
IMPLEMENTATION OF SIMULATION PROCESS

UNDER INCOMPLETE KNOWLEDGE USING

DOMAIN ONTOLOGY

Alexander Mikov 1 , Elena Zamyatina 2 , Evgeniy Kubrak 3

1 Computing Research Institute,

614000 Perm, Sibirskaya 30-58, Russia

2 Perm State University, Faculty of Mathematic and Mechanic

614000 Perm, Bukirev 15, Russia

3 Perm State University, Faculty of Mathematic and Mechanic

614000 Perm, Bukirev 15, Russia

e_zamyatina@mail.ru (Elena Zamyatina)

Abstract

The problem of complex systems (information systems, computer networks, for example)

analysis under uncertain conditions is discussed. This situation arises because of model

incompleteness. Usually the behavior of some simulation model elements is unknown. The

paper considers an ontology-based approach for the incomplete simulation model analysis and

its automatic completion. A behavior procedure for the undefined element is searched for in

special database and included in simulation model. The paper considers the method of model

completion, namely, introduces the concept of a “semantic type” and some conditions that

should be fulfilled for an appropriate behavior procedure to be chosen. The base ontology of

simulation model representation is discussed and the choice of language OWL is explained.

The presented example shows the process of simulation model automatic completion,

illustrates the use of semantic type and additional conditions. The paper is concluded by

describing the programming tools which provide an ontology-based automatic completion of

partly described simulation model in simulation system Triad.

Keywords: Simulation, ontology, simulation model uncertainty, automatic completion,

Triad.

Presenting Author’s biography

Elena Zamyatina is an Associated Professor of Computer Science at Perm

State University, the lecturer of Mathematical Department. Her research

interests include simulation as well as parallel and distributed systems.

She received a Ph.D. degree in Information and Computer Science in

1993. She has over 25 years of professional experience in programming

tools design, particularly in simulation domain. She is the author of over

60 papers in the area of simulation, distributed simulation, parallel and

distributed systems.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

The researchers using simulation as a method of

investigations of complex systems often confronted

with a problem of analysis of partly described models.

Usually the behavior (rules of operation) of some

model components is unknown. For example, it is not

known, how much time database search will take and

will it be successful (information system is an object

of investigations). A designer of computer networks

does not know the exact behavior of router or another

device in the early stages of computer networks

design. A designer needs only a rough algorithm of

data transfer. He doesn’t know yet this algorithm in

details.

It is clear, that under such conditions simulation

process will not provide accurate account of complex

system processes. However, despite this fact, a

researcher wants to carry out a simulation experiment,

and to obtain some results, which should be

considered approximate.

The problem is that the simulation system can not

perform a simulation experiment if it lacks even one

procedure describing behavior of any element of

designed complex system. Therefore substitution of

lacking behavior procedures with some “appropriate”

ones taken from standard library is needed to bring the

model up to full strength.

This paper describes a process that is known as an

automatic completion of a simulation model and

considers an ontology based approach towards

problem solving used in simulation system Triad.Net

[1,2,3]

2 Related works

Some papers, dedicated to motivations for using

ontologies in simulation modeling and role of

ontologies in simulation process, appeared last time

[4,5,6,7]. Almost all papers consider the process for

creating ontologies and discuss the special languages

such as OWL (a language for OWL ontologies

building). So the process interaction DES domain is

discussed, and an approach to ontology based

simulation model representation is presented in [8].

The benefits of ontology management methods and

tools, the role of ontology-based analysis and the

architecture of OSFM describe in [9]. OSFM is an

Ontology-driven Simulation Modeling Framework

(OSMF) solution that provides a “visual programming

environment” to rapidly compose, build, and maintain

distributed, federated simulation. The role of

ontologies in trajectory simulation is discussed [10].

The ontology is regarded as the domain model

component of the reuse infrastructure, and is being

developed to be a reusable knowledge library on

trajectory simulations.

Later we shall consider the representation of model in

simulation system Triad, main features of this system,

after that we shall regard the example of partly

described model and show the application of ontology

approach to solve the problem of simulation model

automatic completion.

