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Abstract  

The Finite Element Method (FEM) is one of the most important simulation methods in engi-
neering and natural sciences. However, it rather seldom is an integral part of a simulation lec-
ture. Likewise, books on the FEM typically avoid the term “simulation”. This strange distinc-
tion between “general” simulation methods, on the one hand, and Finite Elements (FEs), on 
the other hand,  has historical, cultural, didactical and methodological roots.  
Interestingly, modular or object oriented approaches to complex system simulation have many 
ideas in common with the classical FEM. This gives rise to an alternative teaching approach 
which seamlessly integrates the basics of FEs into an advanced simulation lecture on continu-
ous time simulation. The advantage of this concept is the exploitation of commonalities be-
tween FEs and modular modeling to speed up the learning process.  
The modular approach aims at a quick but completely transparent implementation of first FE 
simulations by using Modelica. Having understood the basic computational machinery the 
students will then be highly motivated to learn about the theoretical foundations of the FEM. 
The concept was tested with encouraging results in the Siegen simulation courses. 
Since Modelica, as a general purpose system, is not really a good FE tool, the classical trisec-
tion into preprocessor, numerical solver and postprocessor has been implemented by combin-
ing Modelica with Matlab. The preprocessor allows drawing simple 2D meshes from which a 
Modelica file is automatically generated. The postprocessor takes up the Modelica output file 
and visualizes the simulation results on a 2D mesh. All intermediate steps are completely 
transparent to the students. Making the experience that all steps of a basic FE simulation can 
be practically managed on an elementary level frees the method from several theoretical and 
formal burdens. 
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1 Introduction 
Doubtlessly, the Finite Element Method (FEM) is one 
of the most important simulation methods in the engi-
neering and natural sciences. For engineers it is an 
integral part of many university curricula [1]. Mathe-
maticians simply consider it as the most important 
numerical method to solve partial differential equa-
tions [2].  

Despite of its importance, FEs are not taught in the 
context of typical simulation lectures. Likewise, many 
FE text books don’t even use the term “simulation”. 
One reason might be the historical origin of the 
method as a tool to solve continuum mechanical prob-
lems; another one is the fact that time dependent prob-
lems usually do not play an important role in an intro-
ductory FEM lecture. Most important, traditional FE 
lectures take a full semester without leaving any space 
for other topics. 

This is one motivation for the developments described 
in the present contribution: FEs should be seamlessly 
integrated into an advanced simulation lecture. “Seam-
less” here means that several concepts which are also 
part of a typical lecture on continuous time simulation 
should be efficiently “reused” for introducing the 
FEM. This significantly speeds up the learning proc-
ess because a lot of concepts are already familiar to 
the students.  

The second motivation to try an alternative approach 
to FEs is that the original idea of the FEM – i.e. a 
modular decomposition of spatial continua – is ob-
scured in many modern text books by a lot of formal 
and technical details. Since the beginner is usually not 
able to distinguish between the core ideas and purely 
technical or formal aspects, the whole method makes 
an unnecessarily complicated impression. Particularly, 
it is not clear for the student, how the theoretical and 
formal constructs introduced in the first parts of a 
typical FEM lecture are finally transformed into a 
practical numerical method. In many cases the stu-
dents will see their first running program at a rather 
late stage of the lecture.  

Consequently, a major goal of the alternative approach 
presented here is to find the shortest way to the first 
nontrivial FE program. This does not mean that there 
is a way to understand the FEM in depth without the 
underlying mathematical theory. For this reason, some 
details and mathematical precision have to be sacri-
ficed, for the “hands on” approach. However, once the 
students got their first program running, the students 
are highly motivated to learn about the mathematical 
details.  

2 Finite Elements and modular models 
From a naive viewpoint the basic idea of FEs is quite 
simple (cf. Fig. 1): A continuous spatial domain is 
discretized as a system of interacting FEs. For each 
single element the physical laws governing the local 

behavior of the system are approximated using a dis-
crete set of variables. The result is some kind of lin-
earized constitutive law for the single elements. The 
chosen variables are associated to certain interface 
points at the boundary of the elements. Then, the cou-
pling relations between neighbored elements and the 
boundary conditions of the system have to be speci-
fied. This, finally, yields an equation system having as 
many unknowns as there are equations (Fig. 1) [3].  

