of these types, 

i.e. implementing both router and host functions. 

Configuration condition supposes the following: the 

amount of input and output poles of a node has to be 

equal to the amount of input and output poles of an 

appropriate routine instance. When we apply routine r  

to the node v the following relations are defined:  

)()(: rInvInLi →    (1) 

)()(: rOutvOutLo →     (2) 

It is significant that these mappings are not functional 

ones. They define a set of related pairs );( 21 pp , 

where )(; 21 rPolpvp ∈∈ , thus each pole can 

belong to any number of pairs or not to be used at all. 

Let D(Li/o) be cardinal numbers of input and output 

poles of a node, related to mappings Li and Lo 

respectively. Depending on these values the undefined 

node has to have some definite amount of input and 

output poles, to be more precise, the following 

mappings are significant: 

)()( iLDvIn ≥    (3) 

)()( oLDvOut ≥    (4) 

Nonrigourous equation allows using the nodes with an 

excessive amount of input and output poles when the 

routine instance is applied. The presence of the 

necessary minimum of poles is tested only, so some of 

inputs and outputs can be left “hanging”, and all the 

messages, sent through them will not be processed.  

Nodes Rout[1 to 4] are declared as nodes with 4 poles 

in our example (M:=dStar(Rout[5]<Pol[4]>);). 

However, each of them is connected only with 3 

neighbors, so one of its poles will not be used. 

Decomposition condition defines rules of node 

connections in a model graph, and is derived from 

node adjacency relations. 

To define decomposition conditions we can introduce 

the concept of surrounding graph of some node v. Let 

};;{ UWVG =  be graph and node ( Vv ∈ ) 

belonging to graph G. The relation S determines the 

adjacency of nodes in graph G, i.e.: 

));();((:,);(:, 122122112121 WppWppvpvpSvvVvv ∈∨∈∈∃∈∃↔∈∈∀
 

Function Sub(w,v) defines a set of poles of the node w, 

connected with poles v: 

});();(:|{),( 000 WppWppvpwpvwSub ∈∨∈∈∃∈= (5) 

Then graph };';'{)( ∅= WVvGG  - is a 

surrounding graph for v if the following conditions are 

observed: 

WW

WppvpvpWpppp

VvwSubSvww

SvwvwSubwwvV

⊂

∈→∈∨∈∧∈∀

∈→∈∀

∈=∪=

'

');(][]);[(:,

'),();(:

});();,('|'{}{'

21212121

)9(

)8(

)7(

)6(

 

Eq (6) limits the set of nodes of the surrounding graph 

of the node v: it includes the node v itself and subsets 

of nodes adjacent with it. It is significant to take into 

account only those poles of adjacent nodes which are 

in accordance with Eq (5) directly connected with 

poles of node v. 

Eq (7) specifies that this sort of subset exists for each 

adjacent node. 

Eq (8) informs that each edge adjacent to the node v 

would be included to the surrounding graph. Eq (6) 

and Eq (7) state that all adequate poles would be 

included in the surrounding graph too. 

Eq (9) asserts that there are no any excessive edges in 

the surrounding graph but only edges corresponding to 

Eq (8) are included. 

 

Fig.4. The surrounding graph of a node Rout[1] 

So decomposition condition checks up following: 

1) which semantic types are set to the nodes connected 

to given node v,  

2) an isomorphism of two graphs: the surrounding 

graph of a node GG(v), and the pattern graph GG’(r) 

taken from the domain ontology.  

The pattern graph is stored in a knowledge base and 

associated with a routine instance. 

The fulfillment of decomposition condition is 

determined by function iso(GG’(r),GG(v)), which 

searches the environment graph of node v for a 

subgraph isomorphic to GG’(r), and also checks some 

additional restrictions for environment graph. 

Graph GG’(r) is a pattern graph taken from the 

knowledge base and it should be relevant to the actual 

surrounding graph. If v’ is a central node of this 

pattern graph then it shouldn’t have any “hanging” 

poles, i.e. each pole of node v’ corresponds at least 

one pole of routine.  

Rout[0] 

Rout[1] 

Hst[1] 

Hst[0] 
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Thus the task of model completion subsystem implies 

the following: to find the proper routine instance from 

the knowledge base for each undefined node in a 

partly described model. Therewith the conditions of 

specification, configuration and decomposition have 

to be followed. The information required to test these 

conditions should be stored in knowledge base. The 

ontology approach is used to represent this 

information. 

7 Base ontology  

The base ontology describes a model representation in 

Triad.Net: classes such as Model, Object, Routine, 

Polus and so on are specified in it. 