3 Model description

A simulation model µ={STR, ROUT, MES} consists

of three layers, where STR is a layer of structures,

ROUT – a layer of routines and MES – a layer of

messages.

The layer of structures is dedicated to describe the

physical units and their interconnections, but the layer

of routines presents its behavior. Each physical unit

can send a signal (or message) to another unit. So each

object has input and output poles. Input poles are used

for sending messages. Output poles serve for receiving

messages. A message of simple structure can be

described in the layer of routines. A message of a

complex structure can be described in the layer of

messages only. Many objects being simulated have a

hierarchical structure. Thus their description has a

hierarchical structure too. One level of the system

structure is presented by graph P = {U, V, W}. P-

graph is named as graph with poles. V is a set of

nodes, presenting the physical units of an object to be

designed, W – a set of connections between them, U –

a set of external poles of a graph. Internal poles of

nodes are used for information exchange within the

same structure level; in contrast the set of external

poles serves to send signals (or more complex

information) to the objects situated on higher or

underlying levels of description.

Poles are very important part of a model. They

represent “interfaces” of model components: objects,

routines and graphs: communication links are being

established through the poles of structure nodes;

applying routine instance to a structure node consists

of relating set of routine’s poles to the set of node’s

poles; also, to complete operation of opening of

structure node with a graph we need to relate outer

poles of a graph to the poles of node (outer pole of a

graph is a set of poles of it’s nodes used to

communicate with the rest of the model). Thus, when

a node is opened with a graph or routine is set for a

node, this node or routine is “inserted” into model and

interacts with the rest of the model through the

“interface” described by poles of the node object.

A set of routines is named as routine layer ROUT.

Special algorithms – elementary routines – define a

behavior of a physical unit and are associated with

particular node of graph P = {U, V, W}. Each routine

is specified with the set of events (E-set), the linearly

partly ordered set of time moments (T-set) and the set

of states {Q-set}. Each state is specified with the

values of local variables. Local variables are defined

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

in routine. The state is changed only if any event

occurs. One event schedules another event(s). Routine

(as an object) has input and output poles too. An input

pole serves to receive messages, output – to send

them. A special statement out (out <message>

through <pole name>) is used to send a message. An

input event ein has to be emphasized among the other

events. All input messages are processed by the input

event, and output messages – by the ordinary events.

System Triad.Net [3] is advanced discrete-event

simulation system Triad [1, 2], but it is the

distributed/parallel one. Conservative and optimistic

algorithms were designed in Triad.Net. Besides,

Triad.Net is characterized by the following [1, 2]:

• Triad language includes the special

type of variables – type “model”. There are several

operations with the variable type “model”. The

operations are defined for the model in general and as

well as for each layer. For example, one may add or

delete a node, add or delete an edge (arc), poles, create

a union or an intersection of graphs. Besides, one or

another routine (routine layer) using some rules can be

assigned to the node (structure layer). The behavior of

the object associated with this node would be changed.

Besides, there’s no need to retranslate the model. Thus

a simulation model can be described by linguistic

structures or built as a result of a model transformation

algorithm.

• A simulation model is hierarchical, so

each model (node) in a structure layer can be

associated with some substructure.

• The model analysis subsystem has to

provide a user with the possibility to formulate not

regulated request. So the investigator may avoid the

information superfluity or its insufficiency. The

investigator can change the set of collected data within

the simulation run, but model remains invariant. The

model analysis subsystem has to posses smart

software tools to analyze the simulation run results

and to recommend the policy for the following

simulation runs.

4 Partly described model

An ordinary simulation system is able to perform a

simulation run for a completely described model only.

As it was described above in a completely described

model each terminal node vi ∈V has an elementary

routine ri ∈ROUT. An elementary routine is

represented by a procedure. This procedure has to be

called if one of poles of node vi receives a message.