Interestingly, this is exactly the approach taken in 
modern modular or object oriented simulation lan-
guages like Modelica [4] or VHDL-AMS [5] to model 
complex systems with spatially concentrated parame-
ters. From now on it is assumed that the fundamentals 
of modular modeling and (exemplarily) the Modelica 
language have already been introduced and practiced 
in an advanced simulation lecture. Then it is an obvi-
ous idea to develop the FEM as a special case of a 
general modular approach.  

The new concept has been tested in a one semester 
advanced lecture on “Multidisciplinary Modeling and 
Simulation” which is primarily concerned with object 
oriented modeling concepts and the computational 
mechanisms underlying the Modelica language. If the 
theory of the FEM is omitted, it just takes a few hours 
to understand the FE machinery at the end of the lec-
ture.  
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Fig. 1: a) Displacements and forces as interface vari-

ables of an elastic triangle element. b) Simple triangu-
lated elastic body with loads and bearings. c) FE net-

work approximating the elastic continuum. 

3 Advantages of the new approach 
Using the Modelica approach, the following technical 
or formal concepts can be avoided in an early stage of 
the FEM introduction: 

• The mathematical theory for locally approximat-
ing the solution of partial differential equations on 
FEs can be shifted to the second part of a lecture. 
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Instead the approximation result is first intro-
duced by examples. Nevertheless, the students 
can understand the behavior of the approximation 
by doing empirical explorations on single ele-
ments in the computer lab (cf. Fig. 4). Clearly, 
this empirical understanding should be theoreti-
cally founded later on. 

• The central but rather technical concept of test 
function spaces and their basis functions need not 
be introduced from the beginning on because FEs 
are first introduced as approximated physical 
components with their interface points and consti-
tutive potential-flow laws. However, some prob-
lems arise when spatially distributed properties 
like mass density, or non constant boundary con-
ditions have to be mapped to the discrete state 
variables of the elements (cf. Fig. 5). Again, there 
is an intuitive empirical work around available.  

• The algorithmic problem of assembling the ele-
ments to the whole system model by integrating 
the local equations into one large equation system 
is simply not present in the new approach. The 
reason is that this assembly mechanism, being 
universal for any (linear or nonlinear) modular 
method, should already be a central part of a 
Modelica course. Consequently, the students are 
already familiar with the description of global be-
havior from local equations. This understanding 
usually takes a lot of time in a classical FEM lec-
ture.  

• In the new approach time dependency is included 
from the beginning because the students in an ad-
vanced simulation lecture will be familiar with a 
dynamical systems approach. Clearly, the static 
case turns out as a special situation.  

It should be pointed out that the alternative approach 
is not a “light” version of a classical FEM lecture be-
cause it really goes to the details of the computational 
machinery instead of just demonstrating the usage of a 
commercial FE tool. The difference to the classical 
teaching concept is rather a changed arrangement of 
the traditional contents: The mathematically involved 
parts of the theory are shifted to the second part of the 
lecture without sacrificing too much terminological 
and methodological precision.  

The following sections now concentrate on the techni-
cal details of the alternative approach and the teaching 
tools developed for this purpose. 

4 Modular modeling with Modelica 
FEs can be best introduced with examples from con-
tinuum mechanics or heat conduction. In both cases 
the arising equations can be understood quite intui-
tively. Moreover, the one dimensional case (i.e. 
Hooke's or Fourier's law) is familiar even to students 
will a cursory knowledge in mechanics or heat con-
duction. For this reason any Modelica course will in-

clude examples for mass-spring-damper systems and 
networks of heat capacities-heat conductors in the 
thermal case. These components are also included in 
the standard Modelica libraries [4]. Although both 
examples are treated in the lecture we restrict to the 
mechanical case in the following.  