Special class SubMod is presented describing 

everything the model object can be specified with. Its 

subclasses are the Routine and Graph classes 

representing the set of routines and structure graphs of 

one hierarchical level. Their common superclass 

allows unifying operations of opening object with a 

graph and applying the routine to an object. 

The Web Ontology Language (OWL) is used to store 

the base ontology and all the domain ontologies. It 

was chosen because it allows composing information 

from different sources and is widespread and well 

known. 

A part of the base ontology including most common 

concepts of ontology is depicted on Fig.5. 

“Has_subclass” relations are shown as blue arrows. 

 

Fig.5. The fragment of ontology 

The poles hierarchy and its connection to the rest of 

ontology are missing on this picture.  

Each semantic type defines a structure graph or a 

routine suitable for opening. 

In the view of ontology knowledge representation 

semantic type is some class of nodes possessing 

certain properties. For example “request generator” is 

a node having at least one output pole connected to a 

node with semantic type of “queue”. Possible 

subclasses of “request generator” are generators of 

specific requests. To define them one can apply 

restrictions on message types corresponding to 

generator’s output only. 

Thus, for any specific domain we should create 

ontology expanding the basic one which should 

contain information on how one should model the 

concepts from this domain. 

Since we are mostly using the Has_subcalss relation it 

is convenient to have a hierarchy representation of an 

ontology. With the use of this approach, child nodes 

will represent concepts specifying concepts of parent 

nodes. One could bind the most common concepts of a 

domain, for example, “device” when modeling the 

computing systems domain to root nodes. The nodes 

residing on lower levels of hierarchy would represent 

classes defining more precise concepts of a domain: 

devices would divide to “processor”, “memory unit” 

etc. “Processors” would be divided depending on their 

architecture and so on. 

8 Simulator subsystem for model 

completion 

The model completion subsystem includes the 

following components: 

1. Model analyzer. It searches through model 

and looks for terminal nodes without routines to mark 

them as needed to process. 

2. Model converter. It converts model from its 

internal form to the ontology representation, it is used 

to save surrounding graph of a routine instance. 

3. Inference module. It analyses the model 

ontology and searches it for an appropriate routine 

instances for each node marked by model analyzer. 

4. Model builder. Applies found routine 

instances to the nodes. 

5. Knowledge base, containing information 

about semantic types and routine instances with their 

pattern graphs. 

 

Fig 6. Simulation system Triad.Net and model 

completion subsystem 

Let us consider the algorithm of model completion 

subsystem in our example (fig 1). 

Triad 

program 

Compiler 
.NET 

assembly 

Included 

assemblies 

Internal 

representation 

Model 

completion 

subsystem 

Knowledge 

base 

Completely 

defined model 

Model 

Graph 

Object 

hasGraph 

hasObject 

Opened

Object 

Terminal

Object 

SubMod 

Routine 

hasOpening 

hasOpening 
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Model completion subsystem starts when the internal 

form of simulation model is built according to a Triad 

code. 

First, model analyzer searches the model for 

incomplete nodes, and marks them. Assume that only 

the router nodes don’t have routines applied. Thus, the 

model analyzer will mark all Rout nodes. 

The inference module starts looking for an appropriate 

routine instance for each of marked nodes. We’ll take 

Rout[1] as an example. Assume, that there are several 

routine instances for a Router semantic type, 

describing routers with 2, 3… 10 neighbors. 

According to specification condition, inference 

module picks out these 9 routine instances discarding 

the ones with other semantic types. 

Then, according to configuration condition it discards 

the instances of a router routine with 5 or more 

neighbors (Rout[1] is declared having 4 poles). 

Lastly, it starts checking decomposition condition for 

remaining routine instances. Instance with 4 neighbors 

will be discarded, because the surrounding graph of 

Rout[1] has only 4 nodes, and the pattern graph for the 

instance has 5 nodes. All others will suffice for the 

condition. In order to avoid ambiguity and to choose 

the most appropriate instances, they are sorted before 

checking the decomposition condition, according to 

several heuristics (by the number of nodes for 

example). 

After the appropriate instance has been found, it is 

applied to the node. 

9 Conclusions 

Thus the suggested approach allows to automate the 

process of simulation model generation. This approach 

supposes use of ontologies. Ontologies are the 

convenient path to domain describing. They are 

efficient for information systems design, data bases 

and complex programming systems development, 

computer network design and so on. It is a powerful 

tool for the system designers. Ontology can be useful 

to system researcher too. Investigation of a complex 

system by simulation methods together with ontology 

allows him/her to get results in difficult cases of 

incomplete, fuzzy models. 
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