But some of the terminal nodes vi of partly described

model have no routines. Therefore the task of an

automatic completion of a simulation model consists

either in “calculation” of appropriate elementary

routines for these nodes, i.e. in defining ri = f(vi),

either in “calculation” of a structure graph si = h(vi) to

open it with (in order to receive more detailed

description of object being designed). It was

mentioned above that the routine specifies behavioral

function assigned to the node but the structure graph

specifies additional structure level of the model

description. And at the same time, all structures si

must be completely described submodels.

Let’s consider an example of computer network

fragment simulation. This fragment consists of

workstations and routers (fig.1.). Each workstation has

one neighbor (router). Workstations attempt to

transfers data to another one. Data have to pass some

routers, but the behavior of routers is unknown. So it

is necessary to detect all nodes of simulation model,

find out nodes (vi) without routines, search out the

appropriate one in data base of routines and fulfill the

completion of model. Let’s discuss the method of

model completion suggested by authors.

Fig. 1. The fragment of computer network consists of

workstations and routers.

5 The method of model completion

The method of a model M completion at a node v is

based on following.

Node v is represented by sets In(v) and Out(v) of input

and output poles respectively, its name and semantic

type. Its poles are described by types of messages

passing through them. Node v is located in some

“environment” of the model M, it is adjacent to certain

nodes vk of the model. Nodes vk for their part are also

described by their poles, names, semantic types and

environments.

All this information imposes restrictions on possible

routine for v. It must not be chosen randomly. Despite

some remaining freedom of choice, it should be

picked out from some limited set.

Router

Router

Router

Router

Router

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

An elementary routines library is created for a given

simulation domain. The library should be consistent

with domain ontology.

The “semantic type” concept is used to provide means

for selection of an appropriate objects “opening”. A

semantic type of the node defines a possible object

class from certain domain. The given node can

represent objects of this class in a model. For example,

when computing systems are simulated, one can

define such semantic types as “processor”, “register”,

“memory unit”. Or, when queuing systems are

simulated, such semantic types as “queue”, “server”

and “generator” would be appropriate. Using

information, obtained from semantic type of a node,

one can pick out an appropriate specification for it.

It is necessary to use special statement <object name>

=> <semantic type name> in order to declare semantic

type of an object.

Semantic type could be declared by statement type

<semantic type name>.

The fragment of Triad program can be given below.

This fragment illustrates the statements mentioned

above (to declare semantic type and to denote

semantic type).

Fig. 2. The fragment of Triad program (Program 1)

with the semantic types.

An internal form of the simulation model can be

gained as a result of a program run (fig.3.): it is a

graph, each node of the graph represents a workstation

or a router. Each workstation has a semantic type

“host”, each router – semantic type “router”.

Fig.3. The internal form of computer network and

semantic types

6 Corresponding routine instance search

So called specification, configuration and

decomposition conditions are used to test the routine

instance for each undefined node in order to complete

simulation model. First of all, consider a specification

condition. Closely related to specification condition is

such a concept as “semantic type”. This concept was

discussed earlier.

Let us assume that v – terminal node, r –routine

instance from the a knowledge base. Let us introduce

the function equtype(v,r), defining specification

condition performance. The result of this function is

true, if the semantic type Type(v), assigned to the node

corresponds to a semantic type Type(r), associated to

routine instance found in the knowledge base.

Semantic type T1 corresponds to semantic type T2, if

T1 is a superclass T2 (i.e. 12 TT ⊂).

By this means the condition of specification is true if

found routine instance corresponds to the semantic

type of the node or to more special type.

Some specific type Object is introduced to provide

the processing of the objects with unknown semantic

type. Semantic type Object is a parent to all other

semantic types. Any node is considered to be

belonging to this parent type Object. If several

particular semantic types are denoted the node is

marked as belonging to each of them. Therefore

routine instance without specified semantic type (more

precisely, semantic type Object is specified) can be

applied only to the node without definite semantic

type. However, only routine instances belonging to the

intersection of several semantic types can be applied

to the nodes with these several types. For example, if

we want to describe the node with a several functions

(working as a router and host at the same time), we

should declare both semantic types for it. In this case

Type Router,Host;

integer i;

 M:=dStar(Rout[5]<Pol[4]>);

 M:=M+node Hst[8]<Pol>;