To recall the basic concepts of modular physical mod-
eling using Modelica it is shown here by example how 
2D mass-spring systems with different boundary con-
ditions can be modeled. Fig. 2a shows the interface 
variables required to describe the components. 
Clearly, the system behavior can be made more realis-
tic by introducing additional dampers which are omit-
ted here for brevity. 
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Fig. 2: a) Basic modules for modeling mass-spring 

systems with their interface variables (positions and 
forces) b) Structure of a simple mass spring system. 

The constitutive laws of these components are given 
by (

iuG  position vectors, iF
G

 force vectors, L  relaxed 
spring length, c  spring constant): 
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The laws relate the potential variables iuG  of the com-

ponents with their flow variables iF
G

. A Modelica code 
fragment describing the spring is given by: 

  Connector MechNode2D 
        flow Real    Fx, Fy ; 
                Real    ux, uy ; 
   end MechNode2D ; 
 
   model Spring2D 
       MechNode2D    n1, n2 ; 
       Parameter Real c=1,  L=1 ; 
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   equation 
       L12 = sqrt ((n1.ux-n2.ux)^2+(n1.uy-n2.uy)^2) ; 
       f = c * (L-L12) ; 
       n1.Fx=f  * (n1.ux-n2.ux) / L12;    n2.Fx=-n1.Fx ; 
       n1.Fy=f  * (n1.uy-n2.uy) / L12;    n2.Fy=-n1.Fy ; 
   end Spring2D ; 
Building up a system from its components now means 
to integrate multiple copies of these modules with the 
respective coupling equations that arise from connect-
ing the components. E.g. the coupling structure of the 
mass spring system shown in Fig. 2b is given by (pa-
rameters omitted): 

   model MassSpringSystem2D 
       Spring2D  S1,S2,S3; 
       Mass2D    M2,M2; 
       Bearing     B1,B2; 
       Force2D   F; 
   equation 
       connect (B1.n, S1.n1); 
       connect (B2.n, S2.n1); 
       connect (S1.n2, S2.n2); 
       connect (S1.n2,M1.n); 
       … 
   end MassSpringSystem2D 

5 Transition to Finite Elements 
One key idea of the classical FEM now is to linearize 
the system around a reference state. In the mechanical 
case this reference state is given by the relaxed (i.e. 
force free) system configuration. Clearly, this ap-
proximation is only valid if the displacements remain 
small when the boundary constraints and the gravita-
tional forces are applied.  

The students in an advanced simulation course should 
be familiar with linearization concepts. In the FEM 
method the linearization is done module wise before 
the system assembly takes place. After linearization 
the potential variables are no more given by the posi-
tions of the coupling points but by their displacements 
from their reference configuration. Displacements are 
henceforth indicated with a Δ  symbol in front of the 
corresponding variable name. 

For example the nonlinear spring model from Eq. (1) 
is linearized in the following way: 

( )2
1 2 12 12 12 1 2      (2)TF F c u u u u u= − ≈ − ⋅ ⋅ ⋅ Δ −Δ

S

G G G G G G G
���	��


 

The arising constant matrix S is known as the element 
stiffness matrix. The students can convince them-
selves that the linearized version well approximates 
the original spring model as long as the displacements 
are small.   

Replacing the original nonlinear model by its linear 
approximation (henceforth called a rod), it is immedi-
ately possible to modify the Modelica library by chan-
ging positions to displacements and springs to rods. 

As an exercise classical networks of rods and masses 
can be immediately built up and simulated by the stu-
dents (Fig. 3). These are already the first running FE 
models.  

The most remarkable difference to the original nonlin-
ear model is, that the former interface variables (i.e. 
positions) now become additional parameters for de-
scribing the relaxed configuration. Consequently, all 
these coordinates must now be explicitly given in the 
network configuration (cf. Fig. 3): 

   model MassRodSystem2D 
       Spring2D  S1(u1x,u1y,u4x,u4y), 

        S2(u2x,u2y,u4x,u4y), 
        S3(u2x,u2y,u5x,u5y), 
        .... 

       .... 
   end MassSpringSystem2D 
So far, the new approach is still similar to a typical FE 
introduction for engineers. The first essential differ-
ence now lies in the assembly of the system equations. 
Cleary, since all linearized constitutive laws as well as 
the coupling equations are linear, the resulting overall 
equation system is linear too. However, it is not nec-
essary to explain in detail how the system stiffness 
matrix can be compiled from the element stiffness 
matrices because this is automatically performed by 
Modelica. This avoids a lot of technical details.  
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Fig. 3: a) Interface variables of a linearized spring 

element (rod). b) Simple rod network. c) FE approxi-
mation with coordinates of the relaxed configuration. 

Another fundamental difference between a classical 
FEM introduction and the Modelica approach is that 
the coupling equations are not explicitly generated in 
the FEM. Instead, the system stiffness matrix is di-
rectly compiled from the element stiffness matrices. 
However, since a Modelica compiler will automati-
cally remove all trivial coupling equations, the final 
result will be the same. 

6 Triangle elements 
As long as the elements have no spatial extension as in 
the examples of springs and heat conductors it will 
take just take an hour of lecture time to establish the 
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first FE model. This becomes more difficult when 
spatially extended elements like triangles in 2D or 
tetrahedrons in 3D are considered which are essential 
for the discretization of continuous media. In the fol-
lowing it is sufficient to illustrate the 2D triangle case. 
It should be immediately clear to the students, that in 
principle, a triangle discretization should work like the 
example shown in Fig. 1. 

The problem now is to derive the stiffness matrix of a 
triangle element which should be a 6x6 matrix. How-
ever, the nonlinear behavior of the original system in 
space is no more described by an explicit equation like 
in Eq. (1) but by a partial differential equation. For 
this reason it is not straight forward to derive a lin-
earized potential-flow law from the PDE model in 
analogy to the transition from Eq. (1) to Eq. (2). If the 
underlying formal machinery is presented in a lecture 
the students are confronted with the quite abstract 
formalisms of weak PDE solutions, test function 
spaces, basic approximation theory or even Sobolev 
spaces [2]. 

However, this is not really necessary for a first en-
counter with FEs. To achieve a practical understand-
ing, the details of the approximation can be (temporar-
ily) omitted and the resulting linearized model is pre-
sented from scratch. As an example the approximate 
model to describe the elastic deformation of the trian-
gle is studied. The potential variables are given by the 
displacements at the three edges of the triangle and the 
flows by resulting forces (Fig. 1a). The element stiff-
ness matrix S in the case of plain strain is known to be 
(A – triangle area, d – element thickness, μ Poisson 
number, E – Young module) [3]: 
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It is a 6x6 matrix relating 3x2 (x,y)-displacements of 
the triangle vertices to 3x2 (x,y)-vertex forces. 

Although these equations look very complicated with-
out knowing their derivation, it is very easy to con-
vince the students that the approximated potential-
flow relation shows the expected behavior. For this 
reason a small Matlab program has been written for 
interactive drawing and visualization of potential flow 
relationships (Fig. 4). By this empirical study the stu-
dents become convinced that there is nothing mysteri-
ous about the stiffness matrix. 

a) b) c)a) b) c)

 
Fig. 4: Interactive exploration of the potential flow 

relationship: a) Expanding, b) compressing, c) shear-
ing a triangle. The underlying relaxed triangle is 

shown by its contour in each case. 

7 Coupling triangles 
Having understood the function of single triangle ele-
ments it is straight forward to couple triangle elements 
for the modeling of more complex geometries (Fig. 
1c). Nothing new has to be explained here if the 
spring example is already understood. Likewise, the 
introduction of boundary conditions is quite simple if 
only point loads are be considered.  