 M.Rout[0]=>Router;

 for i:=1 by 1 to 4 do

 M.Rout[i]=>Router;

 M:=M+edge(Rout[i].Pol[1]—

Hst[2*i-2]);

 M:=M+edge(Rout[i].Pol[2]—

Hst[2*i-1]);

 endf;

 for i:=0 by 1 to 7 do

 M.Hst[i]=>Host;

 endf;

Rout[4]

Type:Router

Rout[0]

Type:Router

Rout[2]

Type:Router

Rout[1]

Type:Router

Rout[3]

Type: Router

Hst[2]

Type:Host

Hst[5]

Type:Host

Hst[4]

Type:Host Hst[3]

Type:Host

Hst[1]

Type:Host

Hst[0]

Type:Host

Hst[6]

Type:Host

Hst[7]

Type:Host

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

routine instances belonging only to one of these types

would not be sufficient. We should find routine

instance belonging to the intersection of these types,

i.e. implementing both router and host functions.

Configuration condition supposes the following: the

amount of input and output poles of a node has to be

equal to the amount of input and output poles of an

appropriate routine instance. When we apply routine r

to the node v the following relations are defined:

)()(: rInvInLi → (1)

)()(: rOutvOutLo → (2)

It is significant that these mappings are not functional

ones. They define a set of related pairs);(21 pp ,

where)(; 21 rPolpvp ∈∈ , thus each pole can

belong to any number of pairs or not to be used at all.

Let D(Li/o) be cardinal numbers of input and output

poles of a node, related to mappings Li and Lo

respectively. Depending on these values the undefined

node has to have some definite amount of input and

output poles, to be more precise, the following

mappings are significant:

)()(iLDvIn ≥ (3)

)()(oLDvOut ≥ (4)

Nonrigourous equation allows using the nodes with an

excessive amount of input and output poles when the

routine instance is applied. The presence of the

necessary minimum of poles is tested only, so some of

inputs and outputs can be left “hanging”, and all the

messages, sent through them will not be processed.

Nodes Rout[1 to 4] are declared as nodes with 4 poles

in our example (M:=dStar(Rout[5]<Pol[4]>);).

However, each of them is connected only with 3

neighbors, so one of its poles will not be used.

Decomposition condition defines rules of node

connections in a model graph, and is derived from

node adjacency relations.

To define decomposition conditions we can introduce

the concept of surrounding graph of some node v. Let

};;{ UWVG = be graph and node (Vv ∈)

belonging to graph G. The relation S determines the

adjacency of nodes in graph G, i.e.:

));();((:,);(:, 122122112121 WppWppvpvpSvvVvv ∈∨∈∈∃∈∃↔∈∈∀

Function Sub(w,v) defines a set of poles of the node w,

connected with poles v:

});();(:|{),(000 WppWppvpwpvwSub ∈∨∈∈∃∈= (5)

Then graph };';'{)(∅= WVvGG - is a

surrounding graph for v if the following conditions are

observed:

WW

WppvpvpWpppp

VvwSubSvww

SvwvwSubwwvV

⊂

∈→∈∨∈∧∈∀

∈→∈∀

∈=∪=

'

');(][]);[(:,

'),();(:

});();,('|'{}{'

21212121

)9(

)8(

)7(

)6(

Eq (6) limits the set of nodes of the surrounding graph

of the node v: it includes the node v itself and subsets

of nodes adjacent with it. It is significant to take into

account only those poles of adjacent nodes which are

in accordance with Eq (5) directly connected with

poles of node v.

Eq (7) specifies that this sort of subset exists for each

adjacent node.

Eq (8) informs that each edge adjacent to the node v

would be included to the surrounding graph. Eq (6)

and Eq (7) state that all adequate poles would be

included in the surrounding graph too.

Eq (9) asserts that there are no any excessive edges in

the surrounding graph but only edges corresponding to

Eq (8) are included.

Fig.4. The surrounding graph of a node Rout[1]

So decomposition condition checks up following:

1) which semantic types are set to the nodes connected

to given node v,

2) an isomorphism of two graphs: the surrounding

graph of a node GG(v), and the pattern graph GG’(r)

taken from the domain ontology.