In the dynamic case masses have to be coupled to the 
vertex points in the triangle mesh. They can be com-
puted by attributing a part of the triangle to the next 
neighbored edge point (Fig. 5a). However, it should 
be noticed that this intuitive approach fails if the mate-
rial has non constant mass density. 

a) b)a) b)

 
Fig. 5: a) Attributing masses to the interface nodes.  
b) Attributing non constant loads to interface nodes. 

Likewise, if a boundary condition changes continu-
ously a deeper knowledge of the test function formal-
ism would be necessary to understand how they are 
mapped to the triangle vertices.  

Taking this way the students will be able to build up a 
complete FE model with very little effort. However, 
after doing this in Modelica with the rod elements 
there is nothing new to be learned for triangles. For 
this reason a ready to use Modelica library for 2D con-
tinuum mechanics is supplied. This library can be 
studied by the students to see how it is implemented. 
The whole unit on continuum mechanics then takes 
only two more hours of lecture time. 

8 Preprocessing and postprocessing 
As long as there are only a few triangles in a system it 
is possible to specify all geometric parameters of a FE 
model manually. For a higher number of triangles it is 
a tedious procedure to correctly supply all the inter-
face coordinates. Clearly, this task is automated by 
commercial FE tools. However, this part of automatic 
model generation cannot be straight forwardly imple-
mented in Modelica.  

For this reason a separate Matlab tool has been im-
plemented that allows the drawing of simple FE 
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meshes in a graphical way (Fig. 6). The Matlab tool 
then automatically generates the corresponding Mode-
lica model with all necessary geometric parameters 
filled in. The students can check with an example that 
this generation process is straightforward and pro-
duces correct results. 

The same problem occurs when model assembly and 
system simulation has been performed. Because Mod-
elica has no built in concepts to represent spatial data 
the simulation result is a collection of time courses of 
all state variables of the system. It makes little sense 
to visualize these results by time course plots as Mod-
elica does.  

For this reason a post processing tool has been imple-
mented in Matlab which takes the Modelica output 
and performs a spatial visualization in geometrical 
space (Fig. 7). Again, this is a purely technical trans-
formation which is completely transparent to the stu-
dents.  

9 Conclusions 
Summarizing, a complete FE tool for heat conduction 
and elastic deformation in 2D has been implemented 
together with the corresponding pre- and post-
processing tools. More details can be found in [6]. All 
materials are available and can be downloaded from  
www.simtec.mb.uni-siegen.de. 

Fig. 6: MATLAB preprocessing tool for model ge-
ometry specification 

It must be emphasized that these tools are designed for 
teaching and are not intended as a substitution for a 
professional FE tool. Using these tools it is possible to 
establish a short introduction to FEs based on a previ-
ous knowledge of modular modeling with Modelica. 
More details and more theory can be added later on. 
Experiences from the lecture given at the University 
of Siegen are quite encouraging.  

As an outlook, even advanced concepts of the FEM 
can be explained within the Modelica framework. This 
holds e.g. for more sophisticated elements like hex-
agonal elements or higher order elements. Even non 
linear elements or elements with additional memory 
variables (e.g. for plastic materials) can be introduced. 

Also the Finite Volume Method (FVM) can be intro-
duced in complete analogy to the approach taken here. 
The important difference then is that the interface 
points of the triangles now lie on the edge center 
points. Masses or heat capacities can be handled more 
easily in the FVM because they directly correspond to 
the triangle domain. Another aspect is automatic grid 
generation, which is rather a topic of computer geome-
try than physical modeling. 

On the other hand it turns out very quickly that Mode-
lica is not the tool to do FEs if meshes with more than 
a few elements are considered. In this case the per-
formance rapidly drops down because many FE spe-
cific simplification or preconditioning methods for the 
arising equation systems are not available in an all 
purpose tool. Nevertheless, it is very easy to explain 
this difference between Modelica and a specialized FE 
tool to the students. In the Siegen lecture, the Comsol 
FE tool [7] is finally demonstrated to the students how 
a specialized tool looks like. 

 
Fig. 7: MATLAB post-processing tool for simulation 

result visualization. 
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