The pattern graph is stored in a knowledge base and

associated with a routine instance.

The fulfillment of decomposition condition is

determined by function iso(GG’(r),GG(v)), which

searches the environment graph of node v for a

subgraph isomorphic to GG’(r), and also checks some

additional restrictions for environment graph.

Graph GG’(r) is a pattern graph taken from the

knowledge base and it should be relevant to the actual

surrounding graph. If v’ is a central node of this

pattern graph then it shouldn’t have any “hanging”

poles, i.e. each pole of node v’ corresponds at least

one pole of routine.

Rout[0]

Rout[1]

Hst[1]

Hst[0]

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

Thus the task of model completion subsystem implies

the following: to find the proper routine instance from

the knowledge base for each undefined node in a

partly described model. Therewith the conditions of

specification, configuration and decomposition have

to be followed. The information required to test these

conditions should be stored in knowledge base. The

ontology approach is used to represent this

information.

7 Base ontology

The base ontology describes a model representation in

Triad.Net: classes such as Model, Object, Routine,

Polus and so on are specified in it.

Special class SubMod is presented describing

everything the model object can be specified with. Its

subclasses are the Routine and Graph classes

representing the set of routines and structure graphs of

one hierarchical level. Their common superclass

allows unifying operations of opening object with a

graph and applying the routine to an object.

The Web Ontology Language (OWL) is used to store

the base ontology and all the domain ontologies. It

was chosen because it allows composing information

from different sources and is widespread and well

known.

A part of the base ontology including most common

concepts of ontology is depicted on Fig.5.

“Has_subclass” relations are shown as blue arrows.

Fig.5. The fragment of ontology

The poles hierarchy and its connection to the rest of

ontology are missing on this picture.

Each semantic type defines a structure graph or a

routine suitable for opening.

In the view of ontology knowledge representation

semantic type is some class of nodes possessing

certain properties. For example “request generator” is

a node having at least one output pole connected to a

node with semantic type of “queue”. Possible

subclasses of “request generator” are generators of

specific requests. To define them one can apply

restrictions on message types corresponding to

generator’s output only.

Thus, for any specific domain we should create

ontology expanding the basic one which should

contain information on how one should model the

concepts from this domain.

Since we are mostly using the Has_subcalss relation it

is convenient to have a hierarchy representation of an

ontology. With the use of this approach, child nodes

will represent concepts specifying concepts of parent

nodes. One could bind the most common concepts of a

domain, for example, “device” when modeling the

computing systems domain to root nodes. The nodes

residing on lower levels of hierarchy would represent

classes defining more precise concepts of a domain:

devices would divide to “processor”, “memory unit”

etc. “Processors” would be divided depending on their

architecture and so on.

8 Simulator subsystem for model

completion

The model completion subsystem includes the

following components:

1. Model analyzer. It searches through model

and looks for terminal nodes without routines to mark

them as needed to process.

2. Model converter. It converts model from its

internal form to the ontology representation, it is used

to save surrounding graph of a routine instance.

3. Inference module. It analyses the model

ontology and searches it for an appropriate routine

instances for each node marked by model analyzer.

4. Model builder. Applies found routine

instances to the nodes.

5. Knowledge base, containing information

about semantic types and routine instances with their

pattern graphs.

Fig 6. Simulation system Triad.Net and model

completion subsystem

Let us consider the algorithm of model completion

subsystem in our example (fig 1).

Triad

program

Compiler
.NET

assembly

Included

assemblies

Internal

representation

Model

completion

subsystem

Knowledge

base

Completely

defined model

Model

Graph

Object

hasGraph

hasObject

Opened

Object

Terminal

Object

SubMod

Routine

hasOpening

hasOpening

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

Model completion subsystem starts when the internal

form of simulation model is built according to a Triad

code.

First, model analyzer searches the model for

incomplete nodes, and marks them. Assume that only

the router nodes don’t have routines applied. Thus, the

model analyzer will mark all Rout nodes.

The inference module starts looking for an appropriate

routine instance for each of marked nodes. We’ll take

Rout[1] as an example. Assume, that there are several

routine instances for a Router semantic type,

describing routers with 2, 3… 10 neighbors.

According to specification condition, inference

module picks out these 9 routine instances discarding

the ones with other semantic types.

Then, according to configuration condition it discards

the instances of a router routine with 5 or more

neighbors (Rout[1] is declared having 4 poles).

Lastly, it starts checking decomposition condition for

remaining routine instances. Instance with 4 neighbors

will be discarded, because the surrounding graph of

Rout[1] has only 4 nodes, and the pattern graph for the

instance has 5 nodes. All others will suffice for the

condition. In order to avoid ambiguity and to choose

the most appropriate instances, they are sorted before

checking the decomposition condition, according to

several heuristics (by the number of nodes for

example).

After the appropriate instance has been found, it is

applied to the node.

9 Conclusions

Thus the suggested approach allows to automate the

process of simulation model generation. This approach

supposes use of ontologies. Ontologies are the

convenient path to domain describing. They are

efficient for information systems design, data bases

and complex programming systems development,

computer network design and so on. It is a powerful

tool for the system designers. Ontology can be useful

to system researcher too. Investigation of a complex

system by simulation methods together with ontology

allows him/her to get results in difficult cases of

incomplete, fuzzy models.

Reference

[1] A.I. Mikov. Simulation and Design of Hardware

and Software with Triad// Proc.2nd Intl.Conf. on

Electronic Hardware Description Languages, Las

Vegas, USA, 1995. pp. 15-20.

[2] A.I. Mikov. Formal Method for Design of

Dynamic Objects and Its Implementation in CAD

Systems // Gero J.S. and F.Sudweeks F.(eds),

Advances in Formal Design Methods for CAD,

Preprints of the IFIP WG 5.2 Workshop on

Formal Design Methods for Computer-Aided

Design, Mexico, 1995, pp. 105 -127.

[3] A.I. Mikov, E.B. Zamyatina, A.H. Fatykhov. A

System for Performing Operations on Distributed

Simulation Models of Telecommunication Nets //

Proc. I Conf. “Methods and Means of Information

Processing, Moscow State University (Russia),

2003. pp. 437-443 (in Russian).

[4] P.A. Fishwick. Ontologies For Modeling And

Simulation: Issues And Approaches /Paul A.

Fishwick, John A. Miller // Proceedings of the

2004 Winter Simulation Conference. pp. 259-264

[5] M. Dean, D. Connolly, F. van Harmelen, et al.

2002. Web Ontology Language (OWL) Reference

Version 1.0. W3C. //www.w3.org/TR/2002/owl-

ref/

[6] L. Lacy. Potential Modeling And Simulation

Applications Of The Web Ontology Language –

Owl / Lee Lacy, William Gerber // Proceedings of

the 2004 Winter Simulation Conference. – pp.

265-270

[7] Vei-Chung Liang. A Port Ontology For

Automated Model Composition / Vei-Chung

Liang, Christiaan J.J. Paredis // Proceedings of the

2003 Winter Simulation Conference, - pp. 613-

622

[8] G.A. Silver, L.W. Lacy, J.A. Miller. Ontology

Based Representations Of Simulation Models

Following The Process Interaction World View.

Proceedings of the 2006 Winter Simulation

Conference L. F. Perrone, F. P. Wieland, J. Liu,

B. G. Lawson, D. M. Nicol, and R. M. Fujimoto,

eds.pp.1168-1176.

[9] P. Benjamin, M. Patki, R. Mayer. Using

Ontologies For Simulation Modeling. Proceedings

of the 2006 Winter Simulation Conference/ L. F.

Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D.

M. Nicol, and R. M. Fujimoto, eds. –pp.1161-

1167

[10] U. Durak, H. Oguztuzun, S. K. Ider. An Ontology

For Trajectory Simulation. Proceedings of the

2006 Winter Simulation Conference/ L. F.

Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D.

M. Nicol, and R. M. Fujimoto, eds. –pp.1161-

1167

